Monthly Archives: August 2020

Image

Optimizing Diffusion Imaging Protocols for Structural Connectomics in Mouse Models of Neurological Conditions

Network approaches provide sensitive biomarkers for neurological conditions, such as Alzheimer’s disease (AD). Mouse models can help advance our understanding of underlying pathologies, by dissecting vulnerable circuits. In this work, we have examined the balance between spatial and angular resolutions and inferred suggestions for recommended future protocols. In particular, we examined a set of nodes/brain regions that are relevant for neurodegenerative conditions such as AD.

Front. Phys., 21 April 2020 | https://doi.org/10.3389/fphy.2020.00088

Dual source hybrid spectral micro-CT using an energy-integrating and a photon-counting detector

Preclinical micro-CT provides a hotbed in which to develop new imaging technologies, including spectral CT using photon counting detector (PCD) technology. Spectral imaging using PCDs promises to expand x-ray CT as a functional imaging modality, capable of molecular imaging, while maintaining CT’s role as a powerful anatomical imaging modality. However, the utility of PCDs suffers due to distorted spectral measurements, affecting the accuracy of material decomposition. We attempt to improve material decomposition accuracy using our novel hybrid dual-source micro-CT system which combines a PCD and an energy integrating detector.  doi.org/10.1088/1361-6 

Deep learning based spectral extrapolation for dual‐source, dual‐energy x‐ray computed tomography

Data completion is needed in dual‐source, dual‐energy computed tomography (CT) when physical or hardware constraints limit the field of view (FoV) covered by one of two imaging chains. Here we published a new Deep Learning approach for Spectral Extrapolation!

MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma

We have created an image processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when studying new cancer therapies.

Link to our new paper

Welcome to Duke QIAL!

Our mission is to develop, optimize and apply novel CT and MRI quantitative imaging at both preclinical and clinical levels !