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INTRODUCTION

Protein loops are the segments of polypeptide chain that

connect two relatively fixed segments of protein backbone.

Although loops do not contain any regular units of secondary

structure elements (SSEs), they often connect two SSEs such as

a-helices or b-strands. In addition to serving as linkers

between SSEs, loops often play crucial roles in protein stability

and folding pathways, and in many other important biological

functions such as binding, recognition, catalysis, and allosteric

regulation.1–7 Often, the structural difference in the loops

within a fold family provides a basis to ratiocinate and describe

the variability in the functional specificity.

Although the global fold, that is, the conformations and orien-

tations of the SSEs of a protein, can often be determined with

high accuracy via traditional experimental techniques such as X-

ray crystallography or nuclear magnetic resonance (NMR) spec-

troscopy, modeling loops that seamlessly close the gap between

two consecutive SSEs by satisfying the geometric, biophysical,

and data constraints remains a difficult problem. In X-ray crys-

tallography, for instance, the disorder in a protein crystal can

render interpretation of the resulting electron density for loops

difficult. As a result, protein structures found in the protein

data bank (PDB)8 often have missing loops or disordered loops.

The problem of computing loops that are biophysically reasona-

ble and geometrically valid is called the loop closure problem or

the loop modeling problem. Since its introduction four decades

ago in the classic paper by Gō and Scheraga,9 the loop closure

problem has been an active area of research. In fact, modeling of

loops can be regarded as an ab initio protein folding problem at

a smaller scale.10 It is also an important problem in de novo

protein structure prediction.11–13 Therefore, solutions and

algorithms for accurate modeling of loops are highly desirable

for understanding of the physical–chemical principles that

determine protein structure and function.
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ABSTRACT

Protein loops often play important roles in biological

functions. Modeling loops accurately is crucial to

determining the functional specificity of a protein. De-

spite the recent progress in loop prediction

approaches, which led to a number of algorithms over

the past decade, few rigorous algorithmic approaches

exist to model protein loops using global orientational

restraints, such as those obtained from residual dipolar

coupling (RDC) data in solution nuclear magnetic res-

onance (NMR) spectroscopy. In this article, we present

a novel, sparse data, RDC-based algorithm, which

exploits the mathematical interplay between RDC-

derived sphero-conics and protein kinematics, and for-

mulates the loop structure determination problem as a

system of low-degree polynomial equations that can be

solved exactly, in closed-form. The polynomial roots,

which encode the candidate conformations, are

searched systematically, using provable pruning strat-

egies that triage the vast majority of conformations, to

enumerate or prune all possible loop conformations

consistent with the data; therefore, completeness is

ensured. Results on experimental RDC datasets for

four proteins, including human ubiquitin, FF2, DinI,

and GB3, demonstrate that our algorithm can compute

loops with higher accuracy, a three- to six-fold

improvement in backbone RMSD, versus those

obtained by traditional structure determination proto-

cols on the same data. Excellent results were also

obtained on synthetic RDC datasets for protein loops

of length 4, 8, and 12 used in previous studies. These

results suggest that our algorithm can be successfully

applied to determine protein loop conformations, and

hence, will be useful in high-resolution protein back-

bone structure determination, including loops, from

sparse NMR data.
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Exploring the conformation space of a protein loop to

identify low energy loop conformations is a difficult com-

putational problem. Methods to identify such loops include

database search and homology modeling,14–17 ab initio

methods based on the minimization of empirical molecular

mechanics energy functions,10,18–21 and robotics-inspired

inverse kinematics and optimization-based methods.22–32

These techniques work in two phases: first, the protein

conformation space is explored to find a set of candidate

loop conformations, which are then evaluated in the sec-

ond phase using an appropriate empirical energy function

to select the most promising set of loops.

Database methods14–17,33,34 identify a set of candidate

loops from a library of fragments derived from a protein

structure database such as the PDB8 that fit the anchor resi-

dues on either end of a loop. These loops are further ranked

using criteria such as the sequence homology and confor-

mational energy. The accuracy of loop prediction by these

methods heavily relies on the statistical diversity of the

database, and the representation of the loops in it, for

example, as in antibody hypervariable loops.35,36 However,

in general, database methods suffer from limited sampling

of the loop conformations by the fragments in the database.

Ab initio loop modeling methods sample the conforma-

tion space randomly or use robotics-based sampling algo-

rithms to generate a large number of loop conformations.

Loop closure and energy minimization are done by using

methods such as random tweak,20,37 direct tweak,10,18

analytical loop closure techniques,25–27 molecular dynam-

ics (MD) simulation,38,39 Markov Chain Monte Carlo

(MCMC) simulated annealing (SA),19,40 bond-scaling-

relaxation,41 and other optimization techniques.21,42 The

accuracy of loop prediction by these methods depends on

the efficacy of the conformational space exploration techni-

ques used, and on the quality and parameterization of the

force field employed to evaluate the conformational energy.

These algorithms are computationally expensive, since they

require a large number of random moves accompanied by

repeated energy computations.

