1. Effect of Humidity on C1, C2 Product Selectivity for CO2 Reduction in a Hybrid Gas/Liquid Electrochemical Reactor SH Lee, Y Song, B Iglesias, HO Everitt, J Liu. ACS Applied Energy Materials 5 (8), 9309-9314


    1. High entropy spinel oxide for efficient electrochemical oxidation of ammonia S He, V Somayaji, M Wang, SH Lee, Z Geng, S Zhu, P Novello, C.V Varanasi, J Liu. Nano Research, 1-7
    2. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes C Chen, et al. Nature Electronics 4 (9), 653-663.


    1. Synergy between thermal and nonthermal effects in plasmonic photocatalysis X Li, HO Everitt, J Liu. Nano Research 13 (5), 1268-1280


    1. Understanding the Origin of Selective Reduction of CO2 to CO on Single-Atom Nickel Catalyst S He, D Ji, J Zhang, P Novello, X Li, Q Zhang, X Zhang, J Liu. The Journal of Physical Chemistry B 124 (3), 511-518
    2. Diameter dependent doping in horizontally aligned high-density N-doped SWNT arrays P Li, Y Li, X Zhang, J Chen, Y Cheng, Y Li, Y Ma, J Liu. Nano Research 12 (8), 1845-1850
    3. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts X Li, HO Everitt, J Liu. Nano research 12 (8), 1906-1911
    4. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte J Zhou, T Qian, J Liu, M Wang, L Zhang, C Yan. Nano letters 19 (5), 3066-3073
    5. Fully air-bladed high-efficiency perovskite photovoltaics
      J Ding, Q Han, QQ Ge, DJ Xue, JY Ma, BY Zhao, YX Chen, J Liu, DB Mitzi, …
      Joule 3 (2), 402-416
    6. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production
      X Li, X Zhang, HO Everitt, J Liu. Nano Letters 19 (3), 1706-1711
    7. Correction: Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage
      L Ma, T Chen, G Zhu, Y Hu, H Lu, R Chen, J Liang, Z Tie, Z Jin, J Liu. Journal of Materials Chemistry A 7 (5), 2422-2422


    1. Effects of light on catalytic activities and lifetime of plasmonic Au catalysts in the CO oxidation reaction P Novello, CV Varanasi, J Liu. ACS Catalysis 9 (1), 578-586
    2. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries T Chen, W Kong, Z Zhang, L Wang, Y Hu, G Zhu, R Chen, L Ma, W Yan, …Nano Energy 54, 17-25
    3. Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries L Ma, G Zhu, W Zhang, P Zhao, Y Hu, Y Wang, L Wang, R Chen, T Chen, …Nano Research 11 (12), 6436-6446
    4. Nitrogen-doped carbon nanotube forests planted on cobalt nanoflowers as polysulfide mediator for ultralow self-discharge and high areal-capacity lithium–sulfur batteries
      L Ma, H Lin, W Zhang, P Zhao, G Zhu, Y Hu, R Chen, Z Tie, J Liu, Z Jin
      Nano letters 18 (12), 7949-7954
    5. Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO2–x Nanoflakes for High-Performance Rechargeable Magnesium BatteriesY Wang, X Xue, P Liu, C Wang, X Yi, Y Hu, L Ma, G Zhu, R Chen, T Chen, …ACS nano 12 (12), 12492-12502
    6. Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure W Zhang, Y Hu, L Ma, G Zhu, P Zhao, X Xue, R Chen, S Yang, J Ma, J Liu, …Nano Energy 53, 808-816
    7. Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies L Ma, X Gao, W Zhang, H Yuan, Y Hu, G Zhu, R Chen, T Chen, Z Tie, J Liu, … Nano Energy 53, 91-96
    8. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets
      X Xue, R Chen, H Chen, Y Hu, Q Ding, Z Liu, L Ma, G Zhu, W Zhang, Q Yu, …
      Nano letters 18 (11), 7372-7377
    9. Carrier dynamics engineering for high-performance electron-transport-layer-free perovskite photovoltaics
      Q Han, J Ding, Y Bai, T Li, JY Ma, YX Chen, Y Zhou, J Liu, QQ Ge, J Chen, …
      Chem 4 (10), 2405-2417
    10. An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging
      J Liang, G Zhu, C Wang, P Zhao, Y Wang, Y Hu, L Ma, Z Tie, J Liu, Z Jin
      Nano Energy 52, 239-245
    11. High-performance alkaline organic redox flow batteries based on 2-hydroxy-3-carboxy-1, 4-naphthoquinone
      C Wang, Z Yang, Y Wang, P Zhao, W Yan, G Zhu, L Ma, B Yu, L Wang, …
      ACS Energy Letters 3 (10), 2404-2409
    12. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@ N-doped carbon nanopolyhedra anode and microporous carbon cathode
      G Zhu, T Chen, L Wang, L Ma, Y Hu, R Chen, Y Wang, C Wang, W Yan, …
      Energy Storage Materials 14, 246-252
    13. Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth
      L Ma, R Chen, Y Hu, W Zhang, G Zhu, P Zhao, T Chen, C Wang, W Yan, …
      Energy Storage Materials 14, 258-266
    14. Recent progress of advanced binders for Li-S batteries
      J Liu, Q Zhang, YK Sun. Journal of power sources 396, 19-32
    15. Partial surface oxidation of manganese oxides as an effective treatment to improve their activity in electrochemical oxygen reduction reaction
      S He, D Ji, P Novello, X Li, J Liu. The Journal of Physical Chemistry C 122 (37), 21366-21374
    16. Highly Branched VS4 Nanodendrites with 1D Atomic‐Chain Structure as a Promising Cathode Material for Long‐Cycling Magnesium Batteries
      Y Wang, Z Liu, C Wang, X Yi, R Chen, L Ma, Y Hu, G Zhu, T Chen, Z Tie, …
      Advanced materials 30 (32), 1802563
    17. Walnut‐Like Multicore–Shell MnO Encapsulated Nitrogen‐Rich Carbon Nanocapsules as Anode Material for Long‐Cycling and Soft‐Packed Lithium‐Ion Batteries
      G Zhu, L Wang, H Lin, L Ma, P Zhao, Y Hu, T Chen, R Chen, Y Wang, …
      Advanced Functional Materials 28 (18), 1800003
    18. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium–sulfur batteries L Ma, W Zhang, L Wang, Y Hu, G Zhu, Y Wang, R Chen, T Chen, Z Tie, … ACS nano 12 (5), 4868-4876
    19. Interface Engineering of Anchored Ultrathin TiO2/MoS2 Heterolayers for Highly-Efficient Electrochemical Hydrogen Production
      J Liang, C Wang, P Zhao, Y Wang, L Ma, G Zhu, Y Hu, Z Lu, Z Xu, Y Ma, …
      ACS applied materials & interfaces 10 (7), 6084-6089
    20. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects X Zhang, X Li, ME Reish, D Zhang, NQ Su, Y Gutiérrez, F Moreno, …
      Nano letters 18 (3), 1714-1723
    21. Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays L Ma, W Zhang, P Zhao, J Liang, Y Hu, G Zhu, R Chen, Z Tie, J Liu, Z Jin
      Journal of Materials Chemistry A 6 (41), 20076-20082
    22. Synergy of polypyrrole and carbon x-aerogel in lithium–oxygen batteries
      CHJ Kim, CV Varanasi, J Liu. Nanoscale 10 (8), 3753-3758
    23. Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate J Liang, G Zhu, Z Lu, P Zhao, C Wang, Y Ma, Z Xu, Y Wang, Y Hu, L Ma, …
      Journal of Materials Chemistry A 6 (5), 2047-2052
    24. Flexible devices: from materials, architectures to applications
      M Zou, Y Ma, X Yuan, Y Hu, J Liu, Z Jin. Journal of Semiconductors 39 (1), 011010


