PUBLICATIONS

Journal Articles

[155]    “Cationic Bis(Gold) Indenyl Complexes,” Slinger, B. L.; Zhu, J.; Widenhoefer, R. A. ChemPlusChem 2024, e202300691.

[154]    “Modulating Transition Metal Reactivity with Force,” Duan, C.; Malek, J. C.; Craig, S. L.; Widenhoefer, R. A. ChemCatChem 2024, e202301479.

[153]    “Allosteric control of olefin isomerization kinetics via remote metal binding and its mechanochemical analysis,” Yu, Y.; O’Neil, R. T.; Boulatov, R.; Widenhoefer, R. A.; Craig, S. L. Nat. Commun. 2023, 14, 1, 5074.

[152]    “Force-Modulated C–C Reductive Elimination from Nickel Bis(polyfluorophenyl) Complexes,” Duan, C.; Zheng, X.; Craig, S. L.; Widenhoefer, R. A. Organometallics 2023, 42, 15, 1918-1926.

[151]    “Force-Modulated Selectivity of the Rhodium-Catalyzed Hydroformylation of 1-Alkenes,” Yu, Y.; Zheng, X.; Duan, C; Craig, S. L.; Widenhoefer, R. A. ACS Catal. 2022, 12, 22, 13941-13950.

[150]    “Kinetics and Mechanisms of the Gold-Catalyzed Hydroamination of Axially Chiral 1-Aryl-1,2-butadienes with Aniline,” Harris, R. J.; Nakafuku, K.; Carden, R. G.; Widenhoefer, R. A. Organometallics. 2022, 41, 19, 2753-2763.

[149]    “Substituent Effects and the Mechanism of Gold to Alkene Benzylidene Transfer Employing a Gold Sulfonium Benzylide Complex,” Rivers, M.; Carden, R. G.; Widenhoefer, R. A. Organometallics. 2022, 41, 9, 1106-1114.

[148]    “Force-Modulated Reductive Elimination from Platinum(II) Diaryl Complexes,” Yu, Y.; Wang, C; Wang, L; Sun, C; Boulatov, R;  Widenhoefer, R. A.; Craig, S.L. Chem. Sci. 2021, 12, 11130-11137.

[147]    “Kinetics and Mechanism of the Gold-Catalyzed Hydroamination of 1,1-Dimethylallene with N-Methylaniline,” Harris, R. J.; Nakafuku, K.; Duncan, A. N.; Carden, R. G.; Timmerman, J. C.; Widenhoefer, R. A. Chem. Eur. J. 2021, 27, 10377-10386.

[146]    “Mechanism of the Stereomutation of an Azaplatinacyclobutane Complex,” Bender, C. F.; Widenhoefer, R. A. Organometallics. 2021, 40, 1071-1076.

[145]    “Mechanochemical Regulation of Oxidative Addition to Palladium (0) Bisphosphine Complex,” Wang, L.;  Yu, Y.; Razgoniaev, A. O.; Johnson, P. N.; Wang, C.; Tian, Y.; Boulatov, R.; Craig, S.L.; Widenhoefer, R. A. J. Am. Chem. Soc. 2020, 142, 17714–17720.

[144]    “Formation of Cyclopropanes via Activation of 9gamma-Methoxy)alkyl Gold(I) Complexes with Lewis Acids” Kim, N.; Widenhoefer, R. A. Organometallics. 2020, 39, 3160-3167.

[143]    “Synthesis, Structure, and Reactivity of Gold(I) alpha-Oxo Carbenoid Complexes” Stow, C. P.; Widenhoefer, R. A. Organometallics. 2020, 39, 1249–1257.

[142]    “Synthesis of gold allyloxysulfonium complexes and elimination to form an alpha,beta-unsaturated aldehyde” Kim, N.; Widenhoefer, R. A. Chem. Commun. 2019, 55, 13745–13748.

[141]    “Gold Sulfonium Benzylide Complexes Undergo Efficient Benzylidene Transfer to Alkenes,” Carden, R. G.; Widenhoefer, R. A. Chem. Eur. J. 2019, 25, 11026–11030.

[140]    “Ionization of gold (gamma-methoxy)vinyl complexes generates reactive gold vinyl carbene complexes,” Kim, N.; Widenhoefer, R. A. Chem. Sci. 2019, 10, 6149–6156.

[139]    “Kinetics and Mechanism of the Gold-Catalyzed Intermolecular Hydroalkoxylation of Allenes with Alcohols,” Harris, R. J.; Carden, R. G.; Duncan, A. N.;  Widenhoefer, R. A. ACS Catal. 2018, 8, 8941–8952.

[138]    “Synthesis, Characterization, and Reactivity of Cationic Gold Diarylallenylidene Complexes,” Kim, N;  Widenhoefer, R. A. Angew. Chem. Int. Ed. 2018,57, 4722–4726;  Angew. Chem.2018, 130, 4812–4816.

[137]    “Experimental Evaluation of (L)Au Electron Donor Ability in Cationic Gold Carbene Complexes,” Carden, R. G.; Lam, N.; Widenhoefer, R. A. Chem. Eur. J. 2017, 23, 17992–18001.

[136]    “Formal Synthesis of (+)-Laurencin via a Gold(I)-Catalyzed Intramolecular Alkoxylation,” Lanier, M. L.; Park, H.; Mukherjee, P.;  Timmerman, J. C.;  Ribeiro, A.; Widenhoefer, R. A.; Hong, J. Chem. Eur. J. 2017, 23, 7180–7184.

[135]    “Gold(I)-Catalyzed Intramolecular Hydroamination of Unactivated Terminal and Internal Alkenes With 2-Pyridones,” Timmerman, J. C.;  Lauhlé, S.;  Widenhoefer, R. A. Org.Lett. 2017, 19, 1466–1469.

