Journal Articles
[156] “Syntheses and Structures of Cationic Bis(gold) Cyclopentadienyl Complexes,” Slinger, B. L.; Malek, J.; Widenhoefer, R. A. Organometallics 2025, 44, 1, 224-235.
[155] “Cationic Bis(Gold) Indenyl Complexes,” Slinger, B. L.; Zhu, J.; Widenhoefer, R. A. ChemPlusChem 2024, e202300691.
[154] “Modulating Transition Metal Reactivity with Force,” Duan, C.; Malek, J. C.; Craig, S. L.; Widenhoefer, R. A. ChemCatChem 2024, e202301479.
[153] “Allosteric control of olefin isomerization kinetics via remote metal binding and its mechanochemical analysis,” Yu, Y.; O’Neil, R. T.; Boulatov, R.; Widenhoefer, R. A.; Craig, S. L. Nat. Commun. 2023, 14, 1, 5074.
[152] “Force-Modulated C–C Reductive Elimination from Nickel Bis(polyfluorophenyl) Complexes,” Duan, C.; Zheng, X.; Craig, S. L.; Widenhoefer, R. A. Organometallics 2023, 42, 15, 1918-1926.
[151] “Force-Modulated Selectivity of the Rhodium-Catalyzed Hydroformylation of 1-Alkenes,” Yu, Y.; Zheng, X.; Duan, C; Craig, S. L.; Widenhoefer, R. A. ACS Catal. 2022, 12, 22, 13941-13950.
[150] “Kinetics and Mechanisms of the Gold-Catalyzed Hydroamination of Axially Chiral 1-Aryl-1,2-butadienes with Aniline,” Harris, R. J.; Nakafuku, K.; Carden, R. G.; Widenhoefer, R. A. Organometallics. 2022, 41, 19, 2753-2763.
[149] “Substituent Effects and the Mechanism of Gold to Alkene Benzylidene Transfer Employing a Gold Sulfonium Benzylide Complex,” Rivers, M.; Carden, R. G.; Widenhoefer, R. A. Organometallics. 2022, 41, 9, 1106-1114.
[148] “Force-Modulated Reductive Elimination from Platinum(II) Diaryl Complexes,” Yu, Y.; Wang, C; Wang, L; Sun, C; Boulatov, R; Widenhoefer, R. A.; Craig, S.L. Chem. Sci. 2021, 12, 11130-11137.
[147] “Kinetics and Mechanism of the Gold-Catalyzed Hydroamination of 1,1-Dimethylallene with N-Methylaniline,” Harris, R. J.; Nakafuku, K.; Duncan, A. N.; Carden, R. G.; Timmerman, J. C.; Widenhoefer, R. A. Chem. Eur. J. 2021, 27, 10377-10386.
[146] “Mechanism of the Stereomutation of an Azaplatinacyclobutane Complex,” Bender, C. F.; Widenhoefer, R. A. Organometallics. 2021, 40, 1071-1076.
[145] “Mechanochemical Regulation of Oxidative Addition to Palladium (0) Bisphosphine Complex,” Wang, L.; Yu, Y.; Razgoniaev, A. O.; Johnson, P. N.; Wang, C.; Tian, Y.; Boulatov, R.; Craig, S.L.; Widenhoefer, R. A. J. Am. Chem. Soc. 2020, 142, 17714–17720.
[144] “Formation of Cyclopropanes via Activation of 9gamma-Methoxy)alkyl Gold(I) Complexes with Lewis Acids” Kim, N.; Widenhoefer, R. A. Organometallics. 2020, 39, 3160-3167.
[143] “Synthesis, Structure, and Reactivity of Gold(I) alpha-Oxo Carbenoid Complexes” Stow, C. P.; Widenhoefer, R. A. Organometallics. 2020, 39, 1249–1257.
[142] “Synthesis of gold allyloxysulfonium complexes and elimination to form an alpha,beta-unsaturated aldehyde” Kim, N.; Widenhoefer, R. A. Chem. Commun. 2019, 55, 13745–13748.
[141] “Gold Sulfonium Benzylide Complexes Undergo Efficient Benzylidene Transfer to Alkenes,” Carden, R. G.; Widenhoefer, R. A. Chem. Eur. J. 2019, 25, 11026–11030.
[140] “Ionization of gold (gamma-methoxy)vinyl complexes generates reactive gold vinyl carbene complexes,” Kim, N.; Widenhoefer, R. A. Chem. Sci. 2019, 10, 6149–6156.
[139] “Kinetics and Mechanism of the Gold-Catalyzed Intermolecular Hydroalkoxylation of Allenes with Alcohols,” Harris, R. J.; Carden, R. G.; Duncan, A. N.; Widenhoefer, R. A. ACS Catal. 2018, 8, 8941–8952.
[138] “Synthesis, Characterization, and Reactivity of Cationic Gold Diarylallenylidene Complexes,” Kim, N; Widenhoefer, R. A. Angew. Chem. Int. Ed. 2018,57, 4722–4726; Angew. Chem.2018, 130, 4812–4816.
[137] “Experimental Evaluation of (L)Au Electron Donor Ability in Cationic Gold Carbene Complexes,” Carden, R. G.; Lam, N.; Widenhoefer, R. A. Chem. Eur. J. 2017, 23, 17992–18001.
[136] “Formal Synthesis of (+)-Laurencin via a Gold(I)-Catalyzed Intramolecular Alkoxylation,” Lanier, M. L.; Park, H.; Mukherjee, P.; Timmerman, J. C.; Ribeiro, A.; Widenhoefer, R. A.; Hong, J. Chem. Eur. J. 2017, 23, 7180–7184.
