The Wonder of Tomorrow’s Experiment

A virtual shoo-in at Penn State thanks to his dad’s faculty status, then-young Dave McClay had little certainty about what to study in college. He wandered through five majors and their associated coursework during undergrad, unable to decide what most interested him, until he took a genetics course with an awesome professor which started him down the path to graduating with a degree in biology. The next logical step, then, was graduate school at the University of Vermont. Why? To ski, of course! And, you know, maybe do some research or take courses or something, too. Yet, while he may not have intended it originally, the clear, cold mountain air made helped McClay start asking himself what he actually wanted to do with his life. He had always admired one of his father’s colleagues, who was more of a researcher than his father, an administrator, and McClay could seriously envision himself working in research for the rest of his life. But the slopes of snowy Vermont brought him clarity of a more disturbing, if not motivating, nature: he was never going to succeed at this unless he started putting the work in.

And so it came to be that Dave McClay found himself in his advisor’s office, discussing his transition to the up-and-coming field of developmental biology, when the phone rang, asking for someone who might be able to teach anatomy to nursing students. Dave accepted, and thus began his now long and venerated teaching career. Eventually, he decided that research was the life for him and moved to the University of Chicago to do PhD work on cell adhesion and discovery of molecules that affected cell-cell adhesion under a less-than-ideal (read: tyrannical) mentor. Over time, now-Dr. McClay gained more independence and transitioned his research from discovering particular molecules governing adhesion to the network control of cell adhesion, leading to the McClay lab’s current focus on embryonic sea urchin gene regulatory networks. And along the way, he got his first faculty position job at some university in Durham, North Carolina, where he’s been happily teaching and researching ever since.

Earlier, I said “over time” in describing the evolution of Dr. McClay’s research, but what that really meant was, “over forty years in which the field of biology was radically changed forever.” During that time, RNA suddenly acquired biological meaning, computers started becoming widespread tools for research, and humans figured out how to read and eventually edit our own genetic code –  and Dr. Dave McClay was there for every second of it. When asked how he kept up with these revolutionary changes, Dr. McClay simply said, “The game is fun.” For him, keeping up with the advancing frontier is nowhere near a chore because science easily continues to fascinate him enormously even after all these years. More than that, he gets to learn about these awesome, new wonders of science and then turn around to teach it to the next generation, inspiring them to learn more about it in turn. As great as it is to marvel at the incredible features of life that we now understand, though, Dr. McClay truly loves everything we haven’t learned yet; all the knowledge that remains to be known. To Dr. McClay, the best part of science isn’t the high of figuring out something new (although that can be pretty great), but rather being able to come up with questions that you didn’t even know to ask before, and then getting to set up an entirely new investigation to just begin answering those questions, gladly entering a seemingly perpetual cycle of wonder, inquiry, and discovery. Simply put, Dr. McClay’s favorite part of being a researcher, after dedicating most of his life to developmental biology, is “tomorrow’s experiment.”

Leave a Reply

Your email address will not be published.