[134]    “Unexpected Skeletal Rearrangement in the Gold(I)/Silver(I)-Catalyzed Conversion of 7-Aryl-1,6-enynes to Bicyclo[3.2.0]hept-6-enes via Hidden Brønsted Acid Catalysis,” Kim, N.;  Brooner, R. E. M.;  Widenhoefer, R. A. Organometallics. 2017, 36, 673–678.

[133]    “Gold-Catalyzed Intermolecular, anti-Markovnikov Hydroarylation of Methylenecyclopropanes with Indoles,” Timmerman, J. C.; Schmitt, W. W.; Widenhoefer, R. A. Org. Lett. 2016, 18,4966–4969.

[132]    “Transition Metal-Catalyzed Hydroarylation of Allenes,” Widenhoefer, R. A.; in Catalytic Hydroarylation of C–C Multiple Bonds, Gunnoe, T. B.; Ackermann, L.; Habgood, L. G.Eds.:  Wiley-VCH:  Wienheim, 2018, pp. 361-369.

[131]    “Effect of Substitution, Ring Size, and Counterion on the Intermediates Generated in the Gold-Catalyzed Intramolecular Hydroalkoxylation of Allenes,” Brown, T. J.; Brooner, R. E. M.;  Chee, M. A.; Widenhoefer, R. A. Organometallics. 2016, 35, 2014−2021.

[130]    “Kinetics and Mechanism of Allene Racemization Catalyzed by a Gold N-Heterocyclic Carbene Complex,” Li, H.; Harris, R. J.; Nakafuku, K.; Widenhoefer, R. A.,Organometallics, 2016,35, 2242−2248.

[129]    “Gold Carbenes, Gold-Stabilized Carbocations, and Cationic Intermediates Relevant to Gold-Catalyzed Cycloaddition,” Harris, R. J.; Widenhoefer, R. A. Chem. Soc. Rev. 2016, 45, 4533 – 4551.(Invited contribution to the themed collection Coinage Metals).

[128]    “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines,”  Bender, C. F.;  Brown, T. J.;  Widenhoefer, R. A. Organometallics. 2016, 35, 113–125.  (Selected as ACS Editor’s Choiceopen access article.)

[127]    “Gold-Catalyzed Intermolecular anti-Markovnikov Hydroamination of Methylenecyclopropanes with 2-Pyridones,” Timmerman, J. C.;  Widenhoefer, R. A. Adv. Synth. & Catal. 2015, 357, 3703-3706.  (Highlighted in Synfacts 2016, 12, 165.)

[126]    “Generation and Characterization of a Gold Vinylidene Complex Lacking p-Conjugated Heteroatoms,” Harris, R. J.;  Widenhoefer, R. A. Angew. Chem. 2015, 126, 6971-6973;  Angew. Chem. Int. Ed. 2015, 54, 6867-6869.

[125]    “Tandem Gold/Silver-Catalyzed Cycloaddition/Hydroarylation of 7-Aryl-1,6-enynes to Form 6,6-Diaryl-bicyclo-[3.2.0]-heptanes,”  Robertson, B. D.;  Brooner, R. E. M.;  Widenhoefer, R. A. Chem. Eur. J. 2015, 21, 5714 – 5717.

[124]    “Gold-Catalyzed Intermolecular, Anti-Markovnikov Hydroamination of Alkylidenecyclopropanes,”  Timmerman, J. C.;  Robertson, B. D.;  Widenhoefer, R. A. Angew. Chem. 2015, 127, 2279–2282; Angew. Chem. Int. Ed. 2015, 54, 2251-2254.  (Highlighted in Synfacts 2015, 11, 287.)

[123]    “Photomechanical Actuation of Ligand Geometry in Enantioselective Catalysis,” Kean, Z. S.;  Akbulatov, S.;  Tian, Y.;  Widenhoefer, R. A.;  Boulatov, R.;  Craig, S. L. Angew. Chem. 2014, 126, 14736–14739;  Angew. Chem. Int. Ed. 2014, 53, 14508 –14511.

[122]    “Mechanism of the 1,3-Hydride Migration in a Gold Bicyclo-[3.2.0]-heptene Complex: The Role of Brønsted Acid in the Gold-Catalyzed Cycloaddition of 7-Aryl-1,6-Enynes,”  Brooner, R. E. M.;  Robertson, B. D.;  Widenhoefer, R. A. Organometallics. 2014, 33, 6466−6473.

[121]    “Enantioselective Intramolecular Hydroamination of Unactivated AlkenesCatalyzed by Mono- and Bis(gold) Phosphine Complexes,” Lee, S. D.;  Timmerman, J. C.;  Widenhoefer, R. Adv. Synth. & Catal. 2014, 356, 3187-3192.

[120]    “Kinetics and Mechanism of the of Allenes Catalyzed by Gold Phosphine Complexes,” Harris, R. J.;  Nakafuku, K. M.;  Li, H.; Widenhoefer, R. A. Chem. Eur. J. 2014, 20, 12245-12254.

[119]    “Synthesis, Structure, and Reactivity of a Gold Carbenoid Complex Lacking Heteroatom Stabilization,” Harris, R. J.;  Widenhoefer, R. A. Angew. Chem. 2014, 126, 9523-9525;  Angew. Chem. Int. Ed. 2014, 53, 9369 – 9371.

[118]    “Synthesis and X-ray Crystal Structure of a Cationic Gold (I) p-(1,3-Diene) Complex Generated via Isomerization of a Gold p-Allene Complex,” Brown, T. J.;  Widenhoefer, R. A. J. Organomet. Chem. 2014, 758, 25-28.

