Home » Basic probability » Algebra of events » Algebra of events

Algebra of events

Consider the sample space created by two coin flips. We will denote the outcome of first a head and then a tail by \((H,T)\). The even that there is exactly one head will be written \(\{(H,T), (T,H)\}\).  Let \(\mathcal{A}\) denote the set of all events on this sample space.

  1. Write down all of the events in \(\mathcal{A}\). How many are there ?
  2. Pick a few elements of \(\mathcal{A}\) and show that the rules of being an algebra are in fact satisfied.  Namely, if \(A,B \in \mathcal{A}\)  then \( A \cup B \in \mathcal{A}\) and \(A^c \in \mathcal{A}\).  (Here \(A^c\) is the compliment of \(A\) which is simply every event which is not is \(A\).)
  3. Why did I not ask you to verify by hand this property for all of the sets in \(\mathcal{A}\) ? Hint: can you tell me a lower bound on the number of such conditions  you would have to check ?
  4. (*) Using the definition of an algebra, show that the empty set \(\emptyset\) is in \(\mathcal{A}\).
  5. (*) Using the definition of an algebra, show that  if \(A, B \in\mathcal{A}\) then so must be \(A \cap B\).
  6. (*) Argue that if \(A_1, A_2,\dots,A_k \in\mathcal{A}\) then so are
    \[ A_1\cup A_2\cup\cdots\cup A_k=\bigcup_{j=1}^k A_j\]
    \[ A_1\cap A_2\cap\cdots\cap A_k=\bigcap_{j=1}^k A_j\]

Leave a comment

Your email address will not be published. Required fields are marked *

Topics