
A HAUSDORFF-BASED NOE ASSIGNMENT ALGORITHM USING
PROTEIN BACKBONE DETERMINED FROM RESIDUAL DIPOLAR
COUPLINGS AND ROTAMER PATTERNS

Jianyang (Michael) Zeng,
Department of Computer Science, Duke University, Durham, NC 27708, USA

Chittaranjan Tripathy,
Department of Computer Science, Duke University, Durham, NC 27708, USA

Pei Zhou, and
Department of Biochemistry, Duke University Medical Center, Durham, NC 27708, USA

Bruce R. Donald*,†
Department of Computer Science, Duke University, Department of Biochemistry, Duke University
Medical Center, Durham, NC 27708, USA

Abstract
High-throughput structure determination based on solution Nuclear Magnetic Resonance (NMR)
spectroscopy plays an important role in structural genomics. One of the main bottlenecks in NMR
structure determination is the interpretation of NMR data to obtain a sufficient number of accurate
distance restraints by assigning nuclear Overhauser effect (NOE) spectral peaks to pairs of protons.
The difficulty in automated NOE assignment mainly lies in the ambiguities arising both from the
resonance degeneracy of chemical shifts and from the uncertainty due to experimental errors in NOE
peak positions. In this paper we present a novel NOE assignment algorithm, called HAusdorff-based
NOE Assignment (HANA), that starts with a high-resolution protein backbone computed using only
two residual dipolar couplings (RDCs) per residue37, 39, employs a Hausdorff-based pattern
matching technique to deduce similarity between experimental and back-computed NOE spectra for
each rotamer from a statistically diverse library, and drives the selection of optimal position-specific
rotamers for filtering ambiguous NOE assignments. Our algorithm runs in time O(tn3 +tn log t),
where t is the maximum number of rotamers per residue and n is the size of the protein. Application
of our algorithm on biological NMR data for three proteins, namely, human ubiquitin, the zinc finger
domain of the human DNA Y-polymerase Eta (pol η) and the human Set2-Rpb1 interacting domain
(hSRI) demonstrates that our algorithm overcomes spectral noise to achieve more than 90%
assignment accuracy. Additionally, the final structures calculated using our automated NOE
assignments have backbone RMSD < 1.7 Å and all-heavy-atom RMSD < 2.5 Å from reference
structures that were determined either by X-ray crystallography or traditional NMR approaches.
These results show that our NOE assignment algorithm can be successfully applied to protein NMR
spectra to obtain high-quality structures.
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1. INTRODUCTION
High-throughput structure determination based on X-ray crystallography and Nuclear
Magnetic Resonance (NMRa) spectroscopy are key steps towards the era of structural
genomics. Unfortunately, structure determination by either approach is generally time-
consuming. In X-ray crystallography, growing a good quality crystal is in general a difficult
task, while in NMR structure determination, the bottleneck lies in the processing and analysis
of NMR data, and in interpreting a sufficient number of accurate distance restraints from
experimental Nuclear Over-hauser Enhancement Spectroscopy (NOESY) spectra, which
exploit the dipolar interaction of nuclear spins, called nuclear Overhauser effect (NOE), for
through-space correlation of protons. The intensity (or volume) of an NOE peak in a NOESY
spectrum is converted into a distance restraint by calibrating the intensity (or volume) vs.
distance curve or classifying all NOESY peaks into different bins.12, 16, 38 Traditional NMR
structure determination approaches use NOE distance restraints as the main source of
information to compute the structure of a protein, a problem known to be strongly NP-hard,
30 essentially due to the local nature of the restraints. Rigorous approaches to solve this problem
using NOE data, such as the distance geometry method,10 require exponential time in the
worst-case (see discussion in Ref. 39). While substantial progress has been made to design
practical algorithms for structure determination,3, 12–14, 24, 28, 31 most algorithms still rely
on heuristic techniques such as molecular dynamics (MD) and simulated annealing (SA), which
use NOE data plus other NMR data to compute a protein structure. The NOE distances used
by these distance-based structure determination protocols must be obtained by assigning NOE
data, i.e., for every NOE, we must determine the associated pair of interacting protons in the
primary sequence. This is called the NOE assignment problem.

While much progress has been made in automated NOE assignment,12, 14, 16, 21, 24, 27,
28 most NOE assignment algorithms have a SA/MD-based or a distance geometry-based
structure determination protocol sitting in a tight inner loop, which is invoked many times to
filter ambiguous assignments. Since distance geometry methods have exponential worst-case
time complexity, and SA/MD-based structure determination protocols lack combinatorial
precision and have no guarantees on solution quality or running time, these NOE assignment
algorithms suffer from the same drawbacks, in addition to the inherent difficulties in the
interpretation of NOESY spectra. Therefore, it is natural to ask if there exists a provably
polynomial-time algorithm for the NOE assignment problem, which can guarantee solution
quality—this will pave new ways for better understanding and interpretation of experimental
data, and for developing robust protocols with both theoretical guarantees and good practical
performance.