    1. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation Zhang, X., Li, X., Zhang, D., Su, N. Q., Yang, W., Everitt, H. O., & Liu, J. Nature Communications, 2017, 8, 14542.
    2. A single wire as all-inclusive fully functional supercapacitor Qi Kang, et al. Nano Energy, 32 (2017): 201-208.


    1. Phytotoxicity of soluble graphitic nanofibers to model plant species DE Gorka, JL Jeger, H Zhang, Y Ma, BP Colman, ES Bernhardt, J Liu. Environmental Toxicology and Chemistry, 2016
    2. All-Inorganic Perovskite Solar Cells Liang, Jia, et al. Journal of the American Chemical Society, 2016, 138(49), 15829-15832.
    3. Effect of Direct Contact on the Phytotoxicity of Silver Nanomaterials Gorka, D.E. and Liu, J. Environmental Science & Technology, 2016, 50(19), 10370-10376.
    4. A remotely driven and controlled micro-gripper fabricated from light-induced deformation smart materialHuang, Chaolei, et al. Smart Materials and Structures, 2016, 25(9), 095009.
    5. Emerging non-lithium ion batteries Wang, Yanrong, et al. Energy Storage Materials, 2016, 4, 103-129.
    6. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films Wang, Xuewen, et al. Science Advances, 2016, 2(7), e1600209.
    7. Strong, Machinable Carbon Aerogels for High Performance Supercapacitors CHJ Kim, D Zhao, G Lee, J Liu. Advanced Functional Materials, 2016, 26 (27), 4976-4983.
    8. Multi-yolk-shell copper oxide@carbon octahedra as high-stability anodes for lithium-ion batteries T Chen, Y Hu, B Cheng, R Chen, H Lv, L Ma, G Zhu, Y Wang, C Yan, Z Tie, Z Jin, J Liu. Nano Energy, 2016, 20, 305-314.
    9. Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage Ma, Lianbo, et al. Journal of Materials Chemistry A, 2016, 4(39), 15041-15048.
    10. Li3V2(PO4)3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries P Sun, X Zhao, R Chen, T Chen, L Ma, Q Fan, H Lu, Y Hu, Z Tie, Z Jin, Q Xu, J Liu. Nanoscale, 2016, 8, 7408-7415.
    11. Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics X Zhang, P Li, A Barreda, Y Gutierrez, F Gonzalez, F Moreno, HO Everitt, J Liu. Nanoscale Horizons, 2016, 1(1), 75-80.


    1. Highly Stretchable Conductive Fibers from Few-Walled Carbon Nanotubes Coated on Poly (m-phenylene isophthalamide) Polymer Core/Shell Structures S Jiang, H Zhang, S Song, Y Ma, J Li, GH Lee, Q Han, J Liu. ACS nano, 2015, 9(10), 10252-10257.
    2. Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control DE Gorka, JS Osterberg, CA Gwin, BP Colman, JN Meyer, ES Bernhardt, CK Gunsch, RT DiGulio, J Liu. Environmental science & technology, 2015, 49(16), 10093-10098.
    3. Nanostructured Materials for a Sustainable Future HL Zhang, J Liu. Small, 2015, 11(27), 3204-3205.
    4. Hydrophilic Hierarchical Nitrogen-Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance J Zhao, H Lai, Z Lyu, Y Jiang, K Xie, X Wang, Q Wu, L Yang, Z Jin, Y Ma, J Liu, Z Hu. Advanced Materials, 2015, 27(23), 3541-3545.
    5. Flexible Carbon Nanotube-Graphene/Sulfur Composite Film: Free-Standing Cathode for High-Performance Lithium/Sulfur Batteries Y Chen, S Lu, X Wu, J Liu. The Journal of Physical Chemistry C, 2015, 119(19), 10288-10294.
    6. Engineering hollow mesoporous silica nanocontainers with molecular switches for continuous self-healing anticorrosion coating Chen, T., Chen, R., Jin, Z. and Liu, J. Journal of Materials Chemistry A, 2015, 3(18), 9510-9516.
    7. Graphoepitaxial effect in the guided growth of SWNT arrays on quartz P Li, X Zhang, J Li, J Liu Journal of Materials Chemistry C, 2015, 3(37), 9678-9683.

    8. Conductive Graphene Fibers for Wire-Shaped Supercapacitors Strengthened by Unfunctionalized Few-Walled Carbon Nanotubes Ma, Yanwen; Li, Pan; Sedloff, Jennifer; Zhang, Xiao; Zhang, Hongbo; Liu, Jie ACS Nano, 2015, 9(2), 1352-1359.
    9. Rhodium Nanoparticles for Ultraviolet Plasmonics Watson, Anne; Zhang, Xiao; Alcaraz de la Osa, Rodrigo; Sanz, Juan; Gonzalez, Francisco; Moreno, Fernando; Finkelstein , Gleb ; Liu, Jie; Everitt, Henry Nano Letter, 2015, 15(2), 1095-1100.
    10. Understanding the Discrepancy between the Quality and Yield in the Synthesis of Carbon Nanotubes Xiao Zhang, Pan Li, Hongbo Zhang and Jie Liu Nano Research, 2015, 8(1), 296-302.
    11. Effects of Morphology and Chemical Doping on Electrochemical Properties of Metal Hydroxides in Pseudocapacitors Gyeonghee Lee, Chakrapani V. Varanasi, and Jie Liu Nanoscale, 2015, 7(7), 3181-3188.