The protein loop closure problem is an inverse kinematics

(IK) problem in computational biology. Given the poses of

terminal anchor residues, it asks to find all possible values of

the degrees of freedom (DOFs), that is, the values of the

dihedrals / and w, for which the fragment connects both

the anchor residues. This problem has been studied widely

in robotics and biology.22–28,31,43 Tri-peptide loop closure,

for which the number of DOFs is six and exactly six geomet-

ric constraints are stipulated due to the closure criterion, can

be solved analytically25–27,44,45 using exact IK solvers to

give at most 16 possible solutions. For longer loops, the loop

closure problem is underconstrained, so a continuous family

of solutions are possible in the absence of additional con-

straints. Optimization-based IK solvers such as random

tweak,20,37 and the cyclic coordinate descent (CCD) algo-

rithm28 have been successful in dealing with a large number

of DOFs, and have found many applications.11,12,46,47

These methods iteratively solve for the DOFs until the loop

closure constraints are satisfied. However, the problem of

loop closure subjected to orientational restraints (e.g., from

NMR data) has not been studied rigorously in the robotics

or computational biology literature, and no practical deter-

ministic algorithm exists to our knowledge.

Protein structure determination using nuclear Over-

hauser effect (NOE) distance restraints is NP-hard.48 Tradi-

tional protein structure determination from solution NMR

data starts with an elongated polypeptide backbone chain,

and uses NOEs and dihedral angle restraints in a simulated

annealing/simplified molecular dynamics (SA/MD) proto-

col49–53 to compute the protein structure. Residual dipolar

coupling (RDC) restraints are only incorporated in the final

stages of the structure computation to refine the struc-

tures.53,54 NOE-based structure determination protocols

are known to be prone to be trapped in local minima or

lead to wrong convergence. To overcome the shortcomings

of NOE-based methods, approaches in Refs. 55–60 have

been proposed that primarily use RDC data, which provides

precise global orientational restraints on internuclear vector

orientations, to determine protein backbone structure.

However, most of these approaches use stochastic search,

and therefore, lack any algorithmic guarantee on the quality

of the solution or running time. In recent work from our

laboratory,61–64 polynomial-time algorithms have been

proposed for high-resolution backbone global fold determi-

nation from a minimal amount of RDC data. These algo-

rithms represent the RDC equations and protein kinematics

in algebraic form, and use exact methods in a divide-and-

conquer framework to compute the global fold. In addition,

these algorithms use a sparse set of RDC measurements

(e.g., only two RDCs per residue), with the goal of mini-

mizing the number of NMR experiments, hence the time

and cost to perform them.

A high-resolution protein backbone is often a starting

point for structure-based protein design,65–68 and assem-

bly of symmetric protein homo-oligomers.69 An accurate

backbone structure facilitates the assignment of side-chain

resonances (i.e., the side-chain assignment problem),70 and

nuclear Overhauser effect spectroscopy (NOESY) spectra

(i.e., the NOE assignment problem),50,71 which are prereq-

uisites for high-resolution structure determination proto-

cols, including side-chain conformations. For example, the

algorithms in Refs. 61–64 have been used in Refs. 71–73

to develop new algorithms for NOE assignment. These

algorithms led to the development of a new framework71

for high-resolution protein structure determination, which

was used prospectively to solve the solution structure of

the FF Domain 2 of human transcription elongation factor

CA150 (FF2; PDB id: 2kiq). The global folds obtained by

Refs. 61–64 have all the loops missing which requires a

new algorithm that can compute the missing loops from

RDCs. A preliminary approach in computing the

missing loops in Ref. 71 used a heuristic local minimiza-

tion protocol.53
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In this article, we give a solution to the loop closure

problem. We present an efficient deterministic algorithm,

POOL, that computes the missing loops from RDC data.

Our algorithm exploits the interplay between protein

backbone kinematics and the global orientational restraints

derived from RDC data to naturally discretize the confor-

mation space by polynomial-root solutions, and represents

the candidate conformations using a tree. A systematic

depth-first search of the conformation tree is used to enu-

merate all possible loop conformations that are consistent

with the data. POOL uses efficient pruning strategies capa-

ble of pruning the majority of the conformations that are

provably not part of a valid loop, thereby achieving a

huge reduction in the search space. Unlike other algo-

rithms, for example Ref. 57, that attempt to compute

backbone structure using as many as 15 RDCs per residue

recorded in two alignment media, which in general can be

difficult to measure due to experimental reasons,74 our

algorithm uses as few as two or three RDCs per residue in

one alignment medium, which is often experimentally fea-

sible. As we will show in the Results and Discussion sec-

tion, when given the same data, our algorithm performs

better than traditional SA/MD-based approaches,53 and

also better than previous sparse-data protocols.75 In addi-

tion, our algorithm can compute ensembles of near-native

loop conformations in the presence of modest levels of

protein internal dynamics. Additional RDCs, and other

data that provide constraints in torsion-angle space (e.g.,

TALOS76,77 dihedral restraints) or in Euclidean space (e.g.,

sparse NOEs), whenever available, can directly be incorpo-

rated into our algorithm. In summary, we make the fol-

lowing contributions in this article:

1. Derivation of quartic equations for backbone dihe-

drals / and w from experimentally recorded RDC

sphero-conics and backbone kinematics, which can be

solved exactly and in closed form;

2. Systematic search of the roots of the polynomial equa-

tions that encode the conformations, using efficient

pruning methods to eliminate the vast majority of

conformations;

3. Design and implementation of an efficient algorithm,

POOL, to determine protein loop conformations from a

limited amount of experimental RDC data;

4. Promising results from the application of our algo-

rithm both on experimental NMR datasets for four

proteins, and on synthetic datasets for protein loops

studied previously in Refs. 13,26,28,78.