[117]    “Experimental Evaluation of the Electron Donor Ability of a Gold Phosphine Fragment in a Gold Carbene Complex,”  Brooner, R. E. M.;  Widenhoefer, R. A., Chem. Commun. 2014, 50, 2420-2423.

[116]    “Cationic, Two-Coordinate Gold p-Complexes,” Brooner, R. E. M.; Widenhoefer, R. A. Angew. Chem.2013, 125, 11930-11941;  Angew. Chem. Int. Ed. 2013, 52, 11714-11724.

[115]    “Synthesis and Study of Cationic, Two-coordinate Triphenylphosphine Gold p-Complexes,” Brooner, R. E. M.;  Brown, T. J.; Widenhoefer, R. A. Chem. Eur. J. 2013, 19, 8276-8284.

[114]    “Direct Observation of the Cationic Gold(I) Bicyclo-[3.2.0]-hept-1(7)-ene Complex Generated in the Cycloisomerization of a 7-Phenyl-1,6-Enyne,” Brooner, R. E. M.;  Brown, T. J.;  Widenhoefer, R. A. Angew. Chem. Int. Ed. 2013,52, 6259-6261;  Angew. Chem. 2013, 125, 6379-6381.

[113]    “The Regio- and Stereospecific Intermolecular Dehydrative Alkoxylation of Allylic Alcohols catalyzed by a Gold(I) N-Heterocyclic Carbene Complex,” Mukherjee, P.; Widenhoefer, R. A.Chem. Eur. J. 2013, 19, 3437–3444.

[112]    “Mechanistic Analysis of Gold(I)-Catalyzed Intramolecular Allene Hydroalkoxylation Reveals an Off-Cycle Bis(gold) Vinyl Species and Reversible C–O Bond Formation,” Brown, T. J.;  Weber, D.; Gagné, M. R.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2012, 134, 9134–9137.

[111]    “Structures and Dynamic Solution Behavior of Cationic, Two-Coordinate Gold(I) p-Allene Complexes,”  Brown, T. J.;  Sugie, A.; Dickens, M. G.;  Widenhoefer, R. A.Chem. Eur. J2012, 18, 6959–6971.

[110]    “Gold(I)-Catalyzed Stereoconvergent, Enantioselective Intermolecular Hydroamination of Allenes with Carbamates,”  Butler, K. L.;  Tragni, M.; Widenhoefer, R. A. Angew. Chem. 2012, 122, 5265–5268;  Angew. Chem. Int. Ed. 2012, 51, 5175–5178.

[109]    “Gold(I)-Catalyzed Enantioselective Intramolecular Dehydrative Amination of Allylic Alcohols with Carbamates,”  Mukherjee, P.;  Widenhoefer, R. A. Angew. Chem. Int. Ed. 2012, 51, 1405–1407; Angew. Chem. 2012, 124, 1434–1436.

[108]    “Synthesis and Structure of Dicationic, Bis(gold) p-Alkene ComplexesContaining a 2,2-Bis(phosphino)biphenyl Ligand,” Brooner, R. E. M.;  Widenhoefer, R. A. Organometallics. 2012, 31, 768–771.

[107]    “Cationic Gold(I) p-Complexes of Terminal Alkynes and Their Conversion to Dinuclear s,p-Acetylide Complexes,”  Brown, T. J.;  Widenhoefer, R. A. Organometallics. 2011, 30, 6003–6009.

[106]    “Syntheses, X-ray Crystal Structures, and Solution Behavior of Cationic, Two-Coordinate Gold(I) h2-Diene Complexes,” Brooner, R. E. M.;  Widenhoefer, R. A. Organometallics. 2011, 30, 3182–3193.

[105]    “Stereochemistry and Mechanism of the Brønsted Acid-Catalyzed Intramolecular Hydrofunctionalization of Unactivated Alkenes,”  Brooner, R. E. M.;  Widenhoefer, R. A. Chem. – Eur. J. 2011, 17, 6170–6178.

[104]    “Gold(I)-Catalyzed Intramolecular Hydroamination of N-Allylic,N‘-Aryl Ureas to form Imidazolidin-2-ones,”  Li, H;.  Song, F.; Widenhoefer, R. A. Adv. Synth. Catal. 2011, 353, 955–962.

[103]    “Gold(I)-Catalyzed Intramolecular Amination of Allylic Alcohols with Alkylamines,”  Mukherjee, P.;  Widenhoefer, R. A.Org. Lett. 2011, 13, 1334–1337.

[102]    “Synthesis and Equilibrium Binding Studies of Cationic, Two-coordinate Gold(I) p-Alkyne Complexes,” Brown, T. J.;  Widenhoefer, R. A. (invited contribution) J. Organomet. Chem. 2011, 696, 1216-1220.

[101]    “Gold(I)-Catalyzed Enantioselective Intramolecular Hydroamination of Allenes with Ureas,”  Li, H.; Lee, S. D.;  Widenhoefer, R. A. (invited contribution) J. Organomet. Chem. 2011, 696, 316-320.

[100]    “Gold-Catalyzed Addition of Oxygen Nucleophiles to C–C Multiple Bonds,” Widenhoefer, R. A.;  Song, F.;  in Catalyzed Carbon-Heteroatom Bond Formation, Yudin, A. K.Ed.:  Wiley-VCH: Wienheim, 2010.

[99]      “Gold-Catalyzed Addition of Nitrogen and Sulfur Nucleophiles to C–C Multiple Bonds,”  Widenhoefer, R. A.;  Song, F.; in Catalyzed Carbon-Heteroatom Bond Formation, Yudin, A. K.Ed.:  Wiley-VCH: Wienheim, 2010.

