Supporting Information

Figure S1: (4,2)D PR-NMR TROSY-based a) HN(CO)CACB and b) Intra-HNCACB pulse sequences for the assignment of larger perdeuterated proteins. Selective inversion of glycine C_{α} nuclei has been included in the sequences in order to ensure that the signs of these resonances are the same as the remainder of the residues. The selective glycine inversion is accomplished with an on resonance 4.63 ms IBURP2³⁷ pulse (B1_{max} of 1077Hz) on our Inova 800 spectrometer. All pulses are applied along the x-axis unless otherwise indicated. The carrier frequencies are: 4.75 ppm in ¹H, 45.5 ppm in ¹³C and 119.4 ppm in ¹⁵N. The water selective pulse is accomplished with a 1.14 ms sinc pulse. ²H decoupling is achieved with a 2000 Hz WALTZ16³⁸ field. **a) HN(CO)CACB**: The delays are: $\tau 1 = 2.4$ ms, $\tau 2 =$ 14.0 ms, $\tau 3 = 4.5$ ms, $\tau 4 = 7.1$ ms, $\delta = 250$ µs. The phase cycle is: $\phi 1 = x, -x; \phi 2 = y; \phi 3 = 4(y), 4(-y); \phi 4$

= 2(x),2(-x); $\phi 5 = y$; $\phi 6 = x$; $\phi 7 = x$; rec = 2(x,-x,-x,x). Quadrature detection in C_β and C_α is achieved using States-TPPI phase cycling of $\phi 1$ and $\phi 4$ respectively. Quadrature detection in N is accomplished using the sensitivity enhanced pulse field gradient technique and $\phi 7$. The gradients are: g1 = 2.5 ms at 26.5 G/cm; g2 = 0.25 ms at 26.5 G/cm; g3 = 0.5 ms at 14.3 G/cm; g4 = 1.0 ms at 22.5 G/cm; g5 = 1.0 ms at 25.9 G/cm; g6 = 1.0 ms at 18.4 G/cm; g7 = 1.0 ms at 30.0 G/cm; g8 = 1.0 ms at 23.9 G/cm; g9 = 4.0 ms at 22.5 G/cm; g10 = 0.5 ms at 16.9 G/cm; g11 = 0.5 ms at 19.0 G/cm. **b) intra-HNCACB**: The delays are: $\tau 1 = 2.4$ ms, $\tau 2 = 16.5$ ms, $\tau 3 = 26.0$ ms, $\tau 4 = 4.2$ ms, $\tau 5 = 7.1$ ms, $\tau 6 = 12.5$ ms, $\delta = 250$ µs. The phase cycle is: $\phi 1 = x, -x; \phi 2 = y; \phi 3 = y; \phi 4 = 2(x), 2(-x); \phi 5 = y; \phi 6 = 4(x), 4(-x); \phi 7 = x; rec = x,-x,-x,x$. Quadrature detection in C_β and C_α is achieved using States-TPPI phase cycling of $\phi 1$ and $\phi 5$ respectively. Quadrature detection in N is accomplished using the sensitivity enhanced pulse field gradient technique and $\phi 7$. The gradients are: g1 = 2.5 ms at 26.5 G/cm; g2 = 0.25 ms at 26.5 G/cm; g3 = 0.7 ms at 16.1 G/cm; g4 = 1.1 ms at 10.3 G/cm; g5 = 1.0 ms at 5.1 G/cm; g6 = 1.5 ms at -15.9 G/cm; g7 = 0.5 ms at 10.3 G/cm; g8 = 0.9 ms at 15.9 G/cm.

