Exponential Martingale Bound

Let \(\sigma(t,\omega)\) be nonanticipating with \(|\sigma(x,\omega)| < M\) for some  bound  \(M\) . Let \(I(t,\omega)=\int_0^t \sigma(s,\omega) dB(s,\omega)\). Use the exponential martingale \[\exp\big\{\alpha I(t)-\frac{\alpha^2}{2}\int_0^t \sigma^2(s)ds \big\}\] (see the problem here)  and the Kolmogorov-Doob inequality to get the estimate
P\Big\{ \sup_{0\leq t\leq T}|I(t)| \geq \lambda \Big\}\leq 2
\exp\left\{\frac{-\lambda^2}{2M^2 T}\right\}
First express the event of interest in terms of the exponential martingale, then use the Kolmogorov-Doob inequality and after this choose the parameter \(\alpha\) to get the best bound.

Comments are closed.