In Ref. 39, a new linear time algorithm was developed, based on Refs. 37 and 36, to determine
protein backbone structure accurately using a minimum amount of residual dipolar coupling
(RDC) data. RDCs provide global orientational restraints on internuclear vectors, for example,
backbone NH and CH bond vectors with respect to a global frame of reference. The algorithm
in Refs. 37, 36, and 39 computes the backbone conformation by solving, in closed form,
systems of low-degree polynomial equations formulated using the RDC restraints. The
algorithm is combinatorially-precise and employs a systematic search strategy to compute the
backbone structure in polynomial time. The accurately-computed backbone conformations
enable us to propose a new strategy for NOE assignment. In Ref. 38, for example, an NOE
assignment algorithm was proposed to filter ambiguous NOE assignments based on an

aAbbreviations used: NMR, Nuclear Magnetic Resonance; ppm, parts per million; RMSD, root mean square deviation; NOESY, Nuclear
Overhauser Enhancement SpectroscopY; HSQC, Heteronuclear Single Quantum Coherence spectroscopy; NOE, Nuclear Overhauser
Effect; RDC, Residual Dipolar Coupling; PDB, Protein Data Bank; pol η, zinc finger domain of the human DNA Y-polymerase Eta;
hSRI, human Set2-Rpb1 interacting domain; POF, Principal Order Frame; CCD, Cyclic Coordinate Descent; SA, Simulated Annealing;
MD, Molecular Dynamics; □, Q.E.D.; SM, Supplementary Material.
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ensemble of distance intervals computed using intra-residue vectors mined from a rotamer
database, and inter-residue vectors from the backbone structure determined from Refs. 37,
36, and 39. The algorithm in Ref. 38 uses a triangle-like inequality between the intra-residue
and inter-residue vectors to prune incorrect assignment for side-chain NOEs. However, the
algorithm in Ref. 38 has the following deficiencies: (a) it does not exploit the diversity of the
rotamers in the library, (b) uncertainty in NOE peak position, and other inherent difficulties in
interpreting NOESY spectra suggest a probabilistic model with provable properties which Ref.
38 does not capture, and (c) it does not exploit rotamer pattern structure in NOESY spectra.

To address the shortcomings in Ref. 38 and other previous work, our algorithm, HAusdorff-
based NOE Assignment (HANA), uses a novel pattern-directed framework for NOE
assignment, that combines a combinatorially-precise, algebraic geometry-based approach for
computing high-resolution protein backbones from residual dipolar coupling data, with a
framework that uses a statistically diverse library of rotamers and the Hausdorff distance to
measure similarity between experimental and back-computed NOE spectra, and drives the
selection of optimal position-specific rotamers to prune ambiguous NOE assignments. Our
Hausdorff-based framework views the NOE assignment problem as a pattern-recognition
problem, where the objective is to establish a match by choosing the correct rotamers between
the experimental NOESY spectrum and the back-computed NOE pattern. By explicitly
modeling the uncertainty in NOE peak positions and the probability of mismatches between
NOE patterns, we provide a rigorous means of analyzing and evaluating the algorithmic
benefits and the quality of assignments.

We first compute a high-resolution protein backbone from RDC data using the algorithms in
Refs. 37, 36, and 39. Using this backbone structure, an assigned resonance list, and a library
of rotamers25, the NOE pattern for each rotamer can be back-computed (Figure 1B). By
measuring the match of the back-computed NOE patterns with experimental NOESY spectrum,
we choose an ensemble of top rotamers according to the match scores for each residue. Then,
we construct an initial low-resolution protein structure by combining the high-resolution
backbone and the chosen approximate rotamers together. The low-resolution structure is then
used to filter ambiguous NOE assignments. Finally, our NOE assignments are fed to a structure
calculation program, e.g., XPLOR/CNS 3 which outputs the final ensemble of structures. The
experimental results, based on our NMR data for three proteins, viz., human ubiquitin, the zinc
finger domain of the human DNA Y-polymerase Eta (pol η) and the human Set2-Rpb1
interacting domain (hSRI) show that HANA achieves an assignment accuracy of more than
90%. In summary, our main contributions in this paper are:

1. Development of a novel framework that combines a combinatorially-precise,
algebraic geometry-based linear time algorithm for high-resolution backbone
structure determination with the Hausdorff distance measure, and exploits the
statistical diversity of a rotamer library to infer accurate NOE assignments for both
backbone and side-chain NOEs from 2D and 3D NOESY spectra.

