Home » Basic probability » Limit Theorems » Binomial with a random parameter

Binomial with a random parameter

Let \(X\) be binomial with parameters \(n\), which is constant, and  \(\Theta\) which is  distributed  uniformly on \( (0,1)\).

  1. Find \(\mathbf{E}(s^X | \Theta)\)  for any \(s\).
  2. Show that for any \(s\)
    \[ \mathbf{E} ( s^X) = \frac{1}{n+1} \big(\frac{1-s^{n+1}}{1-s} \big)\]
    use this to conclude that \(X\) is distributed uniformly on the set \(\{0,1,2, \cdots, n\}\)

 


Leave a comment

Your email address will not be published. Required fields are marked *

Topics