Figure S2: (4,2)D PR-NMR TROSY-based a) HNCOCA and b) HNCO_{i-1}CA_i pulse sequences for the assignment of larger perdeuterated proteins. Selective C_β decoupling has been added to the sequences during those periods when C_α magnetization is in the transverse plane. This is accomplished with a three band WURST2 decoupling scheme.⁴³ The three bands cover the ranges: 69.5-65.5ppm for threonines, 17.5-13.5ppm for alanines and 40-20ppm for all other C_β nuclei. All pulses are applied along the x-axis unless otherwise indicated. The carrier frequencies are: 4.75 ppm in ¹H, 55.2 ppm in ¹³C_α, 173.1 ppm in ¹³C' and 119.4 ppm in ¹⁵N. The water selective pulse is accomplished with a 7.1 ms EBURP-1³⁷ pulse. ²H decoupling is achieved with a 573 Hz GARP1⁴⁴ field. **a) HNCOCA**: The delays are: $\tau 1 = 2.2$ ms, $\tau 2 = 12.0$ ms, $\tau 3 = 4.0$ ms, $\tau 4 = 4.3$ ms; $\delta = 250$ µs. The phase cycle is: $\phi 1 = x$; $\phi 2 = 0.5$

2(x)2(-x); $\phi 3 = x$; $\phi 4 = x,y,-x,-y$; $\phi 5 = y$; $\phi 6 = 2(x)2(-x)$; $\phi 7 = x$; rec = x,-x,-x,x. Quadrature detection in C' and C_a is achieved using States-TPPI phase cycling of $\phi 3$ and $\phi 1$ respectively. Quadrature detection in N is accomplished using the sensitivity enhanced pulse field gradient technique and $\phi 7$. The gradients are: g1 = 1.25 ms at 26.5 G/cm; g2 = 0.125 ms at 25.3 G/cm; g3 = 0.4 ms at 10.2 G/cm; g4 = 1.0 ms at 15.3 G/cm; g5 = 0.7 ms at 20.4 G/cm; g6 = 0.5 ms at 12.3 G/cm; g7 = 0.6 ms at -15.3 G/cm; g9 = 0.5 ms at 15.3 G/cm; g10 = 0.4 ms at 6.3 G/cm; g11 = 0.4 ms at 10.9 G/cm. b) HNCO_{i-1}CA_i: The delays are: $\tau 1 = 2.2$ ms, $\tau 2 = 13.0$ ms, $\tau 3 = 13.0$ ms, $\delta = 250$ µs. The phase cycle is: $\phi 1 = x,-x$; $\phi 2 = 2(x),2(-x)$; $\phi 3 = x,-x$; $\phi 4 = x$; $\phi 5 = 4(x),4(-x)$; rec = 2(x),4(-x),2(x). Quadrature detection in C' and C_a is achieved using States-TPPI phase cycling of $\phi 1$ and $\phi 2$ respectively. Quadrature detection in N is accomplished using the sensitivity enhanced pulse field gradient technique and $\phi 5$. The gradients are: g1 = 1.25 ms at 26.5 G/cm; g2 = 0.125 ms at 25.3 G/cm; g3 = 0.4 ms at 10.2 G/cm; g4 = 1.0 ms at 20.4 G/cm; g5 = 0.7 ms at 20.4 G/cm; g6 = 1.0 ms at -20.4 G/cm; g7 = 1.5 ms at 15.3 G/cm; g8 = 0.4 ms at 17.4 G/cm; g9 = 0.4 ms at 14.3 G/cm.