METHODS

Overview

POOL solves the following loop closure problem. Let

the residues of the protein be numbered from 1 to n

(from N- to C-terminus). Suppose the global fold of the

protein has been determined from RDCs in a principal

order frame (POF) of RDCs (see subsection RDC sphero-

conics), as we showed was feasible in Refs. 61–64,71. In

principle, the global fold of proteins could also be com-

puted using protein structure prediction,79 or homology

modeling80,81; alternatively, X-ray structures (with miss-

ing loops) can be used. Given two consecutive SSEs with

n1 and n2 being the last residue of the first SSE and first

residue of the second SSE, respectively, the missing loop

[n1, n2] is defined as the fragment between residues n1
and n2 with both end residues included. The residues n1
and n2 that are part of the SSEs will be called the station-

ary anchors, and those of a candidate loop will be called

the mobile anchors. We assume that the n1 mobile anchor

of the loop is attached to the n1 stationary anchor of the

first SSE. Then the loop closure problem is stated as fol-

lows: in the POF, given the poses of the stationary

anchors n1 and n2 [points in R33SOð3Þ], compute a

complete set of conformations of fragments [n1, n2] so

that n2 mobile anchor of each fragment in the set

assumes the pose of the stationary anchor n2, while satis-

fying the RDC data and standard protein geometry.

Our algorithm builds upon the initial work from our

laboratory,62–64,71 where the authors developed polyno-

mial time algorithms to compute high-resolution back-

bone global fold de novo from N–HN and Ca–Ha RDCs

in one alignment medium. These sparse-data algorithms

have been extended to incorporate combinations of dif-

ferent types of RDCs (see Table I) in one or two align-

ment media. The new generalized framework is called

RDC-ANALYTIC.64,71 POOL implements a novel algorithm to

determine protein loop backbone structures from a mini-

mal amount of RDC data, and is a crucial addition to

the RDC-ANALYTIC suite, which did not compute loops

before.

Table I describes the RDC types that POOL uses to

compute the backbone dihedrals exactly and in closed

form. A /-defining RDC is used to compute the back-

bone dihedral /, and a w-defining RDC is used to com-

pute the backbone dihedral w. The input data to POOL

include: (1) the global fold of the protein computed by

Refs. 62,63,71; (2) the alignment tensor, which generally

can be computed from the global fold using Refs. 61,82;

(3) at least one /-defining and one w-defining RDCs per

residue, and optionally other data, for example, addi-

tional RDCs, TALOS76,77 dihedral restraints and sparse

NOEs; and (4) the primary sequence of the protein.

Table I
/-Defining and w-Defining RDCs

/-defining RDC Ca–Ha, Ca–C0, Ca–Cb

w-defining RDC N–HN, C0–N, C0–HN

A /-defining RDC is used to compute the backbone dihedral /, and a w-defining
RDC is used to compute the backbone dihedral w exactly and in closed form.

Protein Loop Structures from RDCs
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Solving a system of equations from RDCs, protein ki-

nematics and loop closure constraints simultaneously is a

difficult computational problem since it leads to solving

a high-degree polynomial system. However, since RDCs

are very precise measurements, an algorithm which is

able to compute protein fragments by inductively solving

low-degree polynomial equations derived from RDCs and

backbone kinematics, and drives the computation to sat-

isfy the loop closure criterion, will achieve the desired

objective. Our algorithm POOL is based on this key

insight. Starting from a stationary anchor, it solves each

DOF sequentially using the equations derived in the fol-

lowing subsections. The discrete values of the DOFs com-

puted from the polynomial roots, are represented by a

conformation tree grown recursively as we solve for the

DOFs progressively. An internal (i.e., non-leaf) node in

the tree represents the conformation of a part of a candi-

date loop, and a leaf node represents a candidate loop

conformation computed from RDCs. Figure 1 illustrates

a conformation tree for a loop. As each node is visited in

a depth-first traversal of the tree, if the conformation

represented by that node fails the conformation filters

(see subsection Pruning with conformation filters), it is

called a dead-end node, and the subtree rooted at that

node is pruned. Dead-end nodes identified at lower levels

(i.e., closer to the root) of the conformation tree prune

more conformations than those identified at higher lev-

els. Finally, all remaining unpruned conformations (leaf

nodes) already close to the stationary anchor (since they

satisfy the reachability criterion as described in subsec-

tion Pruning with conformation filters), are evaluated for

loop closure. At this stage, minimization techniques can

be applied to improve the closure. Conformations satisfy-

ing the closure criterion are added to the final ensemble

of loops. POOL enumerates all loop conformations that

satisfy the RDC data and pass the conformation filters;

therefore, it guarantees completeness.