[98]      “Solid-State and Dynamic Solution Behavior of a Cationic, Two-Coordinate Gold(I) p-Allene Complex,” Brown, T. J.;  Sugie, A.; Dickens, M. G.;  Widenhoefer, R. A. Organometallics 2010, 29, 4207-4209.

[97]      “Intramolecular Diamination and Alkoxyamination of Alkenes with N-Sulfonyl Ureas Mediated by N-Iodosuccinimide,”  Li, H.; Widenhoefer, R. A. Tetrahedron2010, 66, 4827–4831. (Invited contribution to the thematic issue:  Recent Developments in Synthetic Methods and Total Synthesis)

[96]      “Gold(I)-Catalyzed Intermolecular Amination of Allylic Alcohols with Cyclic Ureas and Related Nucleophiles,”  Mukherjee, P.;  Widenhoefer, R. A. Org. Lett.2010, 12, 1184–1187. ((Highlighted in Synfacts2010, 6, 0663.)

[95]            “Platinum(II)-Catalyzed Intermolecular Hydroamination of Allenes with Secondary Alkylamines,”  Toups, K. L.;  Widenhoefer, R. A.Chem. Commun.2010, 46, 1712-1714.

[94]      “Gold(I)-Catalyzed Intermolecular Hydroamination of Allenes with Aryl Amines,” Duncan, A. N.;  Widenhoefer, R. A.SYNLETT2010, 419-422.

[93]      “Syntheses and X-ray Crystal Structure of Cationic, Two-Coordinate Gold(I) p-Alkene Complexes that Contain a Sterically Hindered o-Biphenylphosphine Ligand,”  Brown, T. J.;  Dickens, M. G.;  Widenhoefer, R. A. Chem. Commun. 2009, 6451–6453.

[92]       “A Palladium-Catalyzed Formal (4+1) Annulation–A New Approach to Cyclopentene Construction,” Widenhoefer, R. A. Angew. Chem. Int. Ed.2009,48, 6950-6952.  (invited highlight).

[91]       “Gold(I)-Catalyzed Intramolecular Dihydroamination of Allenes with N,N’-Disubstituted Ureas To Form Bicyclic Imidazolidin-2-ones,” Li, H.;  Widenhoefer, R. A. Org. Lett. 2009, 11, 2671-2674.

[90]      “Syntheses, X-ray Crystal Structures, and Solution Behavior of Monomeric, Cationic, Two-Coordinate Gold(I) p-Alkene Complexes,” Brown, T. J.;  Dickens, M. G.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 6350-6351.

[89]      “Intermolecular Hydroamination of Ethylene and 1-Alkenes with Cyclic Ureas Catalyzed by Achiral and Chiral Gold(I) Complexes,” Zhang, Z.;  Lee, S. D.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 5372-5373.  (Highlighted in Synfacts2009, 7, 0781.)

[88]      “Gold(I)-Catalyzed Hydroarylation of Allenes with Indoles,”  Toups, K. L.;  Liu,G. T.; Widenhoefer, R. A. J. Organomet. Chem. 2009, 694, 571-575. (Invited contribution to the special issue:  Gold Catalysis – New Perspectives for Homogeneous Catalysis)

[87]      “Gold(I)-Catalyzed Hydration of Allenes,”  Zhang, Z.;  Lee, S-D.; Fisher, A. S.;  Widenhoefer, R. A.Tetrahedron2009,65, 1794-1798.  (Invited contribution to the special issue:  Recent Developments in Gold Catalysis)

[86]      “Unactivated Alkenes,”  Widenhoefer, R. A., in Catalytic Asymmetric Friedel–Crafts Alkylations, Bandini,M.;  Umani-Ronchi, A. Eds.:  Wiley-VCH: Wienheim, 2009, 203-222.

[85]      “Intermolecular Hydroamination ofAllenes with N-Unsubstituted Carbamates Catalyzed by a Gold(I) N-Heterocyclic Carbene Complex,”  Kinder, R. E.;  Zhang, Z.; Widenhoefer, R. A.Org. Lett. 2008, 10, 3157-3159.

[84]      “Recent Developments in Enantioselective Gold(I) Catalysis,”  Widenhoefer, R. A. Chem. Eur. J.(invited concepts article) 2008, 14, 5382-5391.

[83]      “Gold(I)-Catalyzed Intramolecular Hydroamination of Unactivated C=C Bonds with Alkyl Ammonium Salts,”  Bender, C. F.;  Widenhoefer, R. A. Chem. Commun. 2008, 2741-2743.

[82]      “Sterically Hindered Mono(phosphines) as Supporting Ligands for the Platinum-Catalyzed Hydroamination of Amino Alkenes,”  Bender, C. F.;  Hudson, W. B.;  Widenhoefer, R. A. Organometallics2008, 27, 2356-2358.

[81]      “Regio- and Stereoselective Synthesis of Alkyl Allylic Ethers via Gold(I)-Catalyzed Intermolecular Hydroalkoxylation of Allenes with Alcohols,”  Zhang, Z.;  Widenhoefer, R. A. Org. Lett. 2008, 10, 2079-2081. (Highlighted in Synfacts2008, 8, 857)

[80]            “Gold(I)-Catalyzed Dynamic Kinetic Enantioselective Intramolecular Hydroamination of Allenes,”  Zhang, Z.; Bender, C. F.;  Widenhoefer, R. A.J. Am. Chem. Soc.2007, 129, 14148-14149(Highlighted in Synfacts2008, 3, 265)

[79]       “Bis[(1,2,5,6-h)-1,5-cyclooctadiene] rhodium(1+), hexafluoroantimonate(1-)”  Kinder, R. E.;  Widenhoefer, R. A. in Encyclopedia of Reagents for Organic Synthesis;  Molander, G. A. Ed.;  John Wiley & Sons:  Chichester, UK, 2007.