[135] “Gold(I)-Catalyzed Intramolecular Hydroamination of Unactivated Terminal and Internal Alkenes With 2-Pyridones,” Timmerman, J. C.; Lauhlé, S.; Widenhoefer, R. A. Org.Lett. 2017, 19, 1466–1469.
[134] “Unexpected Skeletal Rearrangement in the Gold(I)/Silver(I)-Catalyzed Conversion of 7-Aryl-1,6-enynes to Bicyclo[3.2.0]hept-6-enes via Hidden Brønsted Acid Catalysis,” Kim, N.; Brooner, R. E. M.; Widenhoefer, R. A. Organometallics. 2017, 36, 673–678.
[133] “Gold-Catalyzed Intermolecular, anti-Markovnikov Hydroarylation of Methylenecyclopropanes with Indoles,” Timmerman, J. C.; Schmitt, W. W.; Widenhoefer, R. A. Org. Lett. 2016, 18,4966–4969.
[132] “Transition Metal-Catalyzed Hydroarylation of Allenes,” Widenhoefer, R. A.; in Catalytic Hydroarylation of C–C Multiple Bonds, Gunnoe, T. B.; Ackermann, L.; Habgood, L. G.Eds.: Wiley-VCH: Wienheim, 2018, pp. 361-369.
[131] “Effect of Substitution, Ring Size, and Counterion on the Intermediates Generated in the Gold-Catalyzed Intramolecular Hydroalkoxylation of Allenes,” Brown, T. J.; Brooner, R. E. M.; Chee, M. A.; Widenhoefer, R. A. Organometallics. 2016, 35, 2014−2021.
[130] “Kinetics and Mechanism of Allene Racemization Catalyzed by a Gold N-Heterocyclic Carbene Complex,” Li, H.; Harris, R. J.; Nakafuku, K.; Widenhoefer, R. A.,Organometallics, 2016,35, 2242−2248.
[129] “Gold Carbenes, Gold-Stabilized Carbocations, and Cationic Intermediates Relevant to Gold-Catalyzed Cycloaddition,” Harris, R. J.; Widenhoefer, R. A. Chem. Soc. Rev. 2016, 45, 4533 – 4551.(Invited contribution to the themed collection Coinage Metals).
[128] “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines,” Bender, C. F.; Brown, T. J.; Widenhoefer, R. A. Organometallics. 2016, 35, 113–125. (Selected as ACS Editor’s Choiceopen access article.)
[127] “Gold-Catalyzed Intermolecular anti-Markovnikov Hydroamination of Methylenecyclopropanes with 2-Pyridones,” Timmerman, J. C.; Widenhoefer, R. A. Adv. Synth. & Catal. 2015, 357, 3703-3706. (Highlighted in Synfacts 2016, 12, 165.)
[126] “Generation and Characterization of a Gold Vinylidene Complex Lacking p-Conjugated Heteroatoms,” Harris, R. J.; Widenhoefer, R. A. Angew. Chem. 2015, 126, 6971-6973; Angew. Chem. Int. Ed. 2015, 54, 6867-6869.
[125] “Tandem Gold/Silver-Catalyzed Cycloaddition/Hydroarylation of 7-Aryl-1,6-enynes to Form 6,6-Diaryl-bicyclo-[3.2.0]-heptanes,” Robertson, B. D.; Brooner, R. E. M.; Widenhoefer, R. A. Chem. Eur. J. 2015, 21, 5714 – 5717.
[124] “Gold-Catalyzed Intermolecular, Anti-Markovnikov Hydroamination of Alkylidenecyclopropanes,” Timmerman, J. C.; Robertson, B. D.; Widenhoefer, R. A. Angew. Chem. 2015, 127, 2279–2282; Angew. Chem. Int. Ed. 2015, 54, 2251-2254. (Highlighted in Synfacts 2015, 11, 287.)
[123] “Photomechanical Actuation of Ligand Geometry in Enantioselective Catalysis,” Kean, Z. S.; Akbulatov, S.; Tian, Y.; Widenhoefer, R. A.; Boulatov, R.; Craig, S. L. Angew. Chem. 2014, 126, 14736–14739; Angew. Chem. Int. Ed. 2014, 53, 14508 –14511.
[122] “Mechanism of the 1,3-Hydride Migration in a Gold Bicyclo-[3.2.0]-heptene Complex: The Role of Brønsted Acid in the Gold-Catalyzed Cycloaddition of 7-Aryl-1,6-Enynes,” Brooner, R. E. M.; Robertson, B. D.; Widenhoefer, R. A. Organometallics. 2014, 33, 6466−6473.
[121] “Enantioselective Intramolecular Hydroamination of Unactivated AlkenesCatalyzed by Mono- and Bis(gold) Phosphine Complexes,” Lee, S. D.; Timmerman, J. C.; Widenhoefer, R. Adv. Synth. & Catal. 2014, 356, 3187-3192.
[120] “Kinetics and Mechanism of the of Allenes Catalyzed by Gold Phosphine Complexes,” Harris, R. J.; Nakafuku, K. M.; Li, H.; Widenhoefer, R. A. Chem. Eur. J. 2014, 20, 12245-12254.
[119] “Synthesis, Structure, and Reactivity of a Gold Carbenoid Complex Lacking Heteroatom Stabilization,” Harris, R. J.; Widenhoefer, R. A. Angew. Chem. 2014, 126, 9523-9525; Angew. Chem. Int. Ed. 2014, 53, 9369 – 9371.