2. Introduction of Hausdorff distance-based pattern matching technique to measure the
similarity between experimental NOE spectra and back-computed NOE spectra, and
modeling uncertainties arising both from false random matches and from
experimental deviations in NOE peak positions.

3. A fully-automated O(tn3 + tn log t) time NOE assignment algorithm, where t is the
maximum number of rotamers in a residue and n is the number of residues in the
protein.

4. Derivation of provable properties, viz. soundness in rotamer selection.
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5. Application of our algorithm on three real biological NMR data sets to demonstrate
high assignment accuracy (> 90%), and fast running times (< 2 minutes).

2. PRELIMINARIES AND PROBLEM DEFINITION
In NMR spectra, each proton or atom is identified by its chemical shift (or resonance), which
is obtained by mapping atom names in the known primary sequence of the protein to the
corresponding frequencies from triple-resonance or other NMR spectra; this process is referred
to as resonance assignment. Substantial progress has been made in designing efficient
algorithms1, 20, 22, 26 for automatic resonance assignment. Given the chemical shift of each
proton, the NOE assignment problem in two dimensionsb is to assign each NOESY peak to
each pair of protons that are correlated through a dipole-dipole NOE interaction.

Formally, let {a1,…, aq} denote the set of proton names (e.g., Hα of Arg56), where q = Θ (n)
is the total number of protons and n is the number of residues in a protein. Let ω(ai) denote the
chemical shift for proton ai determined from resonance assignment, 1 ≤ i ≤ q. An NOE peak
(a.k.a. cross-peak) with respective frequencies x and y for a pair of protons, is denoted by the
point (x, y) on the plane of NOESY spectrum. Given a set of known chemical shifts L = {ω
(ai),…, ω (aq)} for all protons {a1,…, aq} and a list of NOESY peaks (i.e., a set of points on
the plane of NOESY spectrum), the NOE assignment problem is to map each NOE cross-peak
(x, y) to an interacting proton pair (ai, aj) such that ||ω (ai) − x|| ≤ δx and ||ω (aj) − y|| ≤ δy, where
δx and δy encode the uncertainty in the peak position due to experimental errors.

In a hypothetical ideal case without any experimental error and noise, this would be an easy
problem. However, for most proteins, two pairs of interacting protons can produce overlapping
NOE peaks in a NOESY spectrum. The chemical shift differences of different protons are often
too small to resolve experimentally, a phenomenon often referred to as chemical shift
degeneracy. Also, due to experimental noise, artifact NOE peaks might occur from either
manual or automated peak picking. These factors lead to more than one possible NOE
assignment for a 2D NOESY spectrum which are called ambiguous NOE assignments.12, 21
Hence, one or more additional dimensions are generally introduced to relieve the congestion
of NOE peaks. In a 3D NMR experiment, for example, each NOE peak is labeled with chemical
shifts of a triple of atoms, viz., dipole-dipole interacting protons plus the heavy atom nucleus
such as 15N or 13C bonded to the second proton. Even for 3D spectra, the interpretation and
assignment of NOESY cross-peaks still remains hard, and poses a difficult computational
challenge to obtain a unique NOE assignment. Manual assignment of NOESY peaks take
months of time on average, requires significant expertise, and is prone to human errors. In
structure determination, even a few incorrect NOE assignments can result in incorrect
structures.5 Hence, it is critical to develop highly efficient and fully automated NOE
assignment algorithms to aid high-throughput NMR structure determination.

3. PREVIOUS WORK
Protein structure determination using NOE distance restraints is strongly NP-hard,30
essentially due to sparsity of the experimental data and local nature of the constraints. While
rigorous approaches to solve this problem using distance intervals from NOE data, such as the
distance geometry method,10 require exponential time in the worst-case; heuristic approaches
such as SA/MD, while providing practical ways of solving this problem, lack combinatorial
precision, and have no guarantees on running time or solution quality. Previous approaches for
NOE assignment12, 14, 16, 21, 24, 27, 28 follow an iterative strategy, in which an initial set
of relatively unambiguous NOEs is used to generate an ensemble of structures, which are then

bThe problem for 3D and 4D cases can be defined in an analogous manner. Here the 2D case is explained for clarity. Our NOE assignment
algorithm has been tested on both 2D and 3D spectra, and extends easily to handle 4D NOESY spectra.
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used to filter ambiguous and inconsistent NOE assignments. This iterative assignment process
is repeated until no further improvements in NOE assignments or structures can be obtained.
What makes such approaches loose guarantees on the running time and assignment accuracy
is their tight coupling with a heuristic structure determination protocol, which sits in a tight
inner-loop of the assignment algorithm.