RDC sphero-conics

The RDC r between two spin-1
2
nuclei a and b is given by

r ¼ Dmaxv
TSv; ð1Þ

where v is the unit internuclear vector between a and b,

Dmax is the dipolar interaction constant, and S is the Saupe

order matrix,83 or alignment tensor, that specifies the en-

semble-averaged anisotropic orientation of the protein in

the laboratory frame. S is a 3 3 3 symmetric, traceless,

rank 2 tensor with five independent elements.63,84–86

The dipolar interaction constant Dmax is given by

Dmax ¼
l0�hgagb
4p2

r�3
ab

� �
; ð2Þ

where l0 is the magnetic permeability of vacuum, �h is

Planck’s constant, ga and gb are the gyromagnetic ratios of

the nuclei a and b, respectively, and hr�3
ab i represents the

vibrational ensemble-averaged inverse cube of the distance

between the two nuclei. Letting Dmax 5 1 (i.e., scaling the

RDCs appropriately), and considering a global coordinate

frame that diagonalizes the alignment tensor S, often

called the POF, Eq. (1) can be written as

r ¼ Sxxx
2 þ Syyy

2 þ Szzz
2; ð3Þ

where Sxx, Syy, and Szz are the three diagonal elements of a

diagonalized alignment tensor S, and x, y, and z are, respec-

tively, the x, y, and z components of the unit vector v in a

POF that diagonalizes S. Since v is a unit vector, that is,

x2 þ y2 þ z2 ¼ 1; ð4Þ

an RDC constrains the corresponding internuclear vector

v to lie on the intersection of a concentric unit sphere

[Eq. (4)] and a quadric [Eq. (3)].87 This gives a pair of

closed curves inscribed on the unit sphere that are

diametrically opposite to each other (see Fig. 2).

These curves are known as sphero-conics or sphero-

quartics.88–90

Figure 1
An example conformation tree. A non-leaf node represents a part of a

candidate loop, and a leaf node represents a candidate loop

conformation. Dead-end conformations detected by the conformation

filters are pruned. Allowed conformations are subject to the test for

loop closure. An optimal conformation passes all the tests; therefore,

belongs to the ensemble of computed loops. Shown in green is an

accepting computation path for an optimal conformation. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Using Eq. (4) in Eq. (3), we can rewrite Eq. (3) in the

following form:

ax2 þ by2 ¼ c; ð5Þ

where a 5 Sxx 2 Szz, b 5 Syy 2 Szz, and c 5 r 2 Szz.

Henceforth, we refer to Eq. (5) as the reduced RDC equa-

tion.

For further background on RDCs and RDC-based

structure determination, the reader is referred to Refs.

43,63,84–86. We now derive analytic solutions for peptide

plane orientations using protein kinematics and the RDC

sphero-conics, which are used inductively in our algo-

rithm POOL to build the conformation tree.

Analytic solutions for peptide plane
orientations from /-defining and w-defining
RDCs in one alignment medium

The derivation below assumes standard protein geome-

try, which is exploited in the kinematics.61 We choose to

work in an orthogonal coordinate system defined at the

peptide plane Pi with z-axis along the bond vector N(i) ?
HN(i), where the notation a ? b means a vector from the

nucleus a to the nucleus b. The y-axis is on the peptide

plane i and the angle between y-axis and the bond vector

N(i) ? Ca(i) is fixed. The x-axis is defined based on the

right-handedness. Let Ri,POF denote the orientation (rota-

tion matrix) of Pi with respect to the POF. Then, R1,POF

denotes the relative rotation matrix between the coordi-

nate system defined at the first residue of the current SSE

and the POF. Ri,POF is used to derive Riþ1,POF inductively

after we compute the dihedral angles /i and wi. Riþ1,POF,

in turn, is used to compute the (i þ 1)st peptide plane.

We derive closed-form solutions for the dihedral /,
and hence the corresponding internuclear vector orienta-

tions, using a /-defining RDC as shown in the following

proposition.

Proposition 1. Given the diagonalized alignment tensor

components Sxx and Syy, the peptide plane Pi, and a /-
defining RDC r for the corresponding internuclear vector of

residue i, there exist at most four possible values of the di-

hedral angle /i that satisfy the RDC r. The possible values

of /i can be computed exactly and in closed form by solv-

ing a quartic equation.

Proof. Let the unit vector v0 5 (0, 0, 1)T represent the

N–HN bond vector of residue i in the local coordinate

frame defined on the peptide plane Pi. Let v1 5 (x, y, z)T

denote the internuclear vector for the /-defining RDC

for residue i in the POF. We can write the forward kine-

matics relation between v0 and v1 as follows:

v1 ¼ Ri;POF Rl Rzð/iÞ Rr v0: ð6Þ

Here, Rl and Rr are constant rotation matrices that

describe the kinematic relationship between v0 and v1.

Rz(/i) is the rotation about the z-axis by /i.

Let c and s denote cos/i and sin/i, respectively. Using

this while expanding Eq. (6) we have

x ¼ A0 þ A1c þ A2s; y ¼ B0 þ B1c þ B2s;
z ¼ C0 þ C1c þ C2s;

ð7Þ

Figure 2
(a) The internuclear vectors (shown using arrows) for which RDCs are possible to measure. The magenta and red arrows represent /-defining and

w-defining RDCs, respectively. (b) The brown pringle-shaped RDC sphero-conic curves inscribed on a unit sphere constrain the internuclear vector

v (green arrow) to lie on one of them. The kinematic circle (shown in blue almost edge-on) of v intersects the sphero-conic curves in at most four

points (green dots) leading to a maximum of four possible orientations for the internuclear vector v. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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in which Ai, Bi, Ci for 0 � i � 2 are constants. Using Eq.