[118] “Synthesis and X-ray Crystal Structure of a Cationic Gold (I) p-(1,3-Diene) Complex Generated via Isomerization of a Gold p-Allene Complex,” Brown, T. J.; Widenhoefer, R. A. J. Organomet. Chem. 2014, 758, 25-28.
[117] “Experimental Evaluation of the Electron Donor Ability of a Gold Phosphine Fragment in a Gold Carbene Complex,” Brooner, R. E. M.; Widenhoefer, R. A., Chem. Commun. 2014, 50, 2420-2423.
[116] “Cationic, Two-Coordinate Gold p-Complexes,” Brooner, R. E. M.; Widenhoefer, R. A. Angew. Chem.2013, 125, 11930-11941; Angew. Chem. Int. Ed. 2013, 52, 11714-11724.
[115] “Synthesis and Study of Cationic, Two-coordinate Triphenylphosphine Gold p-Complexes,” Brooner, R. E. M.; Brown, T. J.; Widenhoefer, R. A. Chem. Eur. J. 2013, 19, 8276-8284.
[114] “Direct Observation of the Cationic Gold(I) Bicyclo-[3.2.0]-hept-1(7)-ene Complex Generated in the Cycloisomerization of a 7-Phenyl-1,6-Enyne,” Brooner, R. E. M.; Brown, T. J.; Widenhoefer, R. A. Angew. Chem. Int. Ed. 2013,52, 6259-6261; Angew. Chem. 2013, 125, 6379-6381.
[113] “The Regio- and Stereospecific Intermolecular Dehydrative Alkoxylation of Allylic Alcohols catalyzed by a Gold(I) N-Heterocyclic Carbene Complex,” Mukherjee, P.; Widenhoefer, R. A.Chem. Eur. J. 2013, 19, 3437–3444.
[112] “Mechanistic Analysis of Gold(I)-Catalyzed Intramolecular Allene Hydroalkoxylation Reveals an Off-Cycle Bis(gold) Vinyl Species and Reversible C–O Bond Formation,” Brown, T. J.; Weber, D.; Gagné, M. R.; Widenhoefer, R. A. J. Am. Chem. Soc. 2012, 134, 9134–9137.
[111] “Structures and Dynamic Solution Behavior of Cationic, Two-Coordinate Gold(I) p-Allene Complexes,” Brown, T. J.; Sugie, A.; Dickens, M. G.; Widenhoefer, R. A.Chem. Eur. J. 2012, 18, 6959–6971.
[110] “Gold(I)-Catalyzed Stereoconvergent, Enantioselective Intermolecular Hydroamination of Allenes with Carbamates,” Butler, K. L.; Tragni, M.; Widenhoefer, R. A. Angew. Chem. 2012, 122, 5265–5268; Angew. Chem. Int. Ed. 2012, 51, 5175–5178.
[109] “Gold(I)-Catalyzed Enantioselective Intramolecular Dehydrative Amination of Allylic Alcohols with Carbamates,” Mukherjee, P.; Widenhoefer, R. A. Angew. Chem. Int. Ed. 2012, 51, 1405–1407; Angew. Chem. 2012, 124, 1434–1436.
[108] “Synthesis and Structure of Dicationic, Bis(gold) p-Alkene ComplexesContaining a 2,2′-Bis(phosphino)biphenyl Ligand,” Brooner, R. E. M.; Widenhoefer, R. A. Organometallics. 2012, 31, 768–771.
[107] “Cationic Gold(I) p-Complexes of Terminal Alkynes and Their Conversion to Dinuclear s,p-Acetylide Complexes,” Brown, T. J.; Widenhoefer, R. A. Organometallics. 2011, 30, 6003–6009.
[106] “Syntheses, X-ray Crystal Structures, and Solution Behavior of Cationic, Two-Coordinate Gold(I) h2-Diene Complexes,” Brooner, R. E. M.; Widenhoefer, R. A. Organometallics. 2011, 30, 3182–3193.
[105] “Stereochemistry and Mechanism of the Brønsted Acid-Catalyzed Intramolecular Hydrofunctionalization of Unactivated Alkenes,” Brooner, R. E. M.; Widenhoefer, R. A. Chem. – Eur. J. 2011, 17, 6170–6178.
[104] “Gold(I)-Catalyzed Intramolecular Hydroamination of N-Allylic,N‘-Aryl Ureas to form Imidazolidin-2-ones,” Li, H;. Song, F.; Widenhoefer, R. A. Adv. Synth. Catal. 2011, 353, 955–962.
[103] “Gold(I)-Catalyzed Intramolecular Amination of Allylic Alcohols with Alkylamines,” Mukherjee, P.; Widenhoefer, R. A.Org. Lett. 2011, 13, 1334–1337.
[102] “Synthesis and Equilibrium Binding Studies of Cationic, Two-coordinate Gold(I) p-Alkyne Complexes,” Brown, T. J.; Widenhoefer, R. A. (invited contribution) J. Organomet. Chem. 2011, 696, 1216-1220.
[101] “Gold(I)-Catalyzed Enantioselective Intramolecular Hydroamination of Allenes with Ureas,” Li, H.; Lee, S. D.; Widenhoefer, R. A. (invited contribution) J. Organomet. Chem. 2011, 696, 316-320.
[100] “Gold-Catalyzed Addition of Oxygen Nucleophiles to C–C Multiple Bonds,” Widenhoefer, R. A.; Song, F.; in Catalyzed Carbon-Heteroatom Bond Formation, Yudin, A. K.Ed.: Wiley-VCH: Wienheim, 2010.