[78]       “Tri-o-tolylphosphine”  Kinder, R. E.;  Widenhoefer, R. A. in Encyclopedia of Reagents for Organic Synthesis;  Molander, G. A. Ed.;  John Wiley & Sons:  Chichester, UK, 2007.

[77]      “Platinum-Catalyzed Hydrofunctionalization of Unactivated Alkenes with Carbon, Nitrogen, and Oxygen Nucleophiles,”  Liu, C.;  Bender, C. F.;  Han, X.; Widenhoefer, R. A. Chem. Commun. (invited Feature Article) 2007, 3607-3618.

[76]      “Palladium-Mediated Cyclization of 6-Methyl-1-phenyl-6-hepten-2-one to form 3-Benzyltoluene:  Carbonyl Activation by a Neutral Palladium(II) Complex Han, X.;  Widenhoefer, R. A.Organometallics2007, 26, 4061-4065.

[75]      “Gold(I)-Catalyzed Enantioselective Hydroamination of N-Allenyl Carbamates,”  Zhang, Z.;  Bender, C. F.;  Widenhoefer, R. A.Org. Lett. 2007, 9, 2887-2889.(Highlighted in Synfacts2007, 10, 1069).

[74]      “Gold(I)-Catalyzed Intramolecular Enantioselective Hydroarylation of Allenes with Indoles,”  Liu, C.; Widenhoefer, R. A. Org. Lett. 2007, 9, 1935-1938. (Highlighted in Synfacts2007, 7, 740).

[73]      “Gold(I)-Catalyzed Intramolecular Asymmetric Hydroalkoxylation of Allenes,”  Zhang, Z.; Widenhoefer, R. A. Angew. Chem.2007, 119, 287-289;  Angew. Chem. Int. Ed.2007,46, 283-285.  (Highlighted in Synfacts2007, 3, 0304)

[72]      “Room Temperature Hydroamination of Alkenyl Ureas Catalyzed by a Gold(I) N-Heterocyclic Carbene Complex,”  Bender, C. F.;  Widenhoefer, R. A. Org. Lett. 2006, 8, 5303-5305.

[71]      “Gold-Catalyzed Intramolecular Hydroamination of Unactivated Alkenes with Carboxamides,”  Bender, C. F.;  Widenhoefer, R. A. Chem. Commun.2006, 4143-4144.

[70]      “Gold-Catalyzed Hydroamination of C–C Multiple Bonds,” Han, X.;  Widenhoefer, R. A. Eur. J. Org. Chem. 2006, 4555-4563 (invited microreview).

[69]      Platinum(II)-Catalyzed Intermolecular Hydroarylation of Unactivated Alkenes with Indoles,”  Zhang, Z.; Wang, X.;  Widenhoefer, R. A. Chem. Commun. 2006, 3717 – 3719.

[68]      “Platinum-Catalyzed Intramolecular Asymmetric Hydroarylation of Unactivated Alkenes with Indoles,”  Han, X.;  Widenhoefer, R. A. Org. Lett. 2006, 8, 3801-3804.

[67]      “Silane-Initiated Carbocyclization Catalyzed by Transition Metal Complexes,”  Widenhoefer, R. A.;  Bender, C. F. in Comprehensive Organometallic Chemistry III;  Crabtree, R. H.;  Mingos, D. M. P. Eds.;  Elsevier: Oxford, UK, 2006.

[66]      “A Highly Active Au(I) Catalyst for the Intramolecular exo-Hydrofunctionalization of Allenes with Carbon, Nitrogen, and Oxygen Nucleophiles,”  Zhang, Z.;  Liu, C.;  Kinder, R. E.;  Han, X.; Qian, H.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066-9073.  (Highlighted in Synfacts2006, 10, 990)

[65]      “Rhodium-Catalyzed Asymmetric Cyclization/Hydroboration of Enynes,”  Kinder, R. E.;  Widenhoefer, R. A. Org. Lett. 2006, 8, 1967-1969. (Highlighted in Synfacts2006, 7, 708)

[64]      “Gold-Catalyzed Intramolecular Hydroamination of Alkenyl Carbamates,”  Han, X.; Widenhoefer, R. A. Angew. Chem. 2006, 118, 1779-1781;  Angew. Chem. Int. Ed. 2006, 45, 1747-1749.

[63]      “Scope and Mechanism of Pd(II)-Catalyzed Arylation/Carboalkoxylation of Unactivated Olefins with Indoles,”  Liu, C.;  Widenhoefer, R. A. Chem. Eur. J. 2006, 12, 2371-2382.  (Highlighted in Synfacts2006, 6, 557)

[62]      “Homogeneous Catalysis:  Understanding the Art,” Widenhoefer, R. A. (Book Review) J. Am. Chem. Soc. 2005, 127, 9309 – 9310.

[61]      “Platinum-Catalyzed Intermolecular Hydroamination of Vinyl Arenes with Carboxamides,”  Qian, H.; Widenhoefer, R. A. Org. Lett. 2005, 7, 2635-2638.

[60]      “Platinum-Catalyzed Intramolecular Hydroamination of Unactivated Olefins with Secondary Alkyamines,”  Bender, C. F.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070-1071.

[59]      “Development, Scope, and Mechanism of the Palladium-Catalyzed Intramolecular Hydroalkylation of 3-Butenyl b-Diketones,” Qian, H.; Pei, T.;  Widenhoefer, R. A. Organometallics2005, 24, 287-301.