(7) in the reduced RDC equation [Eq. (5)], and simplify-

ing we obtain

K0 þ K1c þ K2s þ K3cs þ K4c
2 þ K5s

2 ¼ 0; ð8Þ

in which Ki, 0 � i � 5 are constants. Using half-angle

substitutions

u ¼ tan
/i

2

� �
; c ¼ 1� u2

1þ u2
; and s ¼ 2u

1þ u2
ð9Þ

in Eq. (8) we have

L0 þ L1u þ L2u
2 þ L3u

3 þ L4u
4 ¼ 0; ð10Þ

in which Li, 0 � i � 4 are constants.

Equation (10) is a quartic equation which can be

solved exactly and in closed form. Let {u1, u2, u3, u4}

denote the set of (at most) four real solutions of Eq.

(10). For each ui, the corresponding /i value can be

computed using Eq. (9). h

The amino acid residue glycine (Gly), shown in Figure

3, has two Ha atoms which we denote by Ha2 and Ha3 .

The Ca–Ha RDC, measured for Gly is the sum of the

RDCs for the bond vectors Ca�Ha2 and Ca�Ha3 . Here

we show that given Ca–Ha RDC for a Gly residue, we

can compute all possible solutions for the dihedral /.
Proposition 2. Given the diagonalized alignment tensor

components Sxx and Syy, the peptide plane Pi, and the

Ca–Ha RDC r for residue i which is a glycine, there exist

at most four possible values of the dihedral angle /i that

satisfy the Ca–Ha RDC r. The possible values of /i can be

computed exactly and in closed form by solving a quartic

equation.

Proof. Let the unit vector v0 5 (0, 0, 1)T represent the

N–HN bond vector of residue i in the local coordinate

frame defined on the peptide plane Pi. Let v1 5 (x1, y1,

z1)
T and v2 5 (x2, y2, z2)

T be the unit vectors defined in

the POF to represent Ca�Ha2 and Ca�Ha3 , respectively.

We can write the forward kinematics relations between v0
and v1, and between v0 and v2 as follows:

v1 ¼ Ri;POF Rl Rzð/iÞ Rr v0 ð11Þ

v2 ¼ Ri;POF Rl Rzð/iÞ R0
r v0: ð12Þ

Here Rl, Rr, and Rr
0 are constant rotation matrices.

Rz(/i) is the rotation about the z-axis by /i.

Let c and s denote cos/i and sin/i, respectively. Using

this while expanding Eqs. (11) and (12) we have

x1 ¼ A10 þ A11c þ A12s; y1 ¼ B10 þ B11c þ B12s;
z1 ¼ C10 þ C11c þ C12s

ð13Þ

x2 ¼ A20 þ A21c þ A22s; y2 ¼ B20 þ B21c þ B22s;
z2 ¼ C20 þ C21c þ C22s;

ð14Þ

where Aij, Bij, Cij for 1 � i � 2 and 0 � j � 2 are con-

stants.

For glycine, since Ca–Ha RDC is the sum of the RDCs

for the bond vectors Ca�Ha2 and Ca�Ha3 , we can write

the RDC equation as

r ¼ Dmax vT1 Sv1 þ vT2 Sv2
� �

: ð15Þ

Without loss of generality, we let Dmax 5 1, which is

done by scaling the RDCs appropriately. Now, since v1
and v2 are unit vectors,

x21 þ y21 þ z21 ¼ 1 ð16Þ

x22 þ y22 þ z22 ¼ 1: ð17Þ

Using Eqs. (16) and (17) we can expand Eq. (15), and

rewrite it in the following form:

a0ðx21 þ x22Þ þ b0ðy21 þ y22Þ ¼ c 0; ð18Þ

where

a0 ¼ Sxx � Szz ; b0 ¼ Syy � Szz ; c 0 ¼ r � 2Szz :

Using Eqs. (13) and (14) in Eq. (18), and simplifying we

obtain

Figure 3
The amino acid residue glycine. The two Ha atoms are denoted by Ha2

and Ha3, respectively. The Ca–Ha RDC is the sum of the RDCs

measured for the bond vectors Ca–Ha2 and Ca–Ha3. [Color figure can

be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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K0 þ K1c þ K2s þ K3cs þ K4c
2 þ K5s

2 ¼ 0; ð19Þ

where Ki, 0 � i � 5 are constants.

Using half-angle substitutions

u ¼ tan
/i

2

� �
; c ¼ 1� u2

1þ u2
; and s ¼ 2u

1þ u2
ð20Þ

in Eq. (19) we have

L0 þ L1u þ L2u
2 þ L3u

3 þ L4u
4 ¼ 0; ð21Þ

where Li, 0 � i � 4 are constants.

Equation (21) is a quartic equation which can be

solved exactly and in closed form. Let {u1, u2, u3, u4}

denote the set of (at most) four real solutions of Eq.

(21). For each ui, the corresponding /i value can be

computed using Eq. (20). h

We next derive closed-form solutions for the dihedral

w, using a w-defining RDC as shown in the following

proposition.

Proposition 3. Given the diagonalized alignment tensor

components Sxx and Syy, the peptide plane Pi, the dihedral

/i, and a w-defining RDC r for the corresponding internu-

clear vector on peptide plane Piþ1, there exist at most four

possible values of the dihedral angle wi that satisfy the

RDC r. The possible values of wi can be computed exactly

and in closed form by solving a quartic equation.