    1. Effect of Multi-Walled Carbon Nanotubes and Conducting Polymer on Capacitance of Mesoporous Carbon Electrode Wang, Anmiao; Cheng, Yingwen; Zhang, Hongbo; Hou, Ye; Wang, Yanqin; Liu, Jie Journal of Nanoscience and Nanotechnology, 2014, 14(9), 7015-7021.
    2. Water Adsorption in Nanoporous Carbon Characterized by in Situ NMR: Measurements of Pore Size and Pore Size Distribution Wang H., Kleinhammes A., McNicholas T., Liu J., Wu Y. J. Phys. Chem. C, 2014, 118 (16), 8474-8480.
    3. Scalable Fabrication of Ambipolar Transistors and Radio-Frequency Circuits Using Aligned Carbon Nanotube Arrays Wang Z., Liang S., Zhang Z., Liu H., Zhong H., Ye L., Wang S., Zhou W., Liu J., Chen Y., Zhang J. and Peng L. Advanced Materials, 2014, 26(4): 645-652.
    4. Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers Zang J., Cao C., Feng Y., Liu J., Zhao X. Scientific Reports, 2014, 4, 6492.
    5. Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrates Cho J., Salleh N., Blanco C., Yang S., Lee C., Kim Y., Kim J., Liu J. Nanoscale, 2014, 6(7), 3861-7.
    6. Aging of fullerene C60 nanoparticle suspensions in the presence of microbes So-Ryong Chae, Dana E. Hunt, Kaoru Ikuma, Sungwoo Yang, Jinhyun Cho, Claudia K. Gunsch, Jie Liu, Mark R. Wiesner. Water Research , 2014, 65: 282-289.
    7. Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes Li J., Ke C., Liu K., Li P., Liang S., Finkelstein G., Wang F., Liu J. ACS Nano, 2014, 8 (8), 8564-8572.
    8. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide Gong M., Li Y., Zhang H., Zhang B., Zhou W., Feng J., Wang H., Liang Y., Fan Z., Liu J., Dai H. Energy Environ. Sci., 2014, 7, 2025-2032.
    9. Growth of High-Density-Aligned and Semiconducting-Enriched Single-Walled Carbon Nanotubes: Decoupling the Conflict between Density and Selectivity Li J., Liu K., Liang S., Zhou W., Pierce M., Wang F., Peng L., Liu J. ACS Nano, 2014, 8 (1), 554-562.


    1. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes Cheng Y., Zhang H., Varanasi C. V., Liu J. Scientific Reports, 2013, 3, 3195
    2. The dependence of ZnO photoluminescence efficiency on excitation conditions and defect densities Simmons Jr. J. G., Foreman J. V, Liu J., Everitt H. O. Appl. Phys. Lett., 2013, 103 (20), 201110
    3. Improving the performance of cobalt-nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches Cheng Y., Zhang H., Varanasi C. V., Liu J. Energy Environ. Sci., 2013, 6 (11), 3314-3321
    4. Carbon Nanomaterials for Flexible Energy Storage Cheng Y., Liu J. Materials Research Letters, 2013, 1 (4), 175-192
    5. One-pot synthesis of functionalized few-walled carbon nanotube/MnO2 composite for high performance electrochemical supercapacitors Cheng Y., Zhang H., Lu S., Zhan S., Varanasi C., Liu J. Materials Challenges in Alternative and Renewable Energy II: Ceramic Transactions, 2013, 239, 271-281
    6. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices Liu K., Hong X., Zhou Q., Jin C., Li J., Zhou W., Liu J., Wang E., Zettl A., Wang F. Nature Nanotechnology, 2013, 8, 917-922
    7. Localized excitons mediate defect emission in ZnO powders Foreman J. V., Simmons Jr. J. G., Baughman W. E., Liu J., Everitt H. O. J. Appl. Phys., 2013, 113, 133513
    8. Comparing Graphene and Carbon Nanotubes as Nanoscale Current Collectors in MnO2-Based Supercapacitors Cheng Y., Zhang H., Cordova I., Liu J., J. Nano Energy Power Res., 2013, 2, 41-47
    9. In vitro cytotoxicity of silver nanoparticles in primary rat hepatic stellate cellsSun X., Wang Z., Zhai S., Cheng Y., Liu J., Liu B. Molecular Medicine Reports, 2013, 8 (5), 1365-1372
    10. Solution-Processed, Antimony-Doped Tin Oxide Colloid Films Enable High-Performance TiO2 Photoanodes for Water Splitting Peng, Q.; Kalanyan, B.; Hoertz, P. G.; Miller, A.; Kim, D. H.; Hanson, K.; Alibabaei, L.; Liu, J.; Meyer, T. J.; Parsons, G. N.; Glass, J.T. Nano Lett., 2013, 13 (4), 1481-1488
    11. Highly Conductive Carbon Nanotube Matrix Accelerates Developmental Chloride Extrusion in Central Nervous System Neurons by Increased Expression of Chloride Transporter KCC2 Liedtke, W.; Yeo, M.; Zhang, H.; Wang, Y.; Gignac, M.; Miller, S.; Berglund, K.; Liu, J. Small, 2013, 9, 1066-1075
    12. Silver Nanoparticle-Alginate Composite Beads for Point-of-Use Drinking Water Disinfection Lin,S.; Huang, R.; Cheng, Y.; Liu, J.; Lau, B.; Wiesner, M. Water Research, 2013, 47, 3959-3965
    13. Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology Deborah M. Aruguete, Bojeong Kim, Michael F. Hochella Jr., Yanjun Ma, Yingwen Cheng, Andy Hoegh, Jie Liu and Amy Pruden Environ. Sci.: Processes Impacts, 2013, 15, 93-102
    14. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes Cheng, Y.; Zhang, H.; Lu, S.; Varanasi, C.; Liu,J. Nanoscale, 2013, 5, 1067-1073


