Week 2 of working in a lab is over and so far, it’s been a wonderful experience. Everyday I’m learning something new, which is always exciting.
As mentioned before, I am working in the Department of Immunology in Hammer Lab. This lab specializes in looking at the role of the immune system in the intestines. I will be joining onto a research project that involves dendritic cells.
In the intestines, you will find T-cells and B-cells, but you will also find mononuclear phagocytes (cells that engulf other cells) including macrophages (Mϕs) and dendritic cells (DCs). Both DCs and Mϕs are need for induction of active immunity in the intestines. Macrophages secrete cytokines. Even though both cells perform phagocytosis, Mϕs are better at it and frequently engulf bacteria/remove dead molecules in the intestines. Dendritic cells prime naïve T-cells and can prime T-reg cells. Unlike Mϕs, DCs can migrate between the intestines and lymph nodes. Both dendritic cells and macrophages share some surface markers. For example, both cells have MHC II (Major Histocompatibility Complex, Class II) protein markers. Each of these mononuclear phagocytes also have their own set of markers to differentiate the two cells. Mϕs have the markers CD14 and CD64. DCs have CD24 and CD26.
While performing flow cytometry (using a laser to count/sort cells based on programmable differences), a population of DCs that were CD14+ was discovered in the colon. CD14 is usually a marker found on Mϕs. The lab is currently trying to learn more about this population of DCs. The specific question that I will be working to answer this summer is “How does the ability of CD14+ DCs to do phagocytosis compare to not only that of the Mϕs and the ability of the other 3 populations of DCs?”. We hypothesize that the CD14+ DCs will be able to do phagocytosis just as well as the Mϕs.
I am excited to continue working on this project and to see the results we get back.