Figure S3: (4,2)D PR-NMR HACA(CO)NH pulse sequences for the assignment of ${}^{1}H^{13}C^{15}N$ -labeled proteins. All pulses are applied along the x-axis unless otherwise indicated. The carrier frequencies are: 5.17 ppm in ${}^{1}H$, 57.9 ppm in ${}^{13}C_{\alpha}$ and 118.6 ppm in ${}^{15}N$. ${}^{1}H$ decoupling is achieved with a 7500 Hz DIPSI2⁵⁰ scheme. The delays are: $\tau 1 = 1.7$ ms, $\tau 2 = 4.7$ ms, $\tau 3 = 14.0$ ms, $\tau 4 = 14.0$ ms; $\tau 5 = 5.4$ ms; $\delta = 250$ µs. The phase cycle is: $\phi 1 = x$; $\phi 2 = x$; $\phi 3 = x, -x$; $\phi 4 = x$; $\phi 5 = 2(x), 2(y)$; $\phi 6 = x$; rec = x,-x,-x,x. Quadrature detection in H_{α} and C_{α} is achieved using States-TPPI phase cycling of $\phi 1$ and $\phi 2$ respectively. Quadrature detection in N is accomplished using the sensitivity enhanced pulse field gradient technique and $\phi 6$. The gradients are: g0 = 0.5 ms at 16.3 G/cm; g1 = 2.5 ms at 26.5 G/cm; g2 = 0.25 ms at 26.5 G/cm; g3 = 0.5 ms at 19.0 G/cm; g4 = 0.5 ms at -26.5 G/cm; g5 = 0.5 ms at 21.8 G/cm; g6 = 0.5 ms at -30.6 G/cm; g7 = 0.5 ms at -28.0 G/cm; g8 = 0.5 ms at 4.1 G/cm; g9 = 0.5 ms at 6.1 G/cm.

Projection	ni	Phase_C	Phase_N	Angle_N	Angle_Ca	Angle_Cb	nt	SWtilt	Time(min.)
HN-N	64	1	1,2	0.0	90.0	90.0	8	2900	24
HN-CA	64	1,3	1	90.0	0.0	90.0	16	10200	48
HN-CB	64	1,2	1	90.0	90.0	0.0	16	12400	48
Tilt 1	64	1,2,3,4	1,2	86.0	15.5	75.0	32	14783	376
Tilt 2	64	1,2,3,4	1,2	73.9	33.7	61.3	32	16021	376
Tilt 3	64	1,2,3,4	1,2	54.7	54.7	54.7	32	14722	376
Tilt 4	64	1,2,3,4	1,2	33.7	73.9	61.3	32	10752	376
Tilt 5	64	1,2,3,4	1,2	15.5	86.0	75.0	32	6285	376

Table S1 – TROSY-HN(CO)CACB Data Collection

Total time = 33.3 hours

Table S2 – TROSY-Intra-HNCACB Data Collection

Projection	ni	Phase_C	Phase_N	Angle_N	Angle_Ca	Angle_Cb	nt	SWtilt	Time(min.)
HN-N	64	1	1,2	0.0	90.0	90.0	16	2900	48
HN-CA	64	1,3	1	90.0	0.0	90.0	32	11400	96
HN-CB	64	1,2	1	90.0	90.0	0.0	32	12400	96
Tilt 1	64	1,2,3,4	1,2	86.0	15.5	75.0	64	15092	773
Tilt 2	64	1,2,3,4	1,2	73.9	33.7	61.3	64	16598	773
Tilt 3	64	1,2,3,4	1,2	54.7	54.7	54.7	64	15415	773
Tilt 4	64	1,2,3,4	1,2	33.7	73.9	61.3	64	11328	773
Tilt 5	64	1,2,3,4	1,2	15.5	86.0	75.0	64	6595	773

Total time = 68.4 hours

Projection	ni	Phase_C	Phase_N	Angle_N	Angle_Ca	Angle_C'	nt	SWtilt	Time(min.)
HN-N	64	1	1,2	0.0	90.0	90.0	8	2900	48
HN-CA	45	1,3	1	90.0	0.0	90.0	16	4965	66
HN-C'	64	1,2	1	90.0	90.0	0.0	16	3256	95
Tilt 1	64	1,2,3,4	1,2	86.0	75.0	15.5	32	4620	751
Tilt 2	64	1,2,3,4	1,2	73.9	61.3	33.7	32	5899	751
Tilt 3	64	1,2,3,4	1,2	54.7	54.7	54.7	32	6420	751
Tilt 4	64	1,2,3,4	1,2	33.7	61.3	73.9	32	5701	751
Tilt 5	64	1,2,3,4	1,2	15.5	75.0	86.0	32	4301	751