    1. Direct Optical Imaging of Graphene In Vitro by Nonlinear Femtosecond Laser Spectral Reshaping Li, B.; Cheng, Y.; Liu, J.; Yi, C.; Brown, A.; Yuan, H.; Vo-Dinh, T.; Fisher, M.; Warran, W. Nano Letters, 2012, 12 (11), 5936-5940
    2. Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V Ding, L.;Liang, S.; Pei, T.; Zhang, Z.; Wang, S.; Zhou, W.; Liu, J.; Peng, L. Appl. Phys. Lett., 2012, 100, 263116
    3. Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors Cheng, Y.; Lu, S.; Zhang, H.; Varanasi, C.; Liu, J. Nano Letters, 2012, 12 (8), 4206-4211
    4. Monolithic co-aerogels of carbon/titanium dioxide as three dimensional nanostructured electrodes for energy storage Yang, S.; Cai, Y.; Cheng, Y.; Varanasi, C.; Liu, J. Journal of Power Sources, 2012, 218, 140-147
    5. Carbon nanotube arrays based high-performance infrared photodetector Zeng, Q.; Wang, S.; Yang, L.; Wang, Z.; Pei, T.; Zhang, Z.; Peng, L.; Zhou, W.; Liu, J.; Zhou, W.; Xie, S. Optical Materials Express, 2012, 2 (6), 839-848
    6. Uptake of Silver nanoparticles and Toxicity to Early Life Stages of Japanese Medaka (Oryzias latipes): Effect of Coating Materials Kwok, K.; Auffan, M.; Badireddy, A.; Nelson, C.; Wiesner, M.; Chilkoti, A.; Liu, J.; Marinakos, S.; Hinton, D. Aquatic Toxicology, 2012, 120: 59-66
    7. CMOS-based carbon nanotube pass-transistor logic integrated circuits Ding, L.; Zhang, Z.; Liang, S.; Pei, T.; Wang, S.; Li, Y.; Zhou, W.; Liu, J.; Peng, L. Nature Communications, 2012, 3: 677
    8. Carbon Nanotube Field-Effect Transistors for Use as Pass Transistors in Integrated Logic Gates and Full Subtractor Circuits Ding, L.; Zhang, Z.; Pei, T.; Liang, S.; Wang, S.; Zhou, W.; Liu, J.; Peng, L. ACS Nano, 2012, 6 (5), 4013-4019
    9. Channel-Length-Dependent Transport and Photovoltaic Characteristics of Carbon-Nanotube-Based, Barrier-Free Bipolar Diode Yang, L.; Wang, S.; Zeng, Q.; Zhang, Z.; Li, Y.; Zhou, W.; Liu, J.; Peng, L. ACS Appl. Mater. Interfaces, 2012, 4 (3), 1154-1157
    10. Polymeric Coatings on Silver Nanoparticles Hinder Autoaggregation but Enhance Attachment to Uncoated Surfaces Lin, S.; Cheng, Y.; Liu, J.; Wiesner, M. Langmuir, 2012, 28(9), 4178-4186
    11. Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes Wu, J.; Gerstandt, K.; Zhang, H.; Liu, J.; Hinds, B. Nature Nanotechnology, 2012, 7(2): 133-139
    12. Sulfur-doped zinc oxide (ZnO) Nanostars: Synthesis and simulation of growth mechanism Cho, J.; Lin, Q.; Yang, S.; Simmons, J.; Cheng, Y.; Lin, E.; Yang, J.; Foreman, J.; Everitt, H.; Yang, W.; Kim, J.; Liu, J. Nano Res.2012, 5 (1): 20-26
    13. Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles Ma, R.; Levard, C.; Marinakos, S.; Cheng, Y.; Liu, J.; Michel, F.; Brown, G.; Lowry, G. Environ. Sci. Technol.,2012, 46 (2), 752-759
    14. Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans Yang, X.,; Gondikas, A.; Marinakos, S.; Auffan, M.; Liu, J.; Kim, H.; Meyer, J. Environ. Sci. Technol.,2012, 46 (2), 1119-1127


    1. Photoluminescence from Inner Walls in Double-Walled Carbon Nanotubes: Some Do, Some Do Not Yang, S.; Parks, A.; Saba, S.; Ferguson, P.; Liu, J. Nano Lett., 2011, 11 (10), 4405-4410
    2. Hydrophobic Interactions Increase Attachment of Gum Arabic- and PVP-Coated Ag Nanoparticles to Hydrophobic Surfaces Song, J. E.; Phenrat, T.; Marinakos, S.; Xiao, Y.; Liu, J.; Wiesner, M. R.; Tilton, R. D.; Lowry, G. V. Environ. Sci. Technol., 2011, 45(14), 5988-5995
    3. Deposition of Silver Nanoparticles in Geochemically Heterogeneous Porous Media: Predicting Affinity from Surface Composition Analysis Lin, S.;Cheng, Y.; Liu, J.; Wiesner, M. R. Environ. Sci. Technol., 2011, 45(12), 5209-5215
    4. Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight Cheng, Y.; Yin, L.; Lin, S.; Wiesner, M.; Bernhardt, E.; Liu, J. J. Phys. Chem. C, 2011, 115(11), 4425-4432
    5. More than the Ions: The Effects of Silver Nanoparticles on Lolium multiflorum Yin, L.; Cheng, Y.; Espinasse, B.; Coleman, B.; Auffan, M.; Wiesner, M.; Rose, J.; Liu, J.; Bernhardt, E. Environ. Sci. Technol. 2011, 45(6), 2360-2367


    1. Viscous State Effect on the Activity of Fe Nanocatalysts Cervantes-Sodi, F.; McNicholas, T.; Simmons, J.; Liu, J.; Csanyi, G.; Ferrari, A.; Curtarolo, S. ACS Nano 2010, 4(11), 6950-6956
    2. Piezopotential Gated Nanowire?Nanotube Hybrid Field-Effect Transistor Liu, W.; Lee, M.; Ding, L.; Liu, J.; Wang, Z. L.Nano Letters 2010, 10(8), 3084-3089
    3. NMR Methods for Characterizing the Pore Structures and Hydrogen Storage Properties of Microporous Carbons Anderson, R.; McNicholas, T.; Kleinhammes, A.; Wang, A.; Liu, J.; Wu, Y. J. Am. Chem. Soc. 2010, 132(25): 8618-8626
    4. Aligned Graphene Nanoribbons and Crossbars from Unzipped Carbon Nanotubes Jiao, L.; Zhang, L.; Ding, L.; Liu, J.; Dai, H. Nano Research 2010, 3, 387-394
    5. Synthesis of Copper Nanocatalysts with Tunable Size Using Diblock Copolymer Solution Micelles Liu, Y.; Lor, C.; Fu, Q.; Pan, D.; Lei, D.; Liu, J.; Lu, J. J. Phys. Chem. C 2010, 114 (13), 5767-5772
    6. H2 Storage in Microporous Carbons from PEEK Precursors McNicholas, T. P.; Wang, A.; O’Neill K.; Anderson, R. J.; Stadie, N.P.; Kleinhammes, A.; Parilla, P.; Simpson, L.; Ahn, C. C.; Wang, Y.; Wu, Y.; Liu, J. J. Phys. Chem. C 2010, 114 (32), 13902-13908
    7. How Catalysts Affect the Growth of Single-Walled Carbon Nanotubes on Substrates Li, Y.; Cui, R.; Ding, L.; Liu, Y.; Zhou, W.; Zhang, Y.; Jin, Z.; Peng, F.; Liu, J. Advanced Materials 2010, 22(13): 1508-1515
    8. Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO Foreman, J. V.; Everitt, H. O.; Yang, J.; McNicholas, T.; Liu, J. Phys. Rev. B 2010, 81, 115318
    9. Recent Developments in Carbon Nanotube Sorting and Selective Growth Liu, J. and Hersam, M. MRS Bulletin 2010, 35, 315-321
    10. Orthogonal Orientation Control of Carbon Nanotube Growth Zhou, W.; Ding, L.; Yang, S.; Liu, J. J. Am. Chem. Soc 2010, 132, 336-341