NOAH,27, 12 for example, uses the structure determination package DYANA,14 and follows
the previously mentioned iterative strategy starting with an initial set of NOE assignments with
supposedly one or two possible assignments. ARIA 28, 24 and CANDID14 improved on
NOAH by incorporating better modeling of ambiguous distance constraints. In AUTO-
STRUCTURE16 more experimental data such as dihedral angle restraints from TALOS 8 and
slow H-D exchange data are used to improve assignment accuracy. In PASD 21 several
strategies were proposed to reduce the chance of invoking the structure calculation into a biased
path due to the incorrect initial global fold. Since all these iterative NOE assignment programs
invoke SA/MD-based structure determination protocols such as XPLOR/CNS3, they may
converge to a local, but not a global minimum to obtain a best-fit of the data; therefore, the
NOE assignments might not be correct.

An alternative approach for automated NOE assignment proposed by Wang and Donald in Ref.
38, based on Refs. 37, 36, and 39, uses a rotamer ensemble and residual dipolar couplings, and
is the first polynomial-time algorithm for automated NOE assignment. However, Ref. 38 does
not exploit the pattern structure of NOESY spectrum to model the uncertainty in peak positions
probabilistically using a library of rotamers; therefore, assignment accuracy is reduced while
processing NOESY spectra with many noisy peaks.

Our algorithm HANA retains the paradigm of Ref. 38, and develops a novel framework using
the algebraic geometry-based linear time algorithm developed in Ref. 39 to compute high-
resolution protein backbones from residual dipolar couplings, and then uses this backbone and
a library of rotamers to do NOE assignments. Viewing the NOE assignment problem as a
pattern-recognition problem, our algorithm uses an extended Hausdorff distance-based
probabilistic framework to model the uncertainties in NOE peak positions and the probability
of mismatches between NOE patterns. In contrast to previous heuristic algorithms12, 14, 16,
21, 24, 27, 28 for NOE assignment, HANA has the advantages of being combinatorially precise
with a running time of O(tn3 + tn log t), where t is the maximum number of rotamers per residue
and n is the size of the protein, and runs extremely fast in practice to compute high quality
NOE assignments (> 90% assignment accuracy).

4. NOE ASSIGNMENT BASED ON ROTAMER PATTERNS
4.1. Overview of our approach

Our goal is to assign pairs of proton namesc to cross-peaks in NOESY data. Figure 1 illustrates
the basic idea of our algorithm. The NOE assignment process can be divided into three phases,
viz. initial NOE assignment (phase 1), rotamer selection (phase 2), and filtration of ambiguous
NOE assignments (phase 3). The initial NOE assignment (phase 1) is done by considering all
pairs of ambiguous NOEs assigned to a NOESY cross peak if the resonances of corresponding
atoms fall within a tolerance window around the NOE peak. In the rotamer selection phase,
we first compute the backbone structure from RDCs (see Section 4.2), and then place all the
rotamers at each residue into backbone and compute all expected NOEs within the upper-bound
limit of NOE distance (Figure 1A). Based on the set of all expected NOEs and the resonance
assignment list, we back-compute the expected NOE peak pattern for each rotamer (Figure
1B). By matching the back-computed NOE pattern with the experimental NOESY spectrum

cWe will use terms proton name and proton interchangeably in this paper.
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using an extended model of the Hausdorff distance,17, 19 we measure how well a rotamer fits
the real side-chain conformation when interpreted in terms of the NOESY data. We then select
the top k rotamers with highest fitness scores at each residue, and obtain a “low-resolution”
structure,d by combining the high-resolution backbone structure and the approximate ensemble
of side-chain conformations at each residue. The low-resolution structure is then used (in phase
3) to filter ambiguous NOE assignments. The details of filtering ambiguous NOE assignments
using the low-resolution structure are provided in Supplementary Material (SM) Section 4
available online in Ref. 40.

4.2. Protein backbone structure determination from residual dipolar couplings
Residual dipolar coupling33, 34 data provide global orientational restraints on the internuclear
bond vectors, such as, backbone NH and CH bond vectors with respect to a global coordinate
frame. In solution NMR, RDCs can be recorded with high precision, and assigned much faster
than NOEs. In Refs. 39 and 37, the authors proposed the first polynomial-time de novo
algorithm, which we henceforth refer to as RDC-EXACT, to compute high-resolution protein
backbone structures from RDC data. RDC-EXACT takes as input (a) two RDCs per residue
(e.g., assigned NH RDCs in two media or NH and CH RDCs in a single medium), (b) delimited
α-helices and β-sheets with known hydrogen bond information between paired strands, and a
few unambiguous NOEs (used to pack the helices and strands). Note that, these sparse set of
NOEs used by RDC-EXACT can usually be assigned using chemical shift information
alone37, 39 without requiring any sophisticated NOE assignment algorithm. Our algorithm
HANA uses the high-resolution backbones computed by RDC-EXACT. Loops with missing
RDCs are computed using an enhanced version of robotics-based cyclic coordinate descent
(CCD) algorithm.4, 32 The details of RDC-EXACT and modeling of loops (in case of missing
RDCs) are provided in SM40 Section 1.

