A great and popular book on deep learning, and a good course using this book with.
Case 1 Set up profile and GPU on Tiguar
# standard setup for Python 3.5 # (switches to the environment that has also MXNet) export PATH=/ddn/gs1/home/klimczakl/miniconda2/bin:$PATH source activate mxnet3 # on bioinfoX export CUDA_VISIBLE_DEVICES='' # on tiguar - your preferred GPU for multiple processes #export CUDA_VISIBLE_DEVICES='1' #Since Lez logs in as me, I can't use export CUDA_VISIBLE_DEVICES='1' # use this to evaluate GPU memory nvidia-smi # use next available GPU for if your preferred GPU close to full export CUDA_VISIBLE_DEVICES='2' export CUDA_ROOT=/ddn/gs1/home/klimczakl/miniconda2/envs/mxnet3 python # now in Python interpreter # alternatively include in your script from keras import backend as K import tensorflow as tf config = tf.ConfigProto() config.gpu_options.allow_growth=True sess = tf.Session(config=config) # this will give you base GPU memory allocation nvidia-smi
Special setup for Python 2.7
# special setup for Python 2.7 (use based environment) # only for legacy Keras 0.3.3, Theano 0.8.2 # requires "backend": "theano" in .keras/keras.json export PATH=/ddn/gs1/home/klimczakl/miniconda2/bin:$PATH export CUDA_VISIBLE_DEVICES='1' export CUDA_ROOT=/ddn/gs1/home/klimczakl/miniconda2 python -s # now in Python interpreter import theano
Recent Comments