Proof. Let the unit vector v0 5 (0, 0, 1)T represent the

N–HN bond vector of residue i in the local coordinate

frame defined on the peptide plane Pi. Let v1 5 (x, y, z)T

denote the internuclear vector for the w-defining RDC

for residue i in the POF. Note that the internuclear vec-

tor for a w-defining RDC has at least one nucleus that

belongs to residue i þ 1. The forward kinematics relation

between v0 and v1 can be written as follows:

v1 ¼ Ri;POF Rl Rzð/iÞ Rm RzðwiÞ Rr v0: ð22Þ

Here, Rl, Rm, and Rr are constant rotation matrices.

Rz(/i) is the rotation about the z-axis by /i, and is a

constant rotation matrix since /i is known (already com-

puted before computing wi by using Proposition 1).

Rz(wi) is the rotation about the z-axis by wi.

Let c and s denote coswi and sinwi, respectively. Using

this and expanding Eq. (22) we have

x ¼ A0 þ A1c þ A2s; y ¼ B0 þ B1c þ B2s;
z ¼ C0 þ C1c þ C2s;

ð23Þ

in which Ai, Bi, Ci for 0 � i � 2 are constants. Using Eq.

(23) in the reduced RDC equation [Eq. (5)], and simpli-

fying we obtain

K0 þ K1c þ K2s þ K3cs þ K4c
2 þ K5s

2 ¼ 0; ð24Þ

in which Ki, 0 � i � 5 are constants. Using half-angle

substitutions

u ¼ tan
wi

2

� �
; c ¼ 1� u2

1þ u2
; and s ¼ 2u

1þ u2
ð25Þ

in Eq. (24) we have

L0 þ L1u þ L2u
2 þ L3u

3 þ L4u
4 ¼ 0; ð26Þ

in which Li, 0 � i � 4 are constants.

Equation (26) is a quartic equation which can be

solved exactly and in closed form. Let {u1, u2, u3, u4}

denote the set of (at most) four real solutions of Eq.

(26). For each ui, the corresponding wi value can be

computed by using Eq. (25). h

Putting the preceding propositions together, we

obtain the following result for the number of peptide

plane orientations: Given the diagonalized alignment

tensor components Sxx and Syy, the peptide plane Pi, a

/-defining RDC and a w-defining RDC for /i and wi,

respectively, there exist at most 16 orientations of the

peptide plane Piþ1 with respect to Pi that satisfy the

RDCs.

Sampling the DOFs when RDCs
are missing

Protein loops can be modeled as kinematic

chains.24,31,43,47 In a kinematic chain, a redundant

DOF is defined as a DOF for which no kinematic con-

straint is available.47,91,92 Mathematically, with no

restraints from experimental measurements, for a loop

with n (>6) DOFs, three translational and three orien-

tational constraints are stipulated due to loop closure;

therefore, the remaining n 2 6 DOFs are redundant.

Hence, n 2 6 equality constraints are necessary to

solve for the loop conformations so that the number

of conformations is discrete and finite. When RDCs

are missing, we sample the corresponding DOFs. We

systematically sample, at 58 resolution, the dihedrals

from the Ramachandran map (and TALOS dihedral

restraints if available) for the DOFs for which RDCs

are missing, and use analytic equations derived above

to solve for the other dihedrals for which RDCs are

available, to compute an ensemble of loops complete

to the resolution of sampling. If RDCs can be recorded

for the missing ones in a second alignment medium,

POOL can use them as shown in Supporting Informa-

tion Appendix A. Table II shows the number of miss-

ing RDCs, and when as many as five RDCs are missing

in a loop, POOL still could compute the loops accu-

rately.
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Pruning with conformation filters

Loop conformations are generated by traversing a con-

formation tree in a depth-first search order (see subsection

Overview). At each node, conformation filters are applied

as predicates. If the node passes all the filters, then the

subtree rooted at that node is visited; otherwise, the sub-

tree is pruned. Failing a predicate at lower levels (closer to

the root) of the conformation tree prunes more conforma-

tions than that detected at higher levels (farther from the

root). In fact, pruning at depth i eliminates O(bn2i) con-

formations, where b is the average number of branches in

the conformation tree, and n is the height of the confor-

mation tree. For loops with constrained work-space, sub-

stantial pruning can be achieved resulting in significant

speedup. POOL uses the following conformation filters.

Real solution filter

While solving the analytic equations derived earlier to

compute the dihedrals from RDCs, all non-real roots

with the imaginary parts greater than a chosen threshold

are discarded.71 In addition, multiplicities of the roots

are eliminated as follows: if two roots r1 and r2 are such

that |r1 2 r2| < d for a chosen small number d, then one

of the roots is eliminated in favor of the other. This

prunes the entire subtree rooted at the eliminated root.