4.3. NOE pattern matching based on the Hausdorff distance measure
Given two finite sets of points B = {b1,…, bm} and Y = {y1,…, yn} in Euclidean space, the
Hausdorff distance between B and Y is defined as H(B, Y) = max{h(B, Y), h(Y, B)}, where h
(B, Y) = maxb∈B miny∈ Y ||b − y||, and ||b − y|| measures the normed distance (e.g., L2-norm)
between points b and y. Intuitively, the Hausdorff distance H(B, Y ) finds the point in one set
that is farthest from any point in the other set, and thus measures the degree of mismatch
between the two point sets B and Y. The Hausdorff distance has been widely used in the image
processing and computer vision problems, such as visual correspondence,17 pattern
recognition,19 and shape matching,18 etc. Unlike many other pattern-recognition algorithms,
Hausdorff-based algorithms are combinatorially precise, and provide a robust method for
measuring the similarity between two point sets or image patterns18, 19 in the presence of
noise and positional uncertainties.

In the NOE assignment problem, let B denote a back-computed NOE pattern, i.e., the set of
back-computed NOE peaks, and let Y denote the set of experimental NOESY peaks. Generally,
the size of a back-computed NOE pattern is much smaller than the total number of experimental
NOESY peaks. Therefore, we only consider the directed Hausdorff distance from B to Y,
namely, h(B, Y ) = maxb∈B miny∈Y ||b − y||. We apply an extended model of Hausdorff
distance18, 19, 17 to measure the match between the back-computed NOE pattern and
experimental NOESY spectrum. Below, we assume 3D NOESY spectra without loss of
generality.

dThe “low resolution” structure generally has approximately 2.0–3.0 Å (all heavy atom) RMSD from the reference structures solved by
X-ray or traditional NMR approaches.
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Given the back-computed NOE pattern B with m peaks, and the set of NOESY peaks Y with
w peaks, the τ-th Hausdorff distance from B to Y is defined as

where τth is the τ-th largest of m values. We call f = τ/m the similarity score between the back-
computed NOE pattern B and the experimental peak set Y, after fixing the Hausdorff distance
hτ(B, Y ) = δ, which is the error tolerance in the NOESY spectra. The similarity score for a
rotamer given δ can be computed using a scheme similar to Ref. 17:

(1)

where Yδ denotes the union of all balls obtained by replacing each point in Y with a ball of
radius δ, B ∩Yδ denotes the intersection of sets B and Yδ, and |·| denotes the size of a set.

We incorporate two types of uncertainty in the calculation of the similarity score in Equation
(1) for the match between the back-computed NOE pattern and experimental NOESY
spectrum: (a) possibility of a false random match17 in the NOESY spectra; (b) uncertainty of
NOE peak positions due to experimental noise.

(a) Possibility of a false random match 17—A false random match between the back-
computed NOE pattern and the experimental NOESY spectrum is defined as a match when
hτ (B, Y ) ≤ δ occurs at random. We calculate the probability of a false random match and use
it as a weighting factor for the similarity score in Equation (1). Let p be the probability for a
back-computed NOE peak to randomly match to an experimental peak in Yδ. Let θ be the
probability of a false random match, which can be estimated using the following asymptotic
approximation from Ref. 17:

where , and Φ(·) is the Gauss error function.

(b) Uncertainty from the NOE peak positions—Let bi = (ω (a1), ω (a2), ω (a3)) denote
the back-computed NOE peak for an NOE (a1, a2, a3) in a 3D NOESY spectrum. The likelihood
for a back-computed peak bi = (ω (a1), ω (a2), ω (a3)) in the NOE pattern B to match an
experimental NOESY peak within the distance δ in Yδ can be defined as

where (p1, p2, p3) is the experimental NOESY peak matched to (ω (a1), ω (a2), ω (a3))
according to the Hausdorff distance measure, and (|x − μ|, σ) is the probability of observing
the difference |x − μ| in a normal distribution with mean μ and standard deviation σ. Here we
assume that the noise distribution of peak positions at each dimension is independent of each
other. We note that the normal distribution and other similar distribution families have been
widely and efficiently used to approximate the noise in the NMR data, e.g., see Refs. 29 and
22.