Table S3 – TROSY-HNCACO Data Collection

Total time = 66 hours

Projection	ni	Phase_C	Phase_N	Angle_N	Angle_Ca	Angle_C'	nt	SWtilt	Time(min.)		
HN-N	64	1	1,2	0.0	90.0	90.0	8	2900	24		
HN-CA	64	1,2	1	90.0	0.0	90.0	16	4965	48		
HN-C'	27	1,3	1	90.0	90.0	0.0	16	3256	20		
Tilt 1	64	1,2,3,4	1,2	86.0	15.5	75.0	32	5826	373		
Tilt 2	64	1,2,3,4	1,2	73.9	33.7	61.3	32	6500	373		
Tilt 3	64	1,2,3,4	1,2	54.7	54.7	54.7	32	6420	373		
Tilt 4	64	1,2,3,4	1,2	33.7	73.9	61.3	32	5354	373		
Tilt 5	64	1,2,3,4	1,2	15.5	86.0	75.0	32	3978	373		
Total time	T_{-4-1}										

Table S4 – TROSY-HNCOCA Data Collection

Total time=32.6

Projection	ni	Phase_C	Phase_N	Angle_N	Angle_Ca	Angle_C'	nt	SWtilt	Time(min.)
HN-N	64	1	1,2	0.0	90.0	90.0	8	2900	24
HN-CA	64	1,3	1	90.0	0.0	90.0	16	4965	48
HN-C'	64	1,2	1	90.0	90.0	0.0	16	3256	48
Tilt 1	64	1,2,3,4	1,2	86.0	75.0	15.5	32	4620	370
Tilt 2	64	1,2,3,4	1,2	73.9	61.3	33.7	32	5899	370
Tilt 3	64	1,2,3,4	1,2	54.7	54.7	54.7	32	6420	370
Tilt 4	64	1,2,3,4	1,2	33.7	61.3	73.9	32	5701	370
Tilt 5	64	1,2,3,4	1,2	15.5	75.0	86.0	32	4301	370

Table S5 – TROSY-HNCO_{i-1}CA_i Data Collection

Total time = 32.8 hours

Projection	ni	Phase_C/H	Phase_N	Angle_N	Angle_Ca	Angle_Ha	nt	SWtilt	Time(min.)
HN-N	48	1	1,2	0.0	90.0	90.0	8	2100	17
HN-CA	64	1,3	1	90.0	0.0	90.0	16	4499	46
HN-HA	28	1,2	1	90.0	90.0	0.0	16	3000	21
Tilt 1	40	1,2,3,4	1,2	86.0	75.0	15.5	32	4198	228
Tilt 2	40	1,2,3,4	1,2	73.9	61.3	33.7	32	5240	228
Tilt 3	40	1,2,3,4	1,2	54.7	54.7	54.7	32	5542	228
Tilt 4	40	1,2,3,4	1,2	33.7	61.3	73.9	32	4741	228
Tilt 5	40	1,2,3,4	1,2	15.5	75.0	86.0	32	3393	228

Table S6 – HACANH Data Collection

Total time = 20.4 hours

Projection	ni	Phase-C/H	Phase_N	Angle_N	Angle_Ca	Angle_Ha	nt	SWtilt	Time(min.)
HN-N	58	1	1,2	0.0	90.0	90.0	8	2100	21
HN-CA	36	1,3	1	90.0	0.0	90.0	16	4499	27
HN-HA	28	1,2	1	90.0	90.0	0.0	16	3000	21
Tilt 1	40	1,2,3,4	1,2	86.0	75.0	15.5	32	4198	230
Tilt 2	40	1,2,3,4	1,2	73.9	61.3	33.7	32	5240	230
Tilt 3	40	1,2,3,4	1,2	54.7	54.7	54.7	32	5542	230
Tilt 4	40	1,2,3,4	1,2	33.7	61.3	73.9	32	4741	230
Tilt 5	40	1,2,3,4	1,2	15.5	75.0	86.0	32	3393	230