Ramachandran and TALOS filters

There exist regions in the Ramachandran map that are

forbidden for certain combinations of (/, w) values for a
given residue type. Therefore, any disallowed value for a

dihedral suggested by the Ramachandran map, whenever

it appears in the conformation tree, is pruned. We used

the data from Ref. 93, and implemented a residue-specific

Ramachandran filter. Our implementation considers four

residue types: Gly, Pro, pre-Pro, and other general amino

acid types (called general). It has been specifically opti-

mized for O(1)-time queries for the favored or allowed

intervals for /, and w given /. If MT is the Ramachan-

dran map for residue type T , and IT is the set of all

allowed /-intervals for T , we evaluate if / 2 IT for a

computed /. Similarly, when a w is computed, we evalu-

ate if w 2 IT j/. TALOS76,77 dihedral information, when-

ever available, are used as follows. If for the dihedral /i

of the residue i of type T , IL is the TALOS-predicted inter-

val, then for a computed / for the residue i, we evaluate

if / 2 IT \ IL. Similarly, for a computed w, the predicate

w 2 IT j/ \ IL is evaluated. The subtree rooted at the

node representing the dihedral is pruned if any of these

predicates fail. Further, in the absence of RDC data for a

dihedral, finite-resolution uniform sampling of the Ram-

achandran map is used for that dihedral.

Table II
The Minimum RMSD (Å) from the NMR Reference Loops

Protein loopa Lengthb Types of RDCsc
RDCs

missingd
RMSDe (�)

(POOL)
RMSDf (�)
(XPLOR-NIH)

RMSDg (�)
(CS-ROSETTA)

Ubiquitin 7–12 6 Ca–Ha, N–HN 2 0.64 1.40 1.74
Ubiquitin 17–23 7 Ca–Ha, N–HN 2 0.60 2.25 0.50
Ubiquitin 33–41 9 Ca–Ha, N–HN 2 0.89 2.07 0.92
Ubiquitin 45–48 4 Ca–Ha, N–HN 0 0.27 1.58 0.51
Ubiquitin 50–65 16 Ca–Ha, N–HN 2 0.66 3.94 0.63
Ubiquitin 7–12 6 Ca–C0, N–HN 3 0.37 0.67 1.60
Ubiquitin 17–23 7 Ca–C0, N–HN 3 0.60 3.54 0.49
Ubiquitin 33–41 9 Ca–C0, N–HN 5 0.58 3.11 0.66
Ubiquitin 45–48 4 Ca–C0, N–HN 0 0.11 1.02 0.28
Ubiquitin 50–65 16 Ca–C0, N–HN 4 1.06 4.48 0.67
FF2 18–27 10 Ca–Ha, N–HN 3 1.41 3.20 2.08
FF2 33–38 6 Ca–Ha, N–HN 3 0.34 1.09 0.95
FF2 42–48 7 Ca–Ha, N–HN 4 1.31 2.14 1.34
DinI 8–17 10 Ca–Ha, N–HN 5 1.57 4.17 2.51
DinI 32–39 8 Ca–Ha, N–HN 3 0.61 3.45 0.58
DinI 45–49 5 Ca–Ha, N–HN 2 0.28 2.27 2.16
DinI 53–58 6 Ca–Ha, N–HN 2 0.42 2.62 0.81
GB3 8–13 6 Ca–Ha, N–HN 0 0.43 1.07 2.59
GB3 19–23 5 Ca–Ha, N–HN 0 0.34 0.23 0.55
GB3 36–42 7 Ca–Ha, N–HN 1 0.27 1.34 1.27
GB3 46–51 6 Ca–Ha, N–HN 0 0.65 3.61 1.76

Average 0.64 2.35 1.17

aThe anchor residues are always included.
bnumber of residues.
cexperimental RDCs used. The Ca–Ha, Ca–C0 and N–HN RDC RMSDs of loops computed by POOL are less than 2.0, 0.2 and 1.0 Hz, respectively.
dMissing means unavailable.
e,f,gBackbone RMSD computed versus the NMR reference loops. The results show that the loops computed by POOL are more accurate than those computed by XPLOR-

NIH
53 using the same sparse data. In most cases, the loops computed by POOL are more accurate than those computed by CS-ROSETTA. CS-ROSETTA used the same RDCs as

POOL, plus the backbone chemical shifts.
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Steric filter

We use our in-house implementation of the steric

checker similar to that in Ref. 94. During the depth-first

search of the conformation tree, at each node corre-

sponding to a newly added residue, the steric check is

performed for (i) self-collision, that is, if the fragment

clashes with itself, and (ii) collision with the rest of the

protein. If the clash score94 is greater than a user-defined

threshold, then the branch is pruned and the search

backtracks.

Reachability criterion

As each node of the conformation tree is visited, we

test if the rest of the fragment, if grown using the best

possible kinematic chain, can ever reach the stationary

anchor. The node is pruned if this test fails. For long

loops, this test prunes a large fraction of conformations,

especially at the tree nodes at higher levels (farther from

the root).

Closure criterion

When the distance between the mobile anchor (i.e.,

the conformation at a leaf node) and the stationary

anchor is less than a user-specified threshold (chosen to

be 0.2 Å), called the closure distance, and defined as the

root-mean-square distance between the N, Ca, and C0

atoms of the mobile anchor and stationary anchor, the

conformation is accepted and added to the ensemble of

computed loops. Otherwise, the conformation is subject

to a minimization over the last few dihedrals to improve

the closure distance to below 0.2 Å while maintaining the

user-defined RDC RMSD thresholds. If after minimiza-

tion the closure is achieved, the conformation is

accepted; otherwise, rejected. The RDC RMSD between

back-computed and experimental RDCs is computed

using the equation RMSDx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðrbx;i � rex;iÞ

2
q

,

where x is either a /-defining or a w-defining RDC type,

n is the number of RDCs, rx,i
e is the experimental RDC,

and rx,i
b is the corresponding back-computed RDC.