[58]      “Platinum(II)/Europium(III)-Catalyzed Intramolecular Hydroalkylation of 4-Pentenyl b-Dicarbonyl Compounds,”  Liu, C.;  Widenhoefer, R. A. (invited contribution on the occasion of Prof. Iwao Ojima’s 60thbirthday) Tetrahedron Lett. 2005, 46, 285-287.

[57]     “Palladium-Catalyzed Intramolecular Oxidative Alkylation of 4-Pentenyl b-Dicarbonyl Compounds,”  Liu, C.;  Wang, X.; Pei, T.;  Widenhoefer, R. A. Chem. Eur. J.2004, 10, 6343-6353.

[56]     “Palladium-Catalyzed Intramolecular Hydroalkylation of Alkenyl- b-Keto Esters, a-Aryl Ketones, and Alkyl Ketones in the presence of Me3SiCl or HCl,”  Han, X.;  Wang, X.; Pei, T.;  Widenhoefer, R. A. Chem. Eur. J.2004, 10, 6332-6342.

[55]     “Palladium-Catalyzed Cyclization/Carboalkoxylation of Alkenyl Indoles,”  Liu, C.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 10250-10251.

[54]     “Platinum-Catalyzed Hydroalkoxylation of g- and d-Hydroxy Olefins to form Cyclic Ethers,”  Qian, H.; Han, X.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 9536-9537.

[53]     “Mechanism of Palladium-Catalyzed Diene Cyclization/Hydrosilylation:  Direct Observation of Intramolecular Carbometallation,”  Perch, N. S.;  Widenhoefer, R. A.J. Am. Chem. Soc. 2004,126, 6332-6346.

[52]     “Palladium-Catalyzed Alkylation of Unactivated Olefins,” Widenhoefer, R. A. Pure Appl. Chem.2004, 76, 671-678.

[51]     “Platinum(II)-Catalyzed Intramolecular Alkylation of Indoles with Unactivated Olefins,”  Liu, C.; Han, X.;  Wang, X.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 3700-3701.

[50]     “Platinum(II)-Catalyzed Intermolecular Hydroamination of Unactivated Olefins with Carboxamides,”  Wang, X.;  Widenhoefer, R. A. Organometallics2004, 23, 1649-1651.

[49]     “Palladium(II)- and Platinum(II)-Catalyzed Addition of Stabilized Carbon Nucleophiles to Ethylene and Propylene,”  Wang, X.;  Widenhoefer, R. A. Chem. Commun. 2004, 660 – 661.

[48]     “Palladium-Catalyzed Oxidative Alkoxylation of a-Alkenyl b-Diketones to form Functionalized Furans,”  Han, X.;  Widenhoefer, R. A. J. Org. Chem. 2004, 68, 1738-1740.

[47]     “Dramatic Effect of Homoallylic Substitution on the Rate of Palladium-Catalyzed Diene Cycloisomerization,”  Goj, L. A.;  Cisneros, A. G.;  Yang, W.; Widenhoefer, R. A. invited contribution to J. Organomet. Chem.2003,687, 498-507.

[46]     “Palladium-Catalyzed Intramolecular Hydroalkylation of Unactivated Olefins with Dialkyl Ketones,”  Wang, X.;  Pei, T.; Han, X.;  Widenhoefer, R. A. Org. Lett. 2003, 5, 2699-2701.

[45]     “Mechanism of the Palladium-Catalyzed Intramolecular Hydroalkylation of 7-Octene-2,4-dione,” Qian, H.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2003, 125, 2056-2057.

[44]      “Palladium-Catalyzed Intramolecular Oxidative Alkylation of Unactivated Olefins,”  Pei, T.; Wang, X.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2003, 125, 648-649.

[43]     “Enantioselective Cyclization/Hydrosilylation of 1,6-Enynes Catalyzed by a Cationic Rhodium Complex,”  Chakrapani, H.;  Liu, C.; Widenhoefer, R. A. Org. Lett. 2003, 5, 157-159.

[42]     “Cyclization/Hydrosilylation of Functionalized Diynes Catalyzed by a Cationic Rhodium Bis(phosphine) Complex,”  Liu, C.;  Widenhoefer, R. A. Organometallics2002, 21, 5666-5673.

[41]      “Synthetic and Mechanistic Studies of the Cycloisomerization and Cyclization/Hydrosilylation of Functionalized Dienes Catalyzed by Cationic Palladium Complexes,”  Widenhoefer, R. A. Acc. Chem. Res. 2002, 35, 905-913.

[40]      “Cyclization/Hydrosilylation of Functionalized Diynes Catalyzed by Cationic Platinum Complexes Containing Bidentate Nitrogen Ligands,”  Wang, X.;  Chakrapani, H.;  Madine, J. W.;  Keyerleber, M. A.;  Widenhoefer, R. A. J. Org. Chem. 2002, 67, 2778-2788.

[39]      “Palladium-Catalyzed Cyclization of Alkenyl b-Keto Esters in the Presence of Chlorotrimethylsilane,”  Pei, T.;  Widenhoefer, R. A. Chem. Commun. 2002, 650-651.

[38]      “Palladium-Catalyzed Ring-Opening Cyclization/Hydrosilylation of 1-Cyclopropyl-1,6-Hexadienes to form (E)-1-Butenyl Cyclopentanes,”  Wang, X.; Stankovich, S. Z.;  Widenhoefer, R. A. Organometallics2002, 21, 901-905.

[37]      “Direct Observation of the Conversion of a Palladium 5-Hexenyl Chelate Complex to a Palladium Cyclopentylmethyl Complex,”  Perch, N. S.; Widenhoefer, R. A. Organometallics2001, 20, 5251-5253.

[36]      “Palladium-Catalyzed Asymmetric Diene Cyclization/Hydrosilylation Employing Functionalized Silanes and Disiloxanes,”  Pei, T.;  Widenhoefer, R. A. J. Org. Chem. 2001, 66, 7639-7645.