[99] “Gold-Catalyzed Addition of Nitrogen and Sulfur Nucleophiles to C–C Multiple Bonds,” Widenhoefer, R. A.; Song, F.; in Catalyzed Carbon-Heteroatom Bond Formation, Yudin, A. K.Ed.: Wiley-VCH: Wienheim, 2010.
[98] “Solid-State and Dynamic Solution Behavior of a Cationic, Two-Coordinate Gold(I) p-Allene Complex,” Brown, T. J.; Sugie, A.; Dickens, M. G.; Widenhoefer, R. A. Organometallics 2010, 29, 4207-4209.
[97] “Intramolecular Diamination and Alkoxyamination of Alkenes with N-Sulfonyl Ureas Mediated by N-Iodosuccinimide,” Li, H.; Widenhoefer, R. A. Tetrahedron2010, 66, 4827–4831. (Invited contribution to the thematic issue: Recent Developments in Synthetic Methods and Total Synthesis)
[96] “Gold(I)-Catalyzed Intermolecular Amination of Allylic Alcohols with Cyclic Ureas and Related Nucleophiles,” Mukherjee, P.; Widenhoefer, R. A. Org. Lett.2010, 12, 1184–1187. ((Highlighted in Synfacts2010, 6, 0663.)
[95] “Platinum(II)-Catalyzed Intermolecular Hydroamination of Allenes with Secondary Alkylamines,” Toups, K. L.; Widenhoefer, R. A.Chem. Commun.2010, 46, 1712-1714.
[94] “Gold(I)-Catalyzed Intermolecular Hydroamination of Allenes with Aryl Amines,” Duncan, A. N.; Widenhoefer, R. A.SYNLETT2010, 419-422.
[93] “Syntheses and X-ray Crystal Structure of Cationic, Two-Coordinate Gold(I) p-Alkene Complexes that Contain a Sterically Hindered o-Biphenylphosphine Ligand,” Brown, T. J.; Dickens, M. G.; Widenhoefer, R. A. Chem. Commun. 2009, 6451–6453.
[92] “A Palladium-Catalyzed Formal (4+1) Annulation–A New Approach to Cyclopentene Construction,” Widenhoefer, R. A. Angew. Chem. Int. Ed.2009,48, 6950-6952. (invited highlight).
[91] “Gold(I)-Catalyzed Intramolecular Dihydroamination of Allenes with N,N’-Disubstituted Ureas To Form Bicyclic Imidazolidin-2-ones,” Li, H.; Widenhoefer, R. A. Org. Lett. 2009, 11, 2671-2674.
[90] “Syntheses, X-ray Crystal Structures, and Solution Behavior of Monomeric, Cationic, Two-Coordinate Gold(I) p-Alkene Complexes,” Brown, T. J.; Dickens, M. G.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 6350-6351.
[89] “Intermolecular Hydroamination of Ethylene and 1-Alkenes with Cyclic Ureas Catalyzed by Achiral and Chiral Gold(I) Complexes,” Zhang, Z.; Lee, S. D.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 5372-5373. (Highlighted in Synfacts2009, 7, 0781.)
[88] “Gold(I)-Catalyzed Hydroarylation of Allenes with Indoles,” Toups, K. L.; Liu,G. T.; Widenhoefer, R. A. J. Organomet. Chem. 2009, 694, 571-575. (Invited contribution to the special issue: Gold Catalysis – New Perspectives for Homogeneous Catalysis)
[87] “Gold(I)-Catalyzed Hydration of Allenes,” Zhang, Z.; Lee, S-D.; Fisher, A. S.; Widenhoefer, R. A.Tetrahedron2009,65, 1794-1798. (Invited contribution to the special issue: Recent Developments in Gold Catalysis)
[86] “Unactivated Alkenes,” Widenhoefer, R. A., in Catalytic Asymmetric Friedel–Crafts Alkylations, Bandini,M.; Umani-Ronchi, A. Eds.: Wiley-VCH: Wienheim, 2009, 203-222.
[85] “Intermolecular Hydroamination ofAllenes with N-Unsubstituted Carbamates Catalyzed by a Gold(I) N-Heterocyclic Carbene Complex,” Kinder, R. E.; Zhang, Z.; Widenhoefer, R. A.Org. Lett. 2008, 10, 3157-3159.
[84] “Recent Developments in Enantioselective Gold(I) Catalysis,” Widenhoefer, R. A. Chem. Eur. J.(invited concepts article) 2008, 14, 5382-5391.
[83] “Gold(I)-Catalyzed Intramolecular Hydroamination of Unactivated C=C Bonds with Alkyl Ammonium Salts,” Bender, C. F.; Widenhoefer, R. A. Chem. Commun. 2008, 2741-2743.
[82] “Sterically Hindered Mono(phosphines) as Supporting Ligands for the Platinum-Catalyzed Hydroamination of Amino Alkenes,” Bender, C. F.; Hudson, W. B.; Widenhoefer, R. A. Organometallics2008, 27, 2356-2358.
[81] “Regio- and Stereoselective Synthesis of Alkyl Allylic Ethers via Gold(I)-Catalyzed Intermolecular Hydroalkoxylation of Allenes with Alcohols,” Zhang, Z.; Widenhoefer, R. A. Org. Lett. 2008, 10, 2079-2081. (Highlighted in Synfacts2008, 8, 857)
[80] “Gold(I)-Catalyzed Dynamic Kinetic Enantioselective Intramolecular Hydroamination of Allenes,” Zhang, Z.; Bender, C. F.; Widenhoefer, R. A.J. Am. Chem. Soc.2007, 129, 14148-14149. (Highlighted in Synfacts2008, 3, 265)
[79] “Bis[(1,2,5,6-h)-1,5-cyclooctadiene] rhodium(1+), hexafluoroantimonate(1-)” Kinder, R. E.; Widenhoefer, R. A. in Encyclopedia of Reagents for Organic Synthesis; Molander, G. A. Ed.; John Wiley & Sons: Chichester, UK, 2007.