    1. Direct observation of the strong interaction between carbon nanotubes and quartz substrate Ding, L.; Zhou, W.; McNicholas, T. P.; Wang, J.; Chu, H.; Li, Y.; Liu, J. Nano Research 2009, 2, 903-910
    2. Decoration of Gold Nanoparticles on Surface-Grown Single-Walled Carbon Nanotubes for Detection of Every Nanotube by Surface-Enhanced Raman Spectroscopy Chu, H.; Wang, J.; Ding, L.; Yuan, D.; Zhang, Y.; Liu, J.; Li, Y. J. Am. Chem. Soc 2009, 131, 14310-14316
    3. Role of catalysts in the surface synthesis of single-walled carbon nanotubes Zhou, W.; Ding, L.; Liu, J.Nano Research 2009, 2, 593-598
    4. Do Inner Shells of Double-Walled Carbon Nanotubes Fluoresce? Tsyboulski, D.A.; Hou, Y.; Fakhri, N.; Ghosh, S.; Zhang, R.; Bachilo, S. M.; Pasquali, M.; Chen, L.; Liu, J.; Weisman, R. B. Nano Lett. 2009, 9, 3282-3289
    5. Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites Hou, Y.; Tang, J.; Zhang,H.; Qian, C.; Feng, Y.; Liu, J. ACS Nano 2009, 3, 1057-1062
    6. Organic solar cells using few-walled carbon nanotubes electrode controlled by the balance between sheet resistance and the transparency Feng, Y.; Ju, X.; Feng, W.; Zhang, H.; Cheng, Y.; Liu, J.; Fujii, A.; Ozaki, M.; Yoshiho, K. Applied Physics Letters 2009,94, 123302
    7. Phonon populations and electrical power dissipation in carbon nanotube transistors Steiner, M.; Freitag, M.; Perebeinos, V.; Tsang, J. C.; Small, J. P.; Kinoshita, M.; Yuan, D.; Liu, J.; Avouris, P. Nature Nanotechnology 2009,4, 320-324
    8. Diameter-Controlled Vapor-Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays Li, J.; Zhang, Q.;Peng, H.;Everitt, H. O.; Qin, L.; Liu, J. J. Phys. Chem. C 2009, 113, 3950-3954
    9. Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes Ding, L.; Tselev, A.; Wang, J.; Yuan, D.; Chu, H.; McNicholas, T. P.; Li, Y.; Liu, J. Nano Lett. 2009, 9,800-805


    1. Microwave Impedance Spectroscopy of Dense Carbon Nanotube Bundles Tselev,A.; Woodson,M.; Qian, C.; Liu J. Nano Lett. 2008, 8, 152.
    2. Facile Gram-Scale Growth of Single-Crystalline Nanotetrapod-Assembled ZnO Through a Rapid Process Li, J.; Peng, H.; Liu, J.; Everitt, H. O. Eur. J. Inorg. Chem. 2008, 3172
    3. Horizontally Aligned Single-Walled Carbon Nanotube on Quartz from a Large Variety of Metal Catalysts Yuan, D.; Ding, L.; Chu, H.; Feng, Y.; Mcnicholas,T. P.; Liu J. Nano Lett. 2008, 8, 2576
    4. Pulsed laser CVD investigations of single-wall carbon nanotube growth dynamics Liu, Z.; Styers-Barnett, D. J.; Puretzky, A. A.; Rouleau, C. M.; Yuan, D.; Ivanov,I. N.; Xiao,K. ; Liu, J.; Geohegan, D. B. Appl. Phys. A 2008, 93, 987
    5. Room Temperature Purification of Few-Walled Carbon Nanotubes with High Yield Feng, Y.; Zhang, H.; Hou, Y.; McNicholas, T. P.; Yuan, D.; Yang, S.; Ding, L.; Feng, W.; Liu, J. ACS Nano 2008, 2, 1634.
    6. Three Dimensional Single-Walled Carbon Nanotubes Lu, J.; Yuan, D.; Liu, J.; Leng, W.; Kopley, T. E. Nano Lett. 2008, 8, 3325.
    7. Carbon nanotube synthesis and organization Joselevich, E.; Dai, H.; Liu, J.; Hata, K.; Windle, A. H. Topics Appl. Physics 2008, 111, 101.
    8. Physical and Electrical Properties of Chemical Vapor Grown GaN Nano/Microstructures Li, J.; Liu, J.; Wang, L.-S.; Chang, R. P. H. Inorg. Chem. 2008, 47, 10525


