Publications

BOOK CHAPTERS:

  1. Zhang, Y., Yang, H. (2024). “Quantification of Trophoblast Syncytialization by Fluorescent Membrane Labeling” in Trophoblasts, eds Raha, S., Methods in Molecular Biology, vol 2728. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3495-0_8
  2. Le, S.C. & Yang, H. “Structure-function of TMEM16 ion channels and lipid scramblases” in Ion Channels in Biophysics and Physiology, eds. L. Zhou (Springer), 2021
  3. Yang, H. & Jan, L. “TMEM16 membrane proteins in health and disease” in Ion Channels in Health and Disease, eds G. Pitt (Academic Press/Elsevier) (2016)
  4. Yang, H. & Cui, J. “BK Channels” in HANDBOOK OF ION CHANNELS (eds. Zheng, J. & Trudeau, M.C.) TAYLOR & FRANCIS Books, Inc., (BocaRaton, FL:CRC). 227–240 (2015)

PAPERS:

2024

  1. Liang, P., Zhang, Y., Wan, Y.S., Ma, S., Dong., P., Lowry, A.J., Francis, S.J., Khandelwal, S., Delahunty, M., Telen, M.J., Strouse, J.J., Arepally, G.M.,Yang, H., Deciphering and Disrupting PIEZO1-TMEM16F Interplay in Hereditary Xerocytosis, Blood https://doi.org/10.1182/blood.2023021465 (2024).
  2. Yang, L., Liang, P., Yang, H., Coyne, C.B., Trophoblast organoids with physiological polarity model placental structure and function, J. Cell Sci. 137 (5): jcs261528 (2024).

2023

  1. Dong, P., Bakhurin, K., Li, Y., Mikati, M.A., Cui, J., Grill, W.M., Yin, H.H., Yang, H., Attenuating midline thalamus bursting to mitigate absence epilepsy, BIORXIV/2023/558258 (2023).
  2. Shan, K., Le, T., Liang, P., Dong, P., Yang, H., Endothelial TMEM16F lipid scramblase regulates angiogenesis, BioRxiv doi: https://doi.org/10.1101/2023.08.17.553724 (2023).
  3. Liang, P., Wan, Y.C.S., Kuai, Y., Hartzell, C.H. Yang, H., Niclosamide potentiates TMEM16A and induces vasoconstriction, BioRxiv doi: https://doi.org/10.1101/2023.07.31.551400 (2023)

2022

  1. Zhang, Y., Liang, P., Yang, L., Shan, K.Z., Feng, L., Chen, Y., Liedtke, W., Coyne, C.B. & Yang, H. Functional coupling between TRPV4 channel and TMEM16F modulates human trophoblast fusion. eLife 11, e78840 (2022).
  2. Dong, P., Zhang, Y., Hunanyan, A., Mikati, M., Cui, J., Yang, H., Neuronal mechanism of a BK channelopathy in absence epilepsy and dyskinesia, Proc. Natl. Acad. Sci. U S A., 119: e2200140119 (2022).
  3. Zhou, Q., Doherty, J., Akk, A., Springer, L.E., Fan, P., Spasojevic, I., Halade, G.V., Yang, H., Pham, C.T.N., Wickline, S.A. & Pan, H. Safety Profile of Rapamycin Perfluorocarbon Nanoparticles for Preventing Cisplatin-Induced Kidney Injury. Nanomaterials (Basel) 12 (2022).

2021

  1. Le, S.C., Liang, P., Lowry, A.J. & Yang, H. Gating and Regulatory Mechanisms of TMEM16 Ion Channels and Scramblases. Front Physiol 12, 787773 (2021). PMC8640346.
  2. Chen, Y., Z.L. Wang, M. Yeo, Q.J. Zhang, A.E. Lopez-Romero, H.P. Ding, X. Zhang, Q. Zeng, S.L. Morales-Lazaro, C. Moore, Y.A. Jin, Yang, J. Morstein, A. Bortsov, M. Krawczyk, F. Lammert, M. Abdelmalek, A.M. Diehl, P. Milkiewicz, A.E. Kremer, J.Y. Zhang, A. Nackley, T.E. Reeves, M.C. Ko, R.R. Ji, T. Rosenbaum, and W. Liedtke. Epithelia-sensory neuron crosstalk underlies cholestatic itch induced by lysophosphatidylcholine. Gastroenterology, 161, 301-317, (2021).
  3. Liang, P., Yang, H., Molecular underpinning of intracellular pH regulation on TMEM16F, J. Gen. Physiol., 153: e202012704 (2021).