[78] “Tri-o-tolylphosphine” Kinder, R. E.; Widenhoefer, R. A. in Encyclopedia of Reagents for Organic Synthesis; Molander, G. A. Ed.; John Wiley & Sons: Chichester, UK, 2007.
[77] “Platinum-Catalyzed Hydrofunctionalization of Unactivated Alkenes with Carbon, Nitrogen, and Oxygen Nucleophiles,” Liu, C.; Bender, C. F.; Han, X.; Widenhoefer, R. A. Chem. Commun. (invited Feature Article) 2007, 3607-3618.
[76] “Palladium-Mediated Cyclization of 6-Methyl-1-phenyl-6-hepten-2-one to form 3-Benzyltoluene: Carbonyl Activation by a Neutral Palladium(II) Complex Han, X.; Widenhoefer, R. A.Organometallics2007, 26, 4061-4065.
[75] “Gold(I)-Catalyzed Enantioselective Hydroamination of N-Allenyl Carbamates,” Zhang, Z.; Bender, C. F.; Widenhoefer, R. A.Org. Lett. 2007, 9, 2887-2889.(Highlighted in Synfacts2007, 10, 1069).
[74] “Gold(I)-Catalyzed Intramolecular Enantioselective Hydroarylation of Allenes with Indoles,” Liu, C.; Widenhoefer, R. A. Org. Lett. 2007, 9, 1935-1938. (Highlighted in Synfacts2007, 7, 740).
[73] “Gold(I)-Catalyzed Intramolecular Asymmetric Hydroalkoxylation of Allenes,” Zhang, Z.; Widenhoefer, R. A. Angew. Chem.2007, 119, 287-289; Angew. Chem. Int. Ed.2007,46, 283-285. (Highlighted in Synfacts2007, 3, 0304)
[72] “Room Temperature Hydroamination of Alkenyl Ureas Catalyzed by a Gold(I) N-Heterocyclic Carbene Complex,” Bender, C. F.; Widenhoefer, R. A. Org. Lett. 2006, 8, 5303-5305.
[71] “Gold-Catalyzed Intramolecular Hydroamination of Unactivated Alkenes with Carboxamides,” Bender, C. F.; Widenhoefer, R. A. Chem. Commun.2006, 4143-4144.
[70] “Gold-Catalyzed Hydroamination of C–C Multiple Bonds,” Han, X.; Widenhoefer, R. A. Eur. J. Org. Chem. 2006, 4555-4563 (invited microreview).
[69] Platinum(II)-Catalyzed Intermolecular Hydroarylation of Unactivated Alkenes with Indoles,” Zhang, Z.; Wang, X.; Widenhoefer, R. A. Chem. Commun. 2006, 3717 – 3719.
[68] “Platinum-Catalyzed Intramolecular Asymmetric Hydroarylation of Unactivated Alkenes with Indoles,” Han, X.; Widenhoefer, R. A. Org. Lett. 2006, 8, 3801-3804.
[67] “Silane-Initiated Carbocyclization Catalyzed by Transition Metal Complexes,” Widenhoefer, R. A.; Bender, C. F. in Comprehensive Organometallic Chemistry III; Crabtree, R. H.; Mingos, D. M. P. Eds.; Elsevier: Oxford, UK, 2006.
[66] “A Highly Active Au(I) Catalyst for the Intramolecular exo-Hydrofunctionalization of Allenes with Carbon, Nitrogen, and Oxygen Nucleophiles,” Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066-9073. (Highlighted in Synfacts2006, 10, 990)
[65] “Rhodium-Catalyzed Asymmetric Cyclization/Hydroboration of Enynes,” Kinder, R. E.; Widenhoefer, R. A. Org. Lett. 2006, 8, 1967-1969. (Highlighted in Synfacts2006, 7, 708)
[64] “Gold-Catalyzed Intramolecular Hydroamination of Alkenyl Carbamates,” Han, X.; Widenhoefer, R. A. Angew. Chem. 2006, 118, 1779-1781; Angew. Chem. Int. Ed. 2006, 45, 1747-1749.
[63] “Scope and Mechanism of Pd(II)-Catalyzed Arylation/Carboalkoxylation of Unactivated Olefins with Indoles,” Liu, C.; Widenhoefer, R. A. Chem. Eur. J. 2006, 12, 2371-2382. (Highlighted in Synfacts2006, 6, 557)
[62] “Homogeneous Catalysis: Understanding the Art,” Widenhoefer, R. A. (Book Review) J. Am. Chem. Soc. 2005, 127, 9309 – 9310.
[61] “Platinum-Catalyzed Intermolecular Hydroamination of Vinyl Arenes with Carboxamides,” Qian, H.; Widenhoefer, R. A. Org. Lett. 2005, 7, 2635-2638.
[60] “Platinum-Catalyzed Intramolecular Hydroamination of Unactivated Olefins with Secondary Alkyamines,” Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070-1071.
[59] “Development, Scope, and Mechanism of the Palladium-Catalyzed Intramolecular Hydroalkylation of 3-Butenyl b-Diketones,” Qian, H.; Pei, T.; Widenhoefer, R. A. Organometallics2005, 24, 287-301.