    1. Functional Nanostructures from Surface Chemistry Patterning Woodson, M.; Liu, J.; Phys. Chem. Chem. Phys. 2007, 9, 207.
    2. Purification of Semiconducting Carbon Nanotubes Yuan, D.; Liu, J. Small 2007, 3, 366.
    3. Supramolecular nanomimetics: Replication of micelles, viruses, and other naturally occurring nanoscale objects, Maynor, B. W.; LaRue, I.; Hu, Z.; Rolland, J. P.; Pandya, A.; Fu, Q.; Liu, J.; Spontak, R. J.; Sheiko, S. S.; Samulski, R. J.; Samulski, E. T.; DeSimone, J. M. Small 2007, 3, 845.
    4. Two-Stage Growth of Single-Walled Carbon Nanotubes Qi, H.; Yuan, D.; Liu, J. J. Phys. Chem. C 2007, 111, 6158.
    5. Imaging of the Schottky Barriers and Charge Depletion in Carbon Nanotube Transistors Freitag, M.; Tsang, J. C.; Bol, A.; Yuan, D.; Liu, J.; Avouris, P. Nano Lett. 2007, 7, 2037.
    6. SU(2) and SU(4) Kondo effects in carbon nanotube quantum dots Makarovski, A.; Zhukov, A.; Liu, J.; Finkelstein, G. Phys. Rev. B 2007, 75, Art. No. 241407.
    7. Influence of temperature and photoexcitation density on the quantum efficiency of defect emission in ZnO powders Foreman, J. V.; Everitt, H. O.; Yang J.; Liu, J. Appl. Phys. Lett. 2007, 91, Art No. 011902
    8. Scanning photovoltage microscopy of potential modulations in carbon nanotubes Freitag, M.; Tsang, J. C.; Bol, A.; Avouris, P.;Yuan, D.; Liu, J. Appl. Phys. Lett. 2007, 91, Art. No. 031101
    9. Synthesis of Double-walled Carbon Nanotubes Using Iron Disilicide as Catalyst Qi, H.; Qian, C.; Liu, J. Nano Lett. 2007, 7, 2417.
    10. Evolution of Transport Regimes in Carbon Nanotube Quantum Dots Makarovski, A.; Liu, J.; Finkelstein, G. Phys. Rev. Lett. 2007, 99, Art No. 066801
    11. Doping and Phonon Renormalization in Carbon Nanotubes Tsang, J. C.; Freitag, M.; Perebeinos, V.; Liu, J.; Avouris, P. Nature Nanotech. 2007, 2, 725.
    12. Four-probe measurements of carbon nanotubes with narrow metal contacts Makarovski, A.; Zhukov, A.; Liu, J.; Finkelstein, G. Phys. Rev. B 2007, 76, Art. No. 161405


    1. Characterization of single wall carbon nanotubes by nonane preadsorption Byl, O.; Liu. J.; Yates, J. T. Carbon 2006, 44, 2039
    2. Schottky Diodes from Asymmetric Metal-Nanotube Contacts Lu, C.; An, L.; Liu, J.; Zhang, H.; Murduck, J. Appl. Phys. Lett. 2006, 88, Art. No. 133501.
    3. Carbon nanotubes with small and tunable diameters from poly(ferrocenylsilane)-block-polysiloxane diblock copolymers Lu, J. Q.; Rider, D. A.; Onyegam, E.; Wang, H.; Winnik, M. A.; Manners, I.; Cheng, Q.; Fu Q. ; Liu, J. Langmuir 2006, 22, 5174
    4. Time-resolved Investigation of Bright Visible Wavelength Luminescence from Sulfur-doped ZnO Nanowires and Micropowders Foreman, J. V.; Li,J.; Peng, H.; Choi, S.; Everitt, H. O.; Liu, J. Nano Lett. 2006, 6, 1126
    5. Generating suspended single-walled carbon nanotubes across a large surface area via patterning self-assembled catalyst-containing block copolymer thin films Lu, J.; Kopley, T.; Dutton, D.; Liu, J.; Qian, C.; Son, H.; Dresselhaus M.; Kong, J. J. Phys. Chem. B 2006, 110, 10585
    6. Experimental measurement of single-wall carbon nanotube torsional propertie Hall, A. R.; An, L.; Liu, J.; Vicci, L.; Falvo, M. R.; Superfine, R.; Washburn, S. Phys. Rev. Lett. 2006, 96, Art. No. 256102.
    7. Synthesis of High Purity Few-Walled Carbon Nanotubes from Ethanol/Methanol Mixture Qi, H.; Qian, C.; Liu, J. Chem. Mater. 2006, 18, 5691
    8. Persistent orbital degeneracy in carbon nanotubes Makarovski, A.; An, L.; Liu, J.; Finkelstein, G. Phys. Rev. B 2006, 74(15): 155431
    9. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property Qian, C.; Qi, H.; Gao, B.; Cheng, Y.; Qiu, Q.; Qin, L. C.; Zhou, O.; Liu, J. J. Nanosci. Nanotechnol. 2006, 6, 1346


    1. Rapid and reproducible fabrication of carbon nanotube AFM probes by dielectrophoresis Tang, J.; Yang, G.; Zhang, Q.; Parhat, A.; Maynor, B.; Liu, J.; Qin, L. C.; Zhou, O. Nano Lett. 2005, 5, 11
    2. Electrochemical detection of nitric oxide in biological fluids Allen, B. W.; Liu, J.; Piantadosi, C. A. Nitric Oxide, Pt E. 2005, 396, 68
    3. Growth and properties of Si-N-C-O nanocones and graphitic nanofibers synthesized using three-nanometer diameter iron/platinum nanoparticle-catalyst Cui, H.; Yang, X.; Meyer, H.; Baylor, L.; Simpson, M.; Gardner, W.; Lowndes, D.; An, L.; Liu, J. J. Mater. Res. 2005, 20, 850.
    4. Raman spectral imaging of a carbon nanotube intramolecular junction Doorn, S.; O’Connell, M.; Zheng, L.; Zhu, Y.; Huang, S.; Liu, J.; Phys. Rev. Lett. 2005, 94, Art. No. 016802
    5. Raman spectroscopy and imaging of ultralong carbon nanotubes Doorn, S.; Zheng, L.; O’Connell, M.; Zhu, Y.; Huang, S.; Liu, J. J. Phys. Chem. B 2005, 109, 3751
    6. Etching of Carbon Nanotubes by OzoneA Surface Area Study Byl, O.; Liu, J.; Yates, J. T. Langmuir 2005, 21, 4200
    7. High-quality single-walled carbon nanotubes with small diameter, controlled density, and ordered locations using a polyferrocenylsilane block copolymer catalyst precursor Lu, J.; Kopley, T.; Moll, N.; Roitman, D.; Chamberlin, D.; Fu, Q.; Liu, J.; Russell, T.; Rider, D.; Manners, I.; Winnik, M. Chem. Mater. 2005, 17, 2227
    8. Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistor Zhou, X.; Park, J. Y.; Huang, S.; Liu, J.; McEuen, P. L.; Phys. Rev. Lett. 2005, 95, Art. No. 146805
    9. Creation of Cadmium Sulfide Nanostructures Using AFM Dip-Pen Nanolithography Ding, L.; Li, Y.; Chu, H.; Li, K.; Liu, J. J. Phys. Chem. B 2005, 109, 22337
    10. Bright Infrared Emission from Electrically Induced Excitons in Carbon Nanotubes Chen, J.; Perebeinos, V.; Freitag, M.; Tsang, J.; Fu, Q.; Liu, J.; Avouris, P. Science 2005, 310, 1171
    11. Exponential decay of local conductance in single-wall carbon nanotubes Stadermann, M.; Papadakis, S. J.; Falvo,M. R.; Fu, Q.; Liu, J.; Fridman, Y.; Boland, J. J.; Superfine R.; Washburn, S. Phys. Rev. B 2005, 72, Art. No. 245406


