This week, I’ve prepared an early draft of the abstract for my poster:
The anterior cingulate cortex (ACC) is a cortical brain region implicated in a variety of functions, including emotional self-regulation and the reward pathway. This project utilizes optogenetic stimulation techniques to both excite and inhibit the ACC in the mouse brain. Two opsins, channelrhodopsin and Guillardia theta anion channelrhodopsin 2 (GtACR2), were used to excite or inhibit the ACC respectively. Food deprived mice were trained to press a lever under different fixed ratio schedules. The mice were then given the same lever pressing task during intermittent periods of high frequency stimulation. Preliminary analysis of the lever press rate indicates a clear reduction in the amount of presses during stimulation periods when compared to nonstimulation periods in mice with the excitatory channelrhodopsin expressed, with no similar reduction in control mice. Given that mice are pressing less when the ACC is excited, there is reason to believe that, absent of motor impairment, the ACC is implicated in the effort-reward decision making process in the rodent brain.