[35]      “Palladium-Catalyzed Intramolecular Addition of 1,3-Diones to Unactivated Olefins,”  Pei, T.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2001, 123, 11290-11291.

[34]      “Mechanistic Studies of the Cycloisomerization of Dimethyl Diallylmalonate Catalyzed by a Cationic Palladium Phenanthroline Complex,”  Goj, L. A.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2001, 123, 11133-11147.

[33]      “Synthesis of Carbobicyclic Compounds via Palladium–Catalyzed Cyclization/Hydrosilylation:  Evidence for Reversible Silylpalladation,”  Wang, X.;  Chakrapani, H.;  Stengone, C. N.;  Widenhoefer, R. A. J. Org. Chem. 2001, 66, 1755-1760.

[32]      “Cyclization/Hydrosilylation of Functionalized Diynes Catalyzed by a Cationic Platinum Phenanthroline Complex,”  Madine, J. W.;  Wang, X.; Widenhoefer, R. A. Org. Lett. 2001, 3, 385-389.

[31]      “Cycloisomerization of Functionalized 1,5- and 1,6-Dienes Catalyzed by Cationic Palladium Phenanthroline Complexes,”  Kisanga, P.; Goj, L. A.;  Widenhoefer, R. A. J. Org. Chem. 2001, 66, 635-637.

[30]      “Development, Synthetic Scope, and Mechanistic Studies of the Palladium-Catalyzed Cycloisomerization of Functionalized 1,6-Dienes in the Presence of Silane,”  Kisanga, P.;  Widenhoefer, R. A. J. Am. Chem. Soc. 2000, 122, 10017-10026.

[29]      “Asymmetric Diene Cyclization/Hydrosilylation/Oxidation Employing 1-tert-Butyl-3,3-dimethyl-1,1-diphenyldisiloxane,”  Pei, T.; Widenhoefer, R. A. Tetrahedron Lett. 2000, 41, 7597-7600.

[28]      “Enantioselective Diene Cyclization/Hydrosilylation Catalyzed by Optically Pure Palladium Bisoxazoline and Pyridine–Oxazoline Complexes,”  Perch, N. S.; Pei, T.;  Widenhoefer, R. A. J. Org. Chem.2000, 65, 3836-3845.

[27]      “Reductive Cyclization of Dimethyl Diallylmalonate Catalyzed by Palladium–Bisoxazoline Complexes in the Presence of Silane and Water,”  Perch, N. S.; Kisanga, P.;  Widenhoefer, R. A. Organometallics2000, 19, 2541-2545.

[26]      “Use of Pentamethyldisiloxane in the Palladium-Catalyzed Cyclization/Hydrosilylation of Functionalized Dienes,”  Pei, T.; Widenhoefer, R. A. Org. Lett. 2000, 2, 1469-1471.

[25]      “Cyclization/Hydrosilylation of Functionalized 1,6-Dienes Catalyzed by a Cationic Palladium Phenanthroline Complex,”  Widenhoefer, R. A.;  Stengone, C. N. J. Org. Chem. 1999, 64, 8681-8692.

[24]      “Cyclization/Hydrogermylation of Functionalized 1,6-Dienes Catalyzed by a Cationic Palladium Phenanthroline Complex,”  Widenhoefer, R. A.;  Vadehra, A.; Cheruvu, P. K. Organometallics1999, 18, 4614-4618.

[23]      “An Improved Catalyst for the Cyclization/Hydrosilylation of Functionalized 1,6-Dienes Employing Dimethylphenysilane,” Widenhoefer, R. A.;  Vadehra, A. Tetrahedron Lett. 1999, 40, 8499-8502.

[22]      “Silane Promoted Cycloisomerization of Functionalized 1,6-Dienes Catalyzed by a Cationic (p-Allyl)Palladium Complex,”  Widenhoefer, R. A.;  Perch, N. S. Org. Lett.1999, 1, 1103-1105.

[21]      “Asymmetric Cyclization/Hydrosilylation of Functionalized Dienes Catalyzed by Enantiomerically Pure Palladium Pyridine–Oxazoline Complexes,”  Perch, N. S.; Widenhoefer, R. A. J. Am. Chem. Soc.1999, 121, 6960-6961.

[20]      “Cyclization/Hydrosilylation of Functionalized 1,7-Dienes to Form Substituted Six-Membered Carbocycles,”  Stengone, C. N.;  Widenhoefer, R. A. Tetrahedron Lett. 1999, 40, 1451-1454.

[19]      “Palladium-Catalyzed Intramolecular Hydrosilylation of Alkenylsilanes:  High Selectivity for the Formation of Six-Membered Silicon Heterocycles,” Widenhoefer, R. A.;  Krzyzanowska, B. K.;  Webb-Wood, G. Organometallics1998, 17, 5124-5127.

[18]      “Tandem Cyclization/Hydrosilylation of Functionalized 1,6-Dienes Catalyzed by a Cationic Palladium Complex,” Widenhoefer, R. A.;  DeCarli, M. A. J. Am. Chem. Soc.1998, 120, 3805-3806.

[17]     “Electronic Dependence of C–O Reductive Elimination from Palladium(Aryl)Neopentoxide Complexes,” Widenhoefer, R. A.;  Buchwald, S. L. J. Am. Chem. Soc.1998, 120, 6504.

[16]     “Direct Observation of C–O Reductive Elimination From Palladium(Aryl)Alkoxide Complexes to Form Aryl Ethers,”  Widenhoefer, R. A.;  Zhong, H. A.; Buchwald, S. L. J. Am. Chem. Soc.1997, 119, 6787.

