Consider
\begin{align*}
dX_t=& Y_t dB_t + \frac12 X_t dt\\
dY_t=& X_t dB_t + \frac12 Y_t dt
\end{align*}
Show that \(X_t^2-Y_t^2\) is constant for all \(t\).
Home » Stochastic Calculus » SDE examples » Hyperbolic SDE
Learning probability by doing !
Home » Stochastic Calculus » SDE examples » Hyperbolic SDE
Consider
\begin{align*}
dX_t=& Y_t dB_t + \frac12 X_t dt\\
dY_t=& X_t dB_t + \frac12 Y_t dt
\end{align*}
Show that \(X_t^2-Y_t^2\) is constant for all \(t\).