This TRT aims to expand the theory introduced in
- J. R. Getz and E. Wambach, Twisted relative trace formulae with a view towards unitary groups, American J. Math., Vol. 136 (2014) 1-57.
The following research was produced by this TRT:
- T. Can, C-R. Lee, B. Nativi, G. Zhou, Rational points in regular orbits attached to infinitesimal symmetric spaces.
- J. R. Getz and H. Hahn, A general simple relative trace formula, Pacific J. Math., Vol. 277, No. 1 (2015) 99-118.
- C-R. Lee, Endoscopic relative orbital integrals on \(U_3\).
- S. Leslie, An analogue of the Grothendieck-Springer resolution for symmetric spaces, Algebra Number Theory (2021), arXiv.
- S. Leslie, Endoscopy for unitary symmetric spaces.
- S. Leslie, A fundamental lemma for the spherical Hecke algebra: the Jacquet-Rallis case, Journal of Number Theory, (2022).
- S. Leslie, The endoscopic fundamental lemma for unitary Friedberg-Jacquet periods,
- S. Leslie, On the stabilization of relative trace formulae: descent and the fundamental lemma, Advances in Mathematics (2021), arXiv.
For general background, see Chapters 14, 16-19 of
An Introduction to Automorphic Representations: With a view toward trace formulae