Let \(X\) be a random variable with probability mass function
\(p(n) = \frac{1}{c^n}\quad \text{for } n=2,3,4,\cdots\)
and \(p(x)=0\) otherwise.
- Find \(c.\)
- Compute the probability that \(X\) is even.
Learning probability by doing !
Home » Basic probability » probability mass function » Using a Mass Function
Let \(X\) be a random variable with probability mass function
\(p(n) = \frac{1}{c^n}\quad \text{for } n=2,3,4,\cdots\)
and \(p(x)=0\) otherwise.