[15]     “Kinetics and Mechanism of the Formation of Palladium Bis(benzylamine) Complexes from Reaction of Benzylamine with Palladium Tri-ortho-tolylphosphine–Mono(Amine) Complexes,”  Widenhoefer, R. A.;  Zhong, H. A. Inorg. Chem.1997, 36, 2610-2616.

[14]     “Synthesis and Solution Structure of Palladium Tri(ortho-tolyl)phosphine Mono(amine) Complexes,” Widenhoefer, R. A.;  Zhong, H. A.;  Buchwald, S. L. Organometallics1996, 15, 2745.

[13]     “Halide and Amine Influence in the Equilibrium Formation of Palladium Tri(ortho-tolyl)phosphine Mono(amine) Complexes From Palladium Aryl Halide Dimers,”  Widenhoefer, R. A.;  Buchwald, S. L. Organometallics1996, 15, 2755.

[12]     “The Formation of Palladium Bis(amine) Complexes from Reaction of Amine with Palladium Tri(ortho-tolyl)phosphine Mono(Amine) Complexes,”  Widenhoefer, R. A.;  Buchwald, S. L. Organometallics1996, 15, 3534.

[11]     “The Reactions of Cp*3Co3(m2-H)3(m3-H) with Carbon Dioxide, Carbon Disulfide and Phenyl isocyanate,”  Casey, C. P.;  Widenhoefer, R. A.;  Hayashi, R. K. Inorg. Chem.1995, 34, 1138.

[10]     “Kinetics and Mechanism of the Formation of the Bis(ethylidyne) Tricobalt Cluster Cp*3Co3(m3-CCH3)2from Reaction of Acetylene with Cp*3Co3(m2-H)3(m3-H),” Casey, C. P.;  Widenhoefer, R. A.;  Hallenbeck, S. L.;  Widenhoefer, R. A. J. Am. Chem. Soc. 1995, 117, 4607.

[9]       “The Reaction of Cp*3Co3(m3-CCH3)(m3-H) with (Trimethylsilyl)diazomethane and Ethyl Diazoacetate:  Facile Hydrogen Transfer Forms the Diazenide Clusters Cp*3Co3(m3-CCH3)(m3-NNCH2SiMe3) and Cp*3Co3(m3-CCH3)(m3-NNCH2CO2CH2CH3),”  Casey, C. P.; Widenhoefer, R. A.;  Hayashi, R. K. Inorg. Chem.1995, 34, 2258.

[8]       “X-ray Crystal Structures of Two Ethylidyne Tricobalt Clusters:  Thermolysis of Cp*Co(H2C=CH2)2 Forms Cp*3Co3(m3-CCH3)(m3-H), not Cp*3Co3(m3-CCH3)2,”  Casey, C. P.; Widenhoefer, R. A.;  Hallenbeck, S. L.;  Hayashi, R. K.;  Powell D. R.; Smith, G. W.Organometallics1994, 13, 1521.

[7]       “Synthesis and X-ray Crystal Structures of the Tricobalt Mono(ethylidyne) Clusters Cp*3Co3(m3-CCH3)(m3-CO)(m2-H), Cp*3Co3(m3-CCH3)(m3-CNCMe3)(m2-H), and Cp*3Co3(m3-CCH3)(m3-NO),”  Casey, C. P.; Widenhoefer, R. A.;  Hallenbeck, S. L.;  Hayashi, R. K. Inorg. Chem.1994, 33, 2639.

[6]       “Synthesis, X-ray Crystal Structures and Fluxional Behavior of the Tricobalt Clusters Cp*3Co3(m3‑CO)(m2‑CO)(m-H)2, Cp*3Co3(m2-H)(m3-h2-HC=NCMe3), and Cp*3Co3(m2-H)(m3-h2-HC=NCMe2CH2Me),”  Casey, C. P.; Widenhoefer, R. A.;  Hallenbeck, S. L.; Hayashi, R. K.;  Gavney, J. A. Organometallics1994, 13, 4720.

[5]       “Reaction of NO with Cp*3Co3(m-H)4 Preserves the Tricobalt Cluster and Produces Cp*3Co3(m3-NO)2,” Casey, C. P.;  Widenhoefer, R. A.;  Hayashi, R. K. Inorg. Chim. Acta1993, 212, 81.

[4]       “Conversion of Acetylene to a Triple Bridged Ethylidyne Ligand on the Cluster Cp*3Co3(m2-H)3(m3-H),”  Casey, C. P.; Widenhoefer, R. A.;  Hallenbeck, S. L. Organometallics1993, 12, 3788.

[3]       “Reaction of CO and tert-Butyl Isocyanide with the Cluster Cp*3Co3(m2-H)3(m3-H);  Facile Hydrogen Transfer to Isocyanide Forms Cp*3Co3(m2-H)(m3-h2-HC=NCMe3),” Casey, C. P.;  Widenhoefer, R. A.;  Hallenbeck, S. L.;  Gavney, J. A. J. Chem. Soc., Chem. Commun.1993, 1692.

[2]       “‘[Cp*Co=CoCp*]’ is a Hydride,”  Kersten, J. L.;  Rheingold, A. L.;  Theopold, K. H.;  Casey, C. P.; Widenhoefer, R. A.;  Hop, C. E. C. A. Angew. Chem.1992, 104, 1364; Angew. Chem., Int. Ed. Engl.1992, 31, 1341.

[1]       “Phosphine Induced Cyclopentadienyl Ring Slippage Catalyzes CO Insertion into a Methyl Rhenium Compound to Produce an Acetyl Rhenium Compound,”  Casey, C. P.; Widenhoefer, R. A.;  O’Connor, J. M. J. Organomet. Chem.1992, 428, 99.