Then the expected number of peaks in B∩Yδ can be bounded by . Thus,
we have the following equation for the similarity score:
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(2)

After considering both possibility from a false random match and uncertainty from the NOE
peak positions, we obtain the following fitness score for a rotamer

(3)

For each rotamer, the computation of its similarity score s′ can be computed in O(mw) time,
where m is the number of back-computed NOE peaks, and w is the total number of cross peaks
in the experimental NOESY spectrum. The detailed pseudocodes for computing the similarity
score and for HANA are provided in SM Sections 3–4 available in Ref. 40.

5. ANALYSIS
5.1. Analysis of rotamer selection based on NOE patterns

Given a back-computed NOE peak bi = (ωi1, ωi2, ωi3) in the NOE pattern of a rotamer, suppose
that it finds a matched experimental peak in Yδ with probability g(ωi1, ωi2, ωi3, Yδ). Finding
such a matched experimental NOESY peak for bi can be regarded as a Poisson trial with success
probability g(ωi1, ωi2, ωi3, Yδ). We present the following result about the expected number of
matched peaks for the back-computed NOE pattern of a rotamer.

Lemma 5.1—Let Xi be an indicator random variable which is equal to 1 if the back-computed

NOE peak bi of a rotamer r finds a matched experimental peak; 0 otherwise. Let ,
where m is the total number of back-computed NOE cross-peaks for the rotamer r. Then the
expected number of back-computed NOE peaks that find matched experimental peaks is given
by

Let rt denote the rotamer closest to the real side-chain conformation for a residue, and let rf
denote another rotamer in the library for the same residue. We call rt the true rotamer, and rf
the false rotamer. Let Xi and Yi be indicator random variables as defined in Lemma 5.1 for each
back-computed NOE peak in the true rotamer rt and the false configuration rf respectively.
Let mt and mf denote the numbers of back-computed NOE peaks for the true rotamer rt and

the false rotamer rf. Let  and  denote the number of back-computed NOE
peaks that find matched experiment peaks for rotamers rt and rf respectively. Let μt = E(X)
and μf = E(Y ) denote the expectations of X and Y. For simplicity of our theoretical analysis,
we use Equation (1) to measure the fitness between the back-computed NOE pattern of a
rotamer and the experimental spectrum in our theoretical model.

To measure the accuracy of the rotamer chosen based on our scoring function, we calculate
the probability that the algorithm chooses the wrong rotamer rf rather than the true rotamer
rt, and show how it is bounded by certain threshold. The following theorem formally states
this result. The proof of this theorem can be found in SM40 Section 5.
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Theorem 5.1—Suppose that  . Then with
probability at least  , our algorithm chooses the true rotamer rt rather than the false
rotamer rf.

Theorem 5.1 indicates that if the difference between the expected numbers of matched NOE
peaks for two roatmers is larger than certain threshold, we are able to distinguish these two
roamters based on the Hausdorff distance measure with certain probability bound. By Theorem
5.1, we have the following result on the bound of the probability of picking the correct rotamer
from the library based on the Hausdorff distance measure, if we select top k rotamers with
highest similarity scores.

Theorem 5.2—Let t denote the maximum number of rotamers for a residue. Suppose that
 and mt > t − k hold for the true rotamer rt and

every false rotamer rf. Then with probability at least  , our algorithm chooses the correct
rotamer.

Proof: Since the total number of rotamers in a residue is t, by Theorem 5.1 the probability that
the similarity score of the true rotamer is larger than that of at least t − k rotamers is at least

. According to the fact (1 + x)a ≥ 1 + ax for x > −1 and a ≥ 1, we have
. Thus, the probability for the algorithm to choose the right rotamer is at

least .

Theorem 5.2 shows that if the discrepancy of the expected number of matched NOE peaks
between the true rotamer and every other rotamer, and the number of back-computed NOE
peaks are sufficiently large, the ensemble of top k rotamers with highest similarity scores will
contain the true rotamer.

5.2. Time complexity analysis
The following theorem states that HANA runs in polynomial time.

Theorem 5.3—HANA runs in O(tn3 +tn log t) time, where t is the maximum number of
rotamers at a residue and n is the total number of residues in the protein sequence.

The detailed derivation of the time complexity can be found in SM40 Section 6. We note that
in practice, our NOE assignment algorithm HANA runs in 1–2 minutes on a 3 GHz single-
processor Linux workstation.