2020

  1. Le, S.C., Yang, H., An additional Ca2+ binding site allosterically controls TMEM16A activation, Cell Rep., 13: 108570 (2020).
  2. Le, T., Le, S.C., Zhang, Y., Liang, P., Yang, H., Evidence that polyphenols do not inhibit the phospholipid scramblase TMEM16F, JBC, 295, 12537–44 (2020).
  3. Liao, C., Zhang, Y., Fan, C., Herring, L.E., Liu, J., Locasale, J.W., Takada, M., Zhou, J. Giada Zurlo1, Hu, L., Simon, J.M., Ptacek, T.M., Andrianov, V.G., Loza, E., Peng, Y., Yang, H., Charles M. Perou, C.M., Zhang, Q., Identification of BBOX1 as a Therapeutic Target in Triple-Negative Breast Cancer, Cancer Discov., 10, 1706–21 (2020).
  4. Zhang, G., Gibson, R.A., McDonald, M., Liang, P., Kang, P.W., Shi, J., Yang, H., Cui, J., Mikati, M.A. A Gain-of-Function Mutation in KCNMA1 Causes Dystonia Spells Controlled with Stimulant Therapy, Mov. Disord, 35, 1868–73 (2020) ( co-corresponding author).
  5. Zhang, Y., Le, T., Grabau, R, Mohseni, Z., Kim, H., Natale, D.R., Feng, L., Pan, H., , H., TMEM16F phospholipid scramblase mediates trophoblast fusion and placental development, Sci. Adv. 6: eaba0310 (2020).

2019

  1. Le, S., Jia, Z., Chen, J., Yang, H., Molecular basis of PIP2-dependent regulation of the Ca2+-activated chloride channel TMEM16A, Nat. Commun., 10, 3769 (2019).
  2. Le, T., Jia, Z., Le, S., Zhang, Y., Chen, J., Yang, H., An inner activation gate controls TMEM16F phospholipid scrambling, Nat. Commun., 10, 1846 (2019).
  3. Le, T., Le. S., Yang, H., Drosophila Subdued is a moonlighting TMEM16 transporting ions and phospholipids, JBC, 294, 4529 (2019).
  4. Yin, Y., Le, S., Hsu, A., Borgnia, M., Yang, H., Lee, SY., Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel, Science 363: eaav9334 (2019).
  5. Zhang, Y., Yang, H. A simple and robust fluorescent labeling method to quantify trophoblast fusion, Placenta 77: 16 (2019).

2018

  1. Zubcevic, L., Le. S., Yang, H. Lee, SY., Conformational plasticity in the selectivity filter of the TRPV2 ion channel, Nat. Struct. Mol. Biol. 25, 405-415 (2018).

2017

  1. Zhou Y.*, Yang H.*, Cui J., Lingle C.J., Threading the biophysics of mammalian Slo1 channels onto structures of an invertebrate Slo1 channel, J Gen Physiol.(2017) 149: 985-1007.
  2. Zhang, Y.*, Zhang, Z.*, Xiao, S., Tien, J., Le, S., Le, T., Jan, L., Yang, H., Inferior Olivary TMEM16B Mediates Cerebellar Motor Learning, Neuron (2017) 95:1103–1111. (co-corresponding author)

2015

  1. Yang, H., Zhang, G. & Cui, J. BK channels: multiple sensors, one activation gate. Front Physiol (2015) 6, 29.
  2. Huang, X., He, Y., Dubuc, A. M., Hashizume, R., Zhang, W., Reimand, J., Yang, H., Wang, T. A., Stehbens, S. J., Younger, S., Barshow, S., Zhu, S., Cooper, M. K., Peacock, J., Ramaswamy, V., Garzia, L., Wu, X., Remke, M., Forester, C. M., Kim, C. C., Weiss, W. A., James, C. D., Shuman, M. A., Bader, G. D., Mueller, S., Taylor, M. D., Jan, Y. N. & Jan, L. Y. EAG2 potassium channel with evolutionarily conserved function as a brain tumor target. Nat Neurosci (2015) 18, 1236-1246.

