Min, Max, and Exponential

Let \(X_1\) and \(X_2\) be random variables and let \(M=\mathrm{max}(X_1,X_2)\) and \(N=\mathrm{min}(X_1,X_2)\).

  1. Argue that the event \(\{ M \leq x\}\) is the same as the event   \(\{X_1 \leq x, X_2 \leq x\}\) and similarly that t the event \(\{ N > x\}\) is the same as the event   \(\{X_1 > x, X_2 > x\}\).
  2. Now assume that the \(X_1\) and \(X_2\) are independent and distributed with c.d.f. \(F_1(x)\) and \(F_2(x)\) respectively . Find the c.d.f. of \(M\) and the c.d.f. of \(N\) using the proceeding observation.
  3. Now assume that \(X_1\) and \(X_2\) are independently and exponentially  distributed with parameters \(\lambda_1\) and \(\lambda_2\) respectively. Show that \(N\) is distributed exponentially and identify the parameter  in the exponential distribution of \(N\).
  4. The route to a certain remote island contains 4 bridges. If the time to collapse of each bridge is exponential distributed with mean 20 years and is independent of the other bridges, what is the distribution of the time until the road is impassable because one of the  bridges has collapsed.

 

[Jonathan Mattingly]

Comments are closed.