6. RESULTS
HANA takes as input (a) protein sequence, (b) 3D NOESY-HSQC or 2D NOESY peak list,
(c) assigned resonance list, (d) backbone computed by using the rdc-exact algorithm37, 39
(Section 4.2), and (e) Xtalview rotamer library.25 HANA was tested on experimental NMR
data for human ubiquitin,35, 9 zinc finger domain of the human DNA Y-polymerase Eta (pol
η)2 and human Set2-Rpb1 interacting domain (hSRI).23 The high-resolution structures of these
three proteins have been solved either by X-ray crystallography35 or by traditional NMR
approaches using both distance restraints from NOE data and orientational restraints from
scalar and dipolar couplings.9, 2, 23 We used these solved structures, which are also in the
Protein Data Bank (PDB), as the reference structures to compare and check the quality of NMR
structures determined from our NOE assignment tables. The NMR data for hSRI and pol η
were recorded using Varian 600 and 800 MHz spectrometers at Duke University. Ubiquitin
NMR data was obtained from Ref. 15 and from the PDB (ID: 1D3Z).
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6.1. Robustness of Hausdorff distance and NOE assignment accuracy
To check the robustness of the Hausdorff distance measure for NOE pattern matching, we first
computed a low-resolution structure of ubiquitin by combining the backbone determined from
RDC-EXACT,37, 36, 39 and rotamers selected based on the Hausdorff distance measure using
patterns for backbone-sidechain NOEs. This low-resolution NMR structure is not the final
structure, but is used to filter ambiguous NOE assignments (including backbone-backbone,
backbone-sidechain and sidechain-sidechain NOE assignments). Our result shows that the low-
resolution structure of ubiquitin obtained from our algorithm has a backbone RMSD 1.58 A
and an all-heavy-atom RMSD 2.85 Å from the corresponding X-ray structure (PDB ID:
1UBQ). Using this low-resolution structure, HANA was able to resolve the NOE assignment
ambiguity caused from the chemical shift degeneracy, and prune a sufficient number of
ambiguous NOE assignments, as we will discuss next.

To measure the assignment accuracy of HANA, we define a compatible NOE assignment as
one in which the distance between the assigned pair of NOE protons in the reference structure
is within NOE distance bound of 6.0 Å. Otherwise, we call it an incompatible NOE assignment.
The number of compatible NOE assignments can be larger than the number of total NOESY
peaks, since it is possible that multiple compatible NOEs can be assigned to a single NOESY
cross peak. Next, the assignment accuracy is defined as the fraction of compatible assignments
in the final assignment table output by HANA.

As summarized in Table 1, our NOE assignment algorithm achieved above 90% assignment
accuracy for all three proteins. We note that the fraction of assigned peaks of hSRI is less than
the other two proteins. This is because we only used backbones in the secondary structure
regions (residues 15–34, 51–72, 82–97) for pruning ambiguous NOE assignments for hSRI.
Presently we are developing new algorithms to solve long loops. We believe that with more
accurate loop backbone structures, we will be able to improve the accuracy of our NOE
assignment algorithm, while assigning more NOE peaks. We note that the ubiquitin 13C
NOESY data from Ref. 15 are quite degenerate, thus we carefully picked a subset of NOESY
peaks for assigning NOEs. Presently we are re-collecting a completely new set of ubiquitin
NMR data including four-dimensional NOESY spectra for further testing of our algorithm.

Since the long-range NOEs, in which the spin-interacting protons are at least four residues
away, play an important role in the structure determination, we also checked the fraction of
incompatible long-range NOE assignments from our algorithm. We found that less than 3%
of total assignments were from incompatible long-range NOEs in our computed assignments.
As we will discuss next, such a small fraction of incompatible long-range NOE assignments
can be easily resolved after one iteration of structure calculation.

6.2. Evaluation of structures from our NOE assignment tables
To test the quality of our NOE assignment results for structure determination, we fed the NOE
assignment tables into the standard structure calculation program XPLOR.3 The input files for
the structure calculation include protein sequence, NOE assignment table, and dihedral
restraints. Compared with Refs. 2 and 23, in which RDCs are incorporated along with NOE
restraints into the final structure calculation, here we only used RDCs to compute the initial
backbone fold. From an algorithmic point of view, our structure determination using only
NOEs can be considered as a good “control” test of the quality of our NOE assignment. The
structure calculation was performed in two rounds. After the first round of structure calculation,
the NOE violations larger than 0.5 Å among top 10 structures with lowest energies were
removed from the NOE assignment table. Then the refined NOE table was fed into the XPLOR
program for the second-round structure calculation.