Before 2015

  1. Zhang, G., Yang, H., Liang, H., Yang, J., Shi, J., McFarland, K., Chen, Y. & Cui, J. A charged residue in S4 regulates coupling among the activation gate, voltage, and Ca2+ sensors in BK channels. J Neurosci (2014) 34, 12280-12288.
  2. Tien, J.*, Peters, C. J.*, Wong, X. M., Cheng, T., Jan, Y. N., Jan, L. Y. & Yang, H. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity. Elife (2014) 3. ( co-corresponding author)
  3. Hong, T.*, Yang, H.*, Zhang, S. S., Cho, H. C., Kalashnikova, M., Sun, B., Zhang, H., Bhargava, A., Grabe, M., Olgin, J., Gorelik, J., Marban, E., Jan, L. Y. & Shaw, R. M. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med (2014) 20, 624-632.
  4. Yang, J., Yang, H., Sun, X., Delaloye, K., Yang, X., Moller, A., Shi, J. & Cui, J. Interaction between residues in the Mg2+-binding site regulates BK channel activation. J Gen Physiol (2013) 141, 217-228.
  5. Sun, X., Shi, J., Delaloye, K., Yang, X., Yang, H., Zhang, G. & Cui, J. The interface between membrane-spanning and cytosolic domains in Ca(2)+-dependent K+ channels is involved in beta subunit modulation of gating. J Neurosci (2013) 33, 11253-11261.
  6. Yang, H.*, Kim, A.*, David, T., Palmer, D., Jin, T., Tien, J., Huang, F., Cheng, T., Coughlin, S. R., Jan, Y. N. & Jan, L. Y. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell (2012) 151, 111-122.
  7. Huang, F., Zhang, H., Wu, M., Yang, H., Kudo, M., Peters, C. J., Woodruff, P. G., Solberg, O. D., Donne, M. L., Huang, X., Sheppard, D., Fahy, J. V., Wolters, P. J., Hogan, B. L., Finkbeiner, W. E., Li, M., Jan, Y. N., Jan, L. Y. & Rock, J. R. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A (2012) 109, 16354-16359.
  8. Berg, J., Yang, H. & Jan, L. Y. Ca2+-activated Cl- channels at a glance. J Cell Sci (2012) 125, 1367-1371.
  9. Yang, J., Krishnamoorthy, G., Saxena, A., Zhang, G., Shi, J., Yang, H., Delaloye, K., Sept, D. & Cui, J. An epilepsy/dyskinesia-associated mutation enhances BK channel activation by potentiating Ca2+ sensing. Neuron (2010) 66, 871-883.
  10. Cui, J., Yang, H. & Lee, U. S. Molecular mechanisms of BK channel activation. Cell Mol Life Sci (2009) 66, 852-875.
  11. Yang, H., Shi, J., Zhang, G., Yang, J., Delaloye, K. & Cui, J. Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains. Nat Struct Mol Biol (2008) 15, 1152-1159.
  12. Yang, H., Zhang, G., Shi, J., Lee, U. S., Delaloye, K. & Cui, J. Subunit-specific effect of the voltage sensor domain on Ca2+ sensitivity of BK channels. Biophys J (2008) 94, 4678-4687.
  13. Yang, H.*, Hu, L.*, Shi, J., Delaloye, K., Horrigan, F. T. & Cui, J. Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels. Proc Natl Acad Sci U S A (2007) 104, 18270-18275.
  14. Yang, H., Hu, L., Shi, J. & Cui, J. Tuning magnesium sensitivity of BK channels by mutations. Biophys J (2006) 91, 2892-2900.
  15. Hu, L., Yang, H., Shi, J. & Cui, J. Effects of multiple metal binding sites on calcium and magnesium-dependent activation of BK channels. J Gen Physiol (2006) 127, 35-49.
  16. Du, W.*, Bautista, J. F.*, Yang, H., Diez-Sampedro, A., You, S. A., Wang, L., Kotagal, P., Luders, H. O., Shi, J., Cui, J., Richerson, G. B. & Wang, Q. K. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet (2005) 37, 733-738.
  17. Tang, J. W., H. Yang, L. L. Ren, A. Q. Wang, L. Ma, T. Zhang, and L. W. Lin. “The Decomposition of NO in Microwave Discharge.” Chemical Journal of Chinese Universities (2002) 23: 635.
  18. Tang, J., T. Zhang, D. Liang, Yang, N. Li, and L. Lin. “Direct decomposition of NO by microwave heating over Fe/NaZSM-5.” Applied Catalysis B: Environmental (2002) 36: 1–7. https://doi.org/10.1016/S0926-3373(01)00268-5.
  19. Yang, H., Zhang, H. Tian, J. Tang, D. Xu, W. Yang, and L. Lin. “Effect of Sr substitution on catalytic activity of La1-xSrxMnO3 (0≤x≤0.8) perovskite-type oxides for catalytic decomposition of hydrogen peroxide.” Reaction Kinetics and Catalysis Letters (2001) 73: 311–16. https://doi.org/10.1023/A:1014115508872.
  20. Yang, H., T. Zhang, H. Tian, J. Tang, D. Xu, L. Ren, J. Zhao, and L. Lin. “Perovskite Type Oxides: A Novel Type of Catalysts Suitable for Hydrogen Peroxide Decomposition.” In European Space Agency, (Special Publication) Esa Sp, (2001)197–200.
  21. Yang, H., T. Zhang, H. Tian, X. U. Dezhu, T. Junwang, and L. Liwu. “Decomposition of high concentration hydrogen peroxide over alumina-supported La0.6Sr0.4MnO3 perovskite catalyst.” Chinese Journal of Catalysis (2001) 22: 225–26.
  22. Tang, J., T. Zhang, A. Wang, L. Ren, Yang, L. Ma, and L. Lin. “Removal of NO by microwave discharge with the addition of CH4.” Chemistry Letters, (2001): 140–41. https://doi.org/10.1246/cl.2001.140.
  23. Tian, H., T. Zhang, Yang, X. Sun, D. Liang, and L. Lin. “Manganese-lead mixed oxide catalysts for decomposition of hydrogen peroxide.” Chinese Journal of Catalysis(2000) 21: 602.