Table S7 – HACA(CO)NH Data Collection

Total time = 20.3 hours

hncacb_start:

```
create('nN','real','global')
create('f_nam','string','global')
nN=1
hncacb pulse
```

hncacb_pulse:

```
wexp='hncacb_series'
au
```

hncacb_series:

```
format(nN,1,0):f nam
svf('/data/PR NMR/hncacb ' + f nam)
nN=nN+1
echo(nN)
if nN>8 then hncacb end endif
if nN=1 then
   jexp80 angle Ca=90.0 angle Cb=90.0 nt=16 ni=64 phase=1 phase2=1,2
   hncacb pulse
endif
if nN=2 then
   jexp80 angle Ca=90.0 angle Cb=0.0 nt=32 ni=64 phase=1,2 phase2=1
   hncacb pulse
endif
if nN=3 then
   jexp80 angle Ca=0.0 angle Cb=90.0 nt=32 ni=64 phase=1,3 phase2=1
   hncacb pulse
endif
if nN=4 then
   jexp80 angle Cb=15.504 angle Ca=75.037 nt=64 ni=64 phase=1,2,3,4 phase2=1,2
   hncacb pulse
endif
if nN=5 then
   jexp80 angle Cb=33.690 angle Ca=61.289 nt=64 ni=64 phase=1,2,3,4 phase2=1,2
   hncacb pulse
endif
if nN=6 then
   jexp80 angle Cb=54.736 angle Ca=54.736 nt=64 ni=64 phase=1,2,3,4 phase2=1,2
   hncacb pulse
endif
if nN=7 then
   jexp80 angle Cb=73.898 angle Ca=61.289 nt=64 ni=64 phase=1,2,3,4 phase2=1,2
   hncacb pulse
endif
if nN=8 then
   jexp80 angle Cb=86.033 angle Ca=75.037 nt=64 ni=64 phase=1,2,3,4 phase2=1,2
  hncacb pulse
endif
```

hncacb_end:

```
destroy('f_nam','global')
destroy('nN','global')
```

 \setminus

\

 \setminus

\ \

/ / / / / / / / / /

Conversion macro for tilt angles:

```
#!/bin/csh
foreach x (4 5 6 7 8)
foreach i (--+ -++ +-+ +++)
var2pipe -in ../data/hacanh $x.fid/fid $i
 -xN
            1024 -yN
512 -yT
                                       80
 -xT
                                       40
           Complex -yMODE Complex
8000.00 -ySW 11400.00
 -xMODE
 -xSW
           8000.00
599.727 -yOBS
5.18 -yCAR
 -xOBS
                                201.172
                                   45.25
 -xCAR
                       -yLAB
                                    Tilt
 -xLAB
                 NH
                 2
                       -aq2D States
  -ndim
       -out ../cfids/hacanh $x$i.fid -verb -ov
end
end
echo Done conversion.
```

NMRPipe processing macro for tilt angles:

```
#!/bin/csh
foreach x (4 5 6 7 8)
foreach i (--+ -++ +-+ +++)
nmrPipe -in ../cfids/hacanh $x$i.fid
| nmrPipe -fn POLY -time
| nmrPipe -fn SP -off 0.45 -end 0.95 -pow 2 -c 0.5
| nmrPipe -fn ZF -size 2048
| nmrPipe -fn FT
| nmrPipe -fn PS -p0 -14.0 -p1 0.0 -di
| nmrPipe -fn EXT -x1 6.00ppm -xn 11.8ppm -round 16 -sw
| nmrPipe -fn TP
| nmrPipe -fn LP -ps0-0
| nmrPipe -fn SP -off 0.45 -end 0.95 -pow 2 -c 0.5
| nmrPipe -fn ZF -auto
| nmrPipe -fn FT
| nmrPipe -fn PS -p0 0.0 -p1 0.0 -di
| nmrPipe -fn TP
| nmrPipe -fn POLY -auto
  -out ../pdata/hacanh $x$i.dat -verb 2 -ov
end
end
```