Zeng et al. Page 10

Comput Syst Bioinformatics Conf. Author manuscript; available in PMC 2009 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figures 2 illustrates final NMR structures of ubiquitin, pol η and hSRI calculated from XPLOR
using our NOE restraint tables. For all three proteins, only a small number 18–60 (which is 1–
4% of the total number of NOE assignments) of NOE violations larger than 0.5 Å occurred
after the first round of structure calculation. All final structures converged to an ensemble of
low-energy structures with small RMSDs from the reference structure solved either by the X-
ray crystallography or by traditional NMR approaches. For all three test cases, the mean
structure of final top 10 structures with lowest energies had a backbone RMSD less than 1.7
Å and an all-heavy-atom RMSD less than 2.5 Å from the reference structure. This implies that
our NOE assignment algorithm has provided a sufficient number of accurate distance restraints
for protein structure determination. In particular, we examined the structure quality in
secondary structure and loop regions. We found that the secondary structure regions have better
RMSD from the reference structure than the loop regions. After the final structure calculated
by XPLOR using our NOE assignment table output by HANA, the RMSD of secondary
structure regions in pol η is 0.81 Å for backbone atoms and 1.74 Å for all heavy atoms, and
the RMSD of secondary structure regions in ubiquitin is 0.93 Å for backbone atoms and 1.59
Å for all heavy atoms. These results show that the initial fold of secondary structure regions
solved using the RDC-EXACT algorithm is accurate enough to combine with chosen rotamers
from NOE patterns to resolve the NOE assignment ambiguities. In addition, we also found that
the short loop regions of final structures can achieve about the same RMSD from the reference
structure as the secondary structure regions. This indicates that the CCD algorithm with
filtering of loops based on RDC fit can provide accurate short loops for our NOE assignment
algorithm.

Our structure calculation protocol only requires one iteration, while other traditional NMR
approaches in general take 7–10 iterations between NOE assignment and structure calculation.
In addition, our NOE assignment algorithm only takes 1–2 minutes, versus hours to weeks for
other methods. This efficiency is consistent with the proofs of correctness and time complexity
of our algorithm. Therefore, the structure calculation framework based on our NOE assignment
algorithm is more efficient than all other previous approaches in both theory and practice.

7. CONCLUSION
We have described a novel automated NOE assignment algorithm, HANA, that is
combinatorially precise, and runs in polynomial time. To our knowledge, HANA is the first
NOE assignment algorithm that simultaneously exploits the accurate algebraic geometry-based
high-resolution backbone computation from RDC data,37, 39 the statistical diversity of
rotamers from a rotamer library,25 and the robust Hausdorff measure17, 19 for comparing the
back-computed NOE patterns with the experimental NOE spectra and choosing accurate
rotamers, to finally compute the NOE assignments with high accuracy. Owing to its simplicity,
HANA runs extremely fast in practice. Furthermore, when applied to real biological NMR
spectra for three proteins, our algorithm yields high assignment accuracy (> 90%) in each case
suggesting its ability to play a role in high-throughput structure determination.

Although our current implementation of HANA uses 2D and 3D NOESY spectra, HANA is
general and can be easily extended to use higher-dimensional (e.g., 4D) NOESY data.6, 7 In
addition, it would be interesting to extend the current version of HANA for NOE assignment
with missing resonances. In general, acquisition of complete resonance assignment can require
selective labeling of proteins, and is time-consuming. On the other hand, selection of correct
rotamers can help the resonance assignment for side-chains. In principle, HANA can be
extended to accommodate the NOE assignment with a partially assigned resonance list, as long
as the back-computed NOE patterns with missing peaks are sufficient to identify accurate
rotamers. Finally, it would be interesting to explore the use of side-chain rotamer packing
algorithms11 to choose rotamers that fit the data.
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Fig. 1.
Schematic illustration of the NOE assignment approach.
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Fig. 2.
The NMR structures of ubiquitin, pol η and hSRI computed from our automatically-assigned
NOEs. Panels A, B, C and D in first row show the structures of ubiquitin, Panels E, F and G
in the middle row show the structures of pol η, and Panels H, I and J in the bottom row show
the structures of hSRI. Panels A, E and H show the ensemble of 10 best NMR structures with
minimum energies. The backbones are shown in red while the side-chains are shown in blue.
Panels B, F and I show the ribbon view of the ensemble of structures. Panel D shows the
backbone overlay of the mean structures (in blue color) of ubiquitin with its X-ray reference
structures35 (in magenta color). The RMSD between the mean structure and the x-ray structure
of ubiquitin is 1.23 Å for backbone atoms and 2.01 Å for all heavy atoms. Panels C, G and J
show the backbone overlay of the mean structures (in blue color) with corresponding NMR
reference structures (in green color) that have been deposited into the Protein Data Bank (PDB
ID of ubiquitin9: 1D3Z; PDB ID of pol η2: 2I5O; PDB ID of hSRI23: 2A7O). The backbone
RMSDs between the mean structures and the reference structures are 1.20 Å for ubiquitin, 1.38
Å for pol η, and 1.71 Å for hSRI. The all-heavy-atom RMSDs between the mean structures
and the reference structures are 1.92 A for ubiquitin, 2.39 Å for pol η, and 2.43 Å for hSRI.
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