    1. Studies of the Chemical and Pore Structures of the Carbon Aerogels Synthesized by Gelation and Supercritical Drying in Isopropanol Fu, R.; Zheng, B.; Liu, J.; Weiss, S.; Ying, J.;Dresselhaus, M.; Dresselhaus, G.; Satcher, J.; Baumann, T. J. Appl. Polym. Sci. 2004, 91, 3060
    2. Solution-Phase Synthesis of Single-Cystalline Iron Phosphide Nanorods/Nanowires Qian, C.; Kim, F.; Ma, L.; Tsui, F.; Yang, P.; Liu, J. J. Am. Chem. Soc. 2004, 126, 1195
    3. Growth of Aligned SWNT Arrays From Water-Soluble Molecular Clusters for Nanotube Device Fabrication Huang, S.; Fu, Q.; An, L.; Liu, J. Phys. Chem. Chem. Phys. 2004, 6, 1077
    4. Polymer Electrolyte-Gated Carbon Nanotube Field-Effect Transistor Lu, C.; Fu, Q. Huang, S.; Liu, J. Nano Lett. 2004, 4, 623.
    5. Stokes and Anti-Stokes Raman Spectra of Small-Diameter Isolated Carbon Nanotubes Souza, A.; Chou, S.; Samsonidze, G.;Dresselhaus, G.; Dresselhaus, M.; An, L.;Liu, J.;Swan, A.; Unlu, M.; Goldberg, B.; Jorio, A.; Gruneis, A.; Saito, R. Phys. Rev. B 2004, 69, 115428
    6. Nanoscale study of conduction through carbon nanotube networks Stadermann, M.; Papadakis, S. J.; Falvo, M. R.; Novak, J.; Snow, E.; Fu, Q.; Liu, J.; Fridman, Y.; Boland, J. J.; Superfine, R.; Washbrun, S. Phys. Rev. B 2004, 69, 201402
    7. A Simple Chemical Route to Selectively Eliminate Metallic Carbon Nanotubes in Nanotube Network Devices An, L.; Fu, Q.; Lu, C.; Liu, J. J. Am. Chem. Soc. 2004, 126, 105210
    8. Mobile Ambipolar Domain in Carbon-Nanotube Infrared Emitters Freitag, M.; Chen, J.; Tersoff, J.; Tsang, J. C.; Fu, Q.; Liu, J.; Avouris, P. Phys. Rev. Lett. 2004, 93, 076803
    9. Ultralong Single-Walled Carbon Nanotubes Zheng, L.; O’Connel, M.; Doorn, S.; Liao, X.; Zhao, Y.; Akhadov, E.; Hoffbauer, M.; Roop, B.; Jia, Q.; Dye, R.; Peterson,;Huang, D. S.; Liu, J.; Zhu, Y. Nature Mater. 2004, 3, 673


    1. Thermal Fluorination and Annealing of Single-Wall Carbon Nanotubes Pehrsson, P.; Zhao, W.; Baldwin, J.; Song, C.; Liu, J.; Kooi, S.; Zheng, B. J. Phys. Chem. B 2003, 107, 5690
    2. The Fabrication and Characterization of Carbon Aerogels by Gelation and Supercritical Drying in Isopropanol Fu, R.; Zheng, B.; Liu, J.; Dresselhaus, M.; Dresselhaus, G.; Satcher, J.;Baumann, T. Adv. Func. Mater. 2003, 13, 558
    3. Fabrication of Activated Carbon Fibers/Carbon Aerogels Composites by Gelation and Supercritical Drying in Isopropanol Fu, R.; Zheng, B.; Liu, J.; Weiss, S.; Ying, J.; Dresselhaus, M.; Dresselhaus, G.; Satcher, J.; Bauman, T.; J. Mat. Res. 2003, 18, 2765
    4. Ultralong, Well-Aligned Single-Walled Carbon Nanotube Architectures on Surfaces Huang, S.; Maynor, B.; Cai, X.; Liu, J. Adv. Mater. 2003, 15, 1651
    5. Oriented Long Single Walled Carbon Nanotubes on Substrates From Floating Catalysts Huang, S.; Cai, X.; Du, C.; Liu, J. J. Phys. Chem. B 2003, 107, 13251
    6. Preparation of Polymeric Nanostructures Using Electrochemical Dip-Pen Nanolithography Filocamo, S.; Maynor, B.; Liu, J.; Grinstaff, M. Poly. Mater. Sci. Engr. 2003, 88, 619
    7. The Growth of Carbon Nanostructures on Cobalt-Doped Carbon Aerogels Fu, R.; Dresselhaus, M.; Dresselhaus, G.; Zheng, B.; Liu, J.; Satcher, J.; Baumann, T. J. Non-Crystalline Solids 2003, 318, 223


    1. Thermal Recovery Behavior of Fluorinated Single-Walled Carbon Nanotubes Zhao, W.; Song, C.; Zheng, B.; Liu, J.; Viswanathan, T. J. Phys. Chem. B 2002, 106, 293.
    2. Direct Writing of Polymer Nanostructures: Poly(thiophene) Nanowires on Semiconducting and Insulating Surfaces Maynor, B.; Filocamo, S.; Grinstaff, M.; Liu, J. J. Am. Chem. Soc. 2002, 124, 522
    3. Synthesis of Ultralong and Highly-Oriented Silicon Oxide Nanowires from Liquid Alloy Zheng, B.; Wu, Y.; Yang, P.; Liu, J. Adv. Mater. 2002, 14, 122.
    4. Selective Coating of Single Wall Carbon Nanotubes with Thin SiO2 Layer Fu, Q.; Lu, C.; Liu, J. Nano Lett. 2002, 2, 329
    5. Tungsten Oxide Nanotubes on Tungsten Substrates Gu, G.; Zheng, B.; Han, W.Q.; RothS.; Liu, J. Nano Lett.2002, 2, 849.
    6. Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surface Using Carbon Monoxide Precursor Zheng, B.; Lu, C.; Gu, G.; Makarovski, A.; Finkelstein, G.; Liu, J. Nano Lett. 2002, 2, 895.
    7. Fabrication and Properties of Composites of Poly(ethylene oxide) and Functionalized Carbon Nanotubes Geng, H.; Rosen, R.; Zheng, B.; Shimoda, H.; Fleming, L.; Liu, J.; Zhou, O. Adv. Mater. 2002, 14, 1387