[58] “Platinum(II)/Europium(III)-Catalyzed Intramolecular Hydroalkylation of 4-Pentenyl b-Dicarbonyl Compounds,” Liu, C.; Widenhoefer, R. A. (invited contribution on the occasion of Prof. Iwao Ojima’s 60thbirthday) Tetrahedron Lett. 2005, 46, 285-287.
[57] “Palladium-Catalyzed Intramolecular Oxidative Alkylation of 4-Pentenyl b-Dicarbonyl Compounds,” Liu, C.; Wang, X.; Pei, T.; Widenhoefer, R. A. Chem. Eur. J.2004, 10, 6343-6353.
[56] “Palladium-Catalyzed Intramolecular Hydroalkylation of Alkenyl- b-Keto Esters, a-Aryl Ketones, and Alkyl Ketones in the presence of Me3SiCl or HCl,” Han, X.; Wang, X.; Pei, T.; Widenhoefer, R. A. Chem. Eur. J.2004, 10, 6332-6342.
[55] “Palladium-Catalyzed Cyclization/Carboalkoxylation of Alkenyl Indoles,” Liu, C.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 10250-10251.
[54] “Platinum-Catalyzed Hydroalkoxylation of g- and d-Hydroxy Olefins to form Cyclic Ethers,” Qian, H.; Han, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 9536-9537.
[53] “Mechanism of Palladium-Catalyzed Diene Cyclization/Hydrosilylation: Direct Observation of Intramolecular Carbometallation,” Perch, N. S.; Widenhoefer, R. A.J. Am. Chem. Soc. 2004,126, 6332-6346.
[52] “Palladium-Catalyzed Alkylation of Unactivated Olefins,” Widenhoefer, R. A. Pure Appl. Chem.2004, 76, 671-678.
[51] “Platinum(II)-Catalyzed Intramolecular Alkylation of Indoles with Unactivated Olefins,” Liu, C.; Han, X.; Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 3700-3701.
[50] “Platinum(II)-Catalyzed Intermolecular Hydroamination of Unactivated Olefins with Carboxamides,” Wang, X.; Widenhoefer, R. A. Organometallics2004, 23, 1649-1651.
[49] “Palladium(II)- and Platinum(II)-Catalyzed Addition of Stabilized Carbon Nucleophiles to Ethylene and Propylene,” Wang, X.; Widenhoefer, R. A. Chem. Commun. 2004, 660 – 661.
[48] “Palladium-Catalyzed Oxidative Alkoxylation of a-Alkenyl b-Diketones to form Functionalized Furans,” Han, X.; Widenhoefer, R. A. J. Org. Chem. 2004, 68, 1738-1740.
[47] “Dramatic Effect of Homoallylic Substitution on the Rate of Palladium-Catalyzed Diene Cycloisomerization,” Goj, L. A.; Cisneros, A. G.; Yang, W.; Widenhoefer, R. A. invited contribution to J. Organomet. Chem.2003,687, 498-507.
[46] “Palladium-Catalyzed Intramolecular Hydroalkylation of Unactivated Olefins with Dialkyl Ketones,” Wang, X.; Pei, T.; Han, X.; Widenhoefer, R. A. Org. Lett. 2003, 5, 2699-2701.
[45] “Mechanism of the Palladium-Catalyzed Intramolecular Hydroalkylation of 7-Octene-2,4-dione,” Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2003, 125, 2056-2057.
[44] “Palladium-Catalyzed Intramolecular Oxidative Alkylation of Unactivated Olefins,” Pei, T.; Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2003, 125, 648-649.
[43] “Enantioselective Cyclization/Hydrosilylation of 1,6-Enynes Catalyzed by a Cationic Rhodium Complex,” Chakrapani, H.; Liu, C.; Widenhoefer, R. A. Org. Lett. 2003, 5, 157-159.
[42] “Cyclization/Hydrosilylation of Functionalized Diynes Catalyzed by a Cationic Rhodium Bis(phosphine) Complex,” Liu, C.; Widenhoefer, R. A. Organometallics2002, 21, 5666-5673.
[41] “Synthetic and Mechanistic Studies of the Cycloisomerization and Cyclization/Hydrosilylation of Functionalized Dienes Catalyzed by Cationic Palladium Complexes,” Widenhoefer, R. A. Acc. Chem. Res. 2002, 35, 905-913.
[40] “Cyclization/Hydrosilylation of Functionalized Diynes Catalyzed by Cationic Platinum Complexes Containing Bidentate Nitrogen Ligands,” Wang, X.; Chakrapani, H.; Madine, J. W.; Keyerleber, M. A.; Widenhoefer, R. A. J. Org. Chem. 2002, 67, 2778-2788.
[39] “Palladium-Catalyzed Cyclization of Alkenyl b-Keto Esters in the Presence of Chlorotrimethylsilane,” Pei, T.; Widenhoefer, R. A. Chem. Commun. 2002, 650-651.
[38] “Palladium-Catalyzed Ring-Opening Cyclization/Hydrosilylation of 1-Cyclopropyl-1,6-Hexadienes to form (E)-1-Butenyl Cyclopentanes,” Wang, X.; Stankovich, S. Z.; Widenhoefer, R. A. Organometallics2002, 21, 901-905.
[37] “Direct Observation of the Conversion of a Palladium 5-Hexenyl Chelate Complex to a Palladium Cyclopentylmethyl Complex,” Perch, N. S.; Widenhoefer, R. A. Organometallics2001, 20, 5251-5253.
