The Fly Matchmaker

Rebecca’s not really a matchmaker in the lab, but that’s the first thing I thought of when she described her project to us during her chalk talk.

Rebecca’s looking into how certain genes (or lack of) may impact the ability of fruit flies to learn courtship behavior. Specifically, she’s looking at a particular olfactory gene called Or47B, and how knocking this gene out might affect a male fly’s ability to learn courtship cues from other flies. A lot of her lab work seems to consist of raising these knockout flies (and others) and putting each male together with a group of females. Then at specific times she takes each male, puts them alone together in a chamber with one female, and sees whether they’ve picked up on how to pick up a lady from their time interacting with the group.

One thing that struck me during Rebecca’s talk was how this courtship behavior of flies, which I thought was an intrinsically innate instinct, could potentially be “erased”. But then again, what does innate mean? In Rebecca’s case, she’s working with things on a genetic level, literally going down to the DNA that defines a fruit fly, and seeing whether removing/adding components to this molecule changes anything about the whole organism. If we say that any behavior stimulated by characteristics/physiological traits encoded in DNA is innate instinct, then I guess fly courtship behavior still counts. This behavior is apparently learned through things such as olfactory receptors; and when you take away the right olfactory receptors, you block the pathway to learning the behavior. Not only was this project an interesting discussion of what counts as innate and if we can alter innate behavior; it’s also a really interesting example of how behavior and physiology/genetics can be, essentially, directly linked (though I assume that the actual relationship is far more complicated than I just stated!)

Speaking of the link between genetics and behavior, I’ve always been fascinated by how genetics studies often have to utilize both ends of the spectrum in order to gather data. For example, a study like Rebecca’s can start out by deciding what genes they want to leave in or out (resulting a control group and other experimental set-ups). But then, to determine what the presence/absence of this gene signifies, they have to observe the resulting phenotype(s), which includes a physiological and/or behavioral change. Again, this link between what has happened at the molecular level and what is going on in the whole organism fascinates me.   I’m sure that elucidating the exact nature of genotype-phenotype relationships is not always (if ever) clear-cut. But it’s still an interesting way to try to learn more about different genes and the roles they play, whether in flies, humans, or across a whole range of Earth’s organisms (we all share some bit of DNA after all!)

Thanks Rebecca for sharing your project with us, and great job to everyone on their awesome chalk talks!

Leave a Reply

Your email address will not be published. Required fields are marked *