    1. Electrochemical AFM Dip-Pen Nanolithography Li, Y. ; Maynor, B.; Liu, J. J. Am. Chem. Soc. 2001, 123, 2105.
    2. Au”Ink”for AFM “Dip-Pen” Nanolithography Maynor, B.; Li, Y.; Liu, J. Langmuir 2001, 17, 2575.
    3. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies, A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smalley, H.H. Hwu, J.G.G. Chen, Journal of the American Chemical Society, 123 (43): 10699-10704 (2001).


    1. Lattice-Oriented Growth of Single-Walled Carbon Nanotubes Su, M.; Li, Y.; Maynor, B.; Buldum, A.; Lu, J. P.; Liu, J. J. Phys. Chem. B 2000, 104, 6505
    2. Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports, A. Kuznetsova, D. Mawhinney, V. Naumenko, J. Yates, Jr., J. Liu, and R.E.Smalley, Chem. Phys. Lett., 321, 292-296 (2000).
    3. Physical Adsorption of Xenon in Open Single Walled Carbon Nanotubes-Observation of a Quasi 1-D Confined Xe Phase, A. Kuznetsova, J.T. Yates, Jr., J. Liu, and R.E.Smalley. J. Chem. Phys. 112, 9590-9598 (2000).
    4. Infrared Spectral Evidence for the Etching of Carbon Nanotubes: Ozone Oxidation at 298K, D. Mawhinney, V. Naumenko, A. Kuznetsova, J. Yates, Jr., J. Liu, and R.E.Smalley. JACS, 122, 2383 (2000).


    1. Reversible Sidewall Functionalization of Buckytubes, P. Boul, J. Liu, E. Mickelson, C. Huffman, L. Ericson, I. Chiang, K. Smith, D.T. Colbert, R. Hauge, J. Margrave, R.E. Smalley, Chemical Physics Letters. 310, 367 (1999).
    2. Elastic strain of freely suspended single-wall carbon nanotube ropes, D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, and R.E. Smalley, Appl. Phys. Lett., 74, 3803 (1999).
    3. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Y. Ye, C. C. Ahn, C. Witham and B. Fultz , J. Liu,A. G. Rinzler*, D. Colbert, K. Smith, and R. E. Smalley, Appl. Phys. Letter., 74, 2307 (1999).
    4. Controlled Deposition of Individual Single-Walled Carbon Nanotubes on Chemically Functionalized Templates, J. Liu, Michael J. Casavant, Michael Cox, D.A. Walters, Peter Boul, Wei Lu, A.J. Rimberg, K. A. Smith, Daniel T. Colbert, Richard E. Smalley, Chem. Phys. Lett., 303, 125-129(1999).
    5. Solvation of Fluorinated Single Wall Carbon Nanotubes in Alcohol Solvents, E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J.Boul, J. Lozano, J. Liu, R.E. Smalley, R.H. Hauge, J.L. Margrave, J.? Phys. Chem. B. 103, 4318 (1999).
    6. Fullerene Pipes, J. Liu, Andrew G. Rinzler, Hongje Dai, Jason H. Hafner, R. Kelley Bradley, Peter J. Boul, Adrian Lu, Terry Iverson, Konstantin Shelimov, Chad B. Huffman, Fernando Rodriguez-Macias, Young-Seok Shon, T. Randall Lee, Daniel T. Colbert, Richard E. Smalley, Science, 280, 1253-1256 (1998).
    7. Large Scale Purification of Single-Wall Carbon Nanotubes: Process, Product, and Characterization, A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B.Huffman, F.J. Rodriguez-Macias. P.J. Boul, A.H. Lu, D. Heymann, D.T.Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, Appl. Phys. A, 67, 29-37 (1998).
    8. Fullerene “Crop Circles”, J. Liu, Hongjie Dai, Jason H. Hafner, Daniel T. Colbert, Sander J. Tans, Cees Dekker, Richard E. Smalley, Nature, 385, 780 (1997).
    9. Creation of nanocrystals via a tip-induced solid-solid transformation, Jian Zhang; J. Liu, Jinlin Huang, P. Kim; C.M. Lieber, Atomic Resolution Microscopy of Surfaces and Interfaces.Symposium. Mater. Res. Soc, 282, 89-94(1997).
    10. Creation of Nanocrystals Through a Solid-Solid Phase Transition Induced by an STM Tip, J. Liu, J. Zhang, Jinlin Huang; Philip Kim, Charles M. Lieber, Science, 274, 757 (1996).
    11. Surface structure of Pb doped Bi-2201 single crystals Studied by STM, J. Liu and Charles M. Lieber, Inorg. Chim. Acta, 243, 305 (1996).
    12. SimultaneousObservation of Columnar Defects and Magnetic Flux Lines in High-Temperature Bi2Sr2CaCu2O8+d Superconductors, Hongjie Dai, Seokwon Yoon, J. Liu, Ramech C. Budhani, Charles M. Lieber, Science, 265, 1552 (1994).
    13. Surface Pinning as a Determinant of the Bulk Flux-Line Lattice Structure in Copper Oxide Superconductors, Seokwon Yoon, Hongjie Dai, J. Liu, Charles M. Lieber, Science, 265, 215 (1994).
    14. Intrinsic features of Bi2Sr2CaCu2O8+d tunneling spectra: Scaling and symmetry of the energy gap, J. Liu, Yonghong Li, and Charles M. Lieber, Phy. Rev. B, 49, 6234 (1994).
    15. Surface Pinning and Grain Boundary Formation in Magnetic Flux-Line Lattices of Bi2Sr2CaCu2O8+d High-Tc Superconductors, Hongjie Dai, J. Liu, and Charles M. Lieber, Phy. Rev. Lett. 72, 748 (1994).
    16. Dependence of the Energy Gap on Tc: Absence of Scaling in the Copper Oxide Superconductors, Yonghong Li, J. Liu, and Charles M. Lieber, Physical Review Letter, 70, 3494 (1993).