[36] “Palladium-Catalyzed Asymmetric Diene Cyclization/Hydrosilylation Employing Functionalized Silanes and Disiloxanes,” Pei, T.; Widenhoefer, R. A. J. Org. Chem. 2001, 66, 7639-7645.
[35] “Palladium-Catalyzed Intramolecular Addition of 1,3-Diones to Unactivated Olefins,” Pei, T.; Widenhoefer, R. A. J. Am. Chem. Soc. 2001, 123, 11290-11291.
[34] “Mechanistic Studies of the Cycloisomerization of Dimethyl Diallylmalonate Catalyzed by a Cationic Palladium Phenanthroline Complex,” Goj, L. A.; Widenhoefer, R. A. J. Am. Chem. Soc. 2001, 123, 11133-11147.
[33] “Synthesis of Carbobicyclic Compounds via Palladium–Catalyzed Cyclization/Hydrosilylation: Evidence for Reversible Silylpalladation,” Wang, X.; Chakrapani, H.; Stengone, C. N.; Widenhoefer, R. A. J. Org. Chem. 2001, 66, 1755-1760.
[32] “Cyclization/Hydrosilylation of Functionalized Diynes Catalyzed by a Cationic Platinum Phenanthroline Complex,” Madine, J. W.; Wang, X.; Widenhoefer, R. A. Org. Lett. 2001, 3, 385-389.
[31] “Cycloisomerization of Functionalized 1,5- and 1,6-Dienes Catalyzed by Cationic Palladium Phenanthroline Complexes,” Kisanga, P.; Goj, L. A.; Widenhoefer, R. A. J. Org. Chem. 2001, 66, 635-637.
[30] “Development, Synthetic Scope, and Mechanistic Studies of the Palladium-Catalyzed Cycloisomerization of Functionalized 1,6-Dienes in the Presence of Silane,” Kisanga, P.; Widenhoefer, R. A. J. Am. Chem. Soc. 2000, 122, 10017-10026.
[29] “Asymmetric Diene Cyclization/Hydrosilylation/Oxidation Employing 1-tert-Butyl-3,3-dimethyl-1,1-diphenyldisiloxane,” Pei, T.; Widenhoefer, R. A. Tetrahedron Lett. 2000, 41, 7597-7600.
[28] “Enantioselective Diene Cyclization/Hydrosilylation Catalyzed by Optically Pure Palladium Bisoxazoline and Pyridine–Oxazoline Complexes,” Perch, N. S.; Pei, T.; Widenhoefer, R. A. J. Org. Chem.2000, 65, 3836-3845.
[27] “Reductive Cyclization of Dimethyl Diallylmalonate Catalyzed by Palladium–Bisoxazoline Complexes in the Presence of Silane and Water,” Perch, N. S.; Kisanga, P.; Widenhoefer, R. A. Organometallics2000, 19, 2541-2545.
[26] “Use of Pentamethyldisiloxane in the Palladium-Catalyzed Cyclization/Hydrosilylation of Functionalized Dienes,” Pei, T.; Widenhoefer, R. A. Org. Lett. 2000, 2, 1469-1471.
[25] “Cyclization/Hydrosilylation of Functionalized 1,6-Dienes Catalyzed by a Cationic Palladium Phenanthroline Complex,” Widenhoefer, R. A.; Stengone, C. N. J. Org. Chem. 1999, 64, 8681-8692.
[24] “Cyclization/Hydrogermylation of Functionalized 1,6-Dienes Catalyzed by a Cationic Palladium Phenanthroline Complex,” Widenhoefer, R. A.; Vadehra, A.; Cheruvu, P. K. Organometallics1999, 18, 4614-4618.
[23] “An Improved Catalyst for the Cyclization/Hydrosilylation of Functionalized 1,6-Dienes Employing Dimethylphenysilane,” Widenhoefer, R. A.; Vadehra, A. Tetrahedron Lett. 1999, 40, 8499-8502.
[22] “Silane Promoted Cycloisomerization of Functionalized 1,6-Dienes Catalyzed by a Cationic (p-Allyl)Palladium Complex,” Widenhoefer, R. A.; Perch, N. S. Org. Lett.1999, 1, 1103-1105.
[21] “Asymmetric Cyclization/Hydrosilylation of Functionalized Dienes Catalyzed by Enantiomerically Pure Palladium Pyridine–Oxazoline Complexes,” Perch, N. S.; Widenhoefer, R. A. J. Am. Chem. Soc.1999, 121, 6960-6961.
[20] “Cyclization/Hydrosilylation of Functionalized 1,7-Dienes to Form Substituted Six-Membered Carbocycles,” Stengone, C. N.; Widenhoefer, R. A. Tetrahedron Lett. 1999, 40, 1451-1454.
[19] “Palladium-Catalyzed Intramolecular Hydrosilylation of Alkenylsilanes: High Selectivity for the Formation of Six-Membered Silicon Heterocycles,” Widenhoefer, R. A.; Krzyzanowska, B. K.; Webb-Wood, G. Organometallics1998, 17, 5124-5127.
[18] “Tandem Cyclization/Hydrosilylation of Functionalized 1,6-Dienes Catalyzed by a Cationic Palladium Complex,” Widenhoefer, R. A.; DeCarli, M. A. J. Am. Chem. Soc.1998, 120, 3805-3806.
[17] “Electronic Dependence of C–O Reductive Elimination from Palladium(Aryl)Neopentoxide Complexes,” Widenhoefer, R. A.; Buchwald, S. L. J. Am. Chem. Soc.1998, 120, 6504.
[16] “Direct Observation of C–O Reductive Elimination From Palladium(Aryl)Alkoxide Complexes to Form Aryl Ethers,” Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. J. Am. Chem. Soc.1997, 119, 6787.
[15] “Kinetics and Mechanism of the Formation of Palladium Bis(benzylamine) Complexes from Reaction of Benzylamine with Palladium Tri-ortho-tolylphosphine–Mono(Amine) Complexes,” Widenhoefer, R. A.; Zhong, H. A. Inorg. Chem.1997, 36, 2610-2616.
[14] “Synthesis and Solution Structure of Palladium Tri(ortho-tolyl)phosphine Mono(amine) Complexes,” Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. Organometallics1996, 15, 2745.
[13] “Halide and Amine Influence in the Equilibrium Formation of Palladium Tri(ortho-tolyl)phosphine Mono(amine) Complexes From Palladium Aryl Halide Dimers,” Widenhoefer, R. A.; Buchwald, S. L. Organometallics1996, 15, 2755.
[12] “The Formation of Palladium Bis(amine) Complexes from Reaction of Amine with Palladium Tri(ortho-tolyl)phosphine Mono(Amine) Complexes,” Widenhoefer, R. A.; Buchwald, S. L. Organometallics1996, 15, 3534.
[11] “The Reactions of Cp*3Co3(m2-H)3(m3-H) with Carbon Dioxide, Carbon Disulfide and Phenyl isocyanate,” Casey, C. P.; Widenhoefer, R. A.; Hayashi, R. K. Inorg. Chem.1995, 34, 1138.
[10] “Kinetics and Mechanism of the Formation of the Bis(ethylidyne) Tricobalt Cluster Cp*3Co3(m3-CCH3)2from Reaction of Acetylene with Cp*3Co3(m2-H)3(m3-H),” Casey, C. P.; Widenhoefer, R. A.; Hallenbeck, S. L.; Widenhoefer, R. A. J. Am. Chem. Soc. 1995, 117, 4607.
[9] “The Reaction of Cp*3Co3(m3-CCH3)(m3-H) with (Trimethylsilyl)diazomethane and Ethyl Diazoacetate: Facile Hydrogen Transfer Forms the Diazenide Clusters Cp*3Co3(m3-CCH3)(m3-NNCH2SiMe3) and Cp*3Co3(m3-CCH3)(m3-NNCH2CO2CH2CH3),” Casey, C. P.; Widenhoefer, R. A.; Hayashi, R. K. Inorg. Chem.1995, 34, 2258.
[8] “X-ray Crystal Structures of Two Ethylidyne Tricobalt Clusters: Thermolysis of Cp*Co(H2C=CH2)2 Forms Cp*3Co3(m3-CCH3)(m3-H), not Cp*3Co3(m3-CCH3)2,” Casey, C. P.; Widenhoefer, R. A.; Hallenbeck, S. L.; Hayashi, R. K.; Powell D. R.; Smith, G. W.Organometallics1994, 13, 1521.
[7] “Synthesis and X-ray Crystal Structures of the Tricobalt Mono(ethylidyne) Clusters Cp*3Co3(m3-CCH3)(m3-CO)(m2-H), Cp*3Co3(m3-CCH3)(m3-CNCMe3)(m2-H), and Cp*3Co3(m3-CCH3)(m3-NO),” Casey, C. P.; Widenhoefer, R. A.; Hallenbeck, S. L.; Hayashi, R. K. Inorg. Chem.1994, 33, 2639.
[6] “Synthesis, X-ray Crystal Structures and Fluxional Behavior of the Tricobalt Clusters Cp*3Co3(m3‑CO)(m2‑CO)(m-H)2, Cp*3Co3(m2-H)(m3-h2-HC=NCMe3), and Cp*3Co3(m2-H)(m3-h2-HC=NCMe2CH2Me),” Casey, C. P.; Widenhoefer, R. A.; Hallenbeck, S. L.; Hayashi, R. K.; Gavney, J. A. Organometallics1994, 13, 4720.
[5] “Reaction of NO with Cp*3Co3(m-H)4 Preserves the Tricobalt Cluster and Produces Cp*3Co3(m3-NO)2,” Casey, C. P.; Widenhoefer, R. A.; Hayashi, R. K. Inorg. Chim. Acta1993, 212, 81.
[4] “Conversion of Acetylene to a Triple Bridged Ethylidyne Ligand on the Cluster Cp*3Co3(m2-H)3(m3-H),” Casey, C. P.; Widenhoefer, R. A.; Hallenbeck, S. L. Organometallics1993, 12, 3788.
[3] “Reaction of CO and tert-Butyl Isocyanide with the Cluster Cp*3Co3(m2-H)3(m3-H); Facile Hydrogen Transfer to Isocyanide Forms Cp*3Co3(m2-H)(m3-h2-HC=NCMe3),” Casey, C. P.; Widenhoefer, R. A.; Hallenbeck, S. L.; Gavney, J. A. J. Chem. Soc., Chem. Commun.1993, 1692.
[2] “‘[Cp*Co=CoCp*]’ is a Hydride,” Kersten, J. L.; Rheingold, A. L.; Theopold, K. H.; Casey, C. P.; Widenhoefer, R. A.; Hop, C. E. C. A. Angew. Chem.1992, 104, 1364; Angew. Chem., Int. Ed. Engl.1992, 31, 1341.
[1] “Phosphine Induced Cyclopentadienyl Ring Slippage Catalyzes CO Insertion into a Methyl Rhenium Compound to Produce an Acetyl Rhenium Compound,” Casey, C. P.; Widenhoefer, R. A.; O’Connor, J. M. J. Organomet. Chem.1992, 428, 99.