Pruning using unambiguous NOEs

When unambiguous backbone NOEs are available,

they can be used as predicates to prune unsatisfying con-

formations.

NMR experimental procedures

The NMR data for FF2 was recorded and collected

using Varian 600 and 800 MHz spectrometers at Duke

University. NMRPIPE95 was used to process the NMR

spectra. All NMR peaks were picked by the programs

NMRVIEW96 or XEASY/CARA,97 followed by manual edit-

ing. Backbone assignments were obtained from the set of

triple resonance NMR experiments HNCA, HN(CO)CA,

HN(CA)CB, HN(COCA)CB, and HNCO, combined with

the HSQC spectra using the program PACES,98 followed

by manual checking. The Ca–Ha and N–HN RDC data

for FF2 was measured from a 2D 1H–15N IPAP experi-

ment99 and a modified (HACACO)NH experiment,100

respectively. The Ca–C0 and C0–N RDCs of FF2 were

measured from a set of HNCO-based experiments.101

The RDC data for human ubiquitin (PDB id: 1d3z),102

the DNA damage inducible protein I (DinI; PDB id:

1ghh),103 and the third IgG-binding domain of Protein

G (GB3; PDB id: 2oed)104 were obtained from the Bio-

MagResBank (BMRB).105

RESULTS AND DISCUSSION

To study the effectiveness of our algorithm POOL, we

tested it on experimental NMR datasets for four proteins.

We further tested POOL on synthetic datasets for three

sets of canonical loops of length 4, 8, and 12 residues

that were investigated by three previous protein loop clo-

sure algorithms.26,28,78 To further assess the added

value of NMR restraints, we used the same set of twenty

12-residue long loops published in Ref. 13, for which we

simulated RDCs as described in Supporting Information

Appendix B. POOL was then used to compute the loop

conformations using these synthetic RDCs. The results,

in addition to providing a way to compare our algorithm

with these loop prediction approaches, enable us to study

the robustness of our algorithm to minor variations in

standard peptide geometry. We further show that in the

presence of a moderate level of dynamics, POOL can com-

pute an ensemble of near-native loop conformations

from sparse RDC measurements.

Tests on experimental NMR data

We applied POOL to compute the loops of four pro-

teins: FF2 (PDB id: 2kiq),71 human ubiquitin (PDB id:

1d3z),102 DinI (PDB id: 1ghh),103 and GB3 (PDB id:

2oed).104 The experimental details of RDC data collec-

tion is provided in subsection NMR experimental proce-

dures. For each of these proteins, we used the NMR

Model 1 with loops removed as the respective test struc-

tures. RDCs were perturbed within the experimental-

error window61 to account for experimental errors. The

following were input to POOL: (1) the core, that is, the

SSEs of the NMR models with no loops on it; (2) the

alignment tensor computed from the core of the respec-

tive NMR models and the experimental RDCs using sin-

gular value decomposition (SVD)61,82; (3) RDC data for

the loop in one alignment medium; and (4) the primary

sequence of the loop to instantiate the appropriate resi-

due-specific Ramachandran map. POOL was then invoked

to compute the loops.

Table II summarizes the results computed by POOL.

For ubiquitin two different combinations of RDCs, viz.
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(Ca–Ha, N–HN) and (Ca–C0, N–HN), were used to ana-

lytically compute ensembles of satisfying loop conforma-

tions in order to test the performance of POOL on different

types of RDC data. In most cases, sub-angstrom RMSD

loops were computed by POOL. Figure 4 shows the overlay

of the minimum RMSD loops computed for ubiquitin

using Ca–Ha and N–HN RDCs with the corresponding

loops from the NMR reference structure. No structural

alignment of the computed loops with the reference loops

was done during the overlay, and while computing the

backbone RMSD. This is because any such alignment,

while likely to yield a lower backbone RMSD value, can in-

validate the loop closure due to the translation and rota-

tion of the mobile anchors away from the stationary

anchors induced by the local structural alignment. In addi-

tion, a loop conformation reoriented during the local

structural alignment can no longer be in the same POF as

the stationary anchors and the other SSEs; and therefore,

will no longer fit the RDCs. For FF2, DinI and GB3, the

results show that POOL is able to compute accurate loops

when as many as five RDCs are missing.

The algorithm POOL can be regarded as a conformation

generator that computes an ensemble of all satisfying

loop conformations from as few as two RDCs per resi-

due. Whenever additional RDCs are present, POOL can

use them as a filter during the conformation tree-search,

to prune the conformation tree (Fig. 1) encoding the

analytic solutions, as described in Ref. 71. To test the

ability of POOL to compute ensembles of near-native loop

conformations, we performed the following computa-

tional experiment using RDCs for ubiquitin in one align-

ment medium. POOL used Ca–Ha and N–HN RDCs to

compute the analytic solutions for the backbone dihe-

drals to build the conformation tree. An additional set of

Ca–C0 RDCs was used as a filter to prune the conforma-

tion tree.71 Figure 5(a) shows an ensemble of 48 loop

conformations (green) for the loop 50–65 of ubiquitin

computed by POOL. The corresponding loop from the

NMR reference structure is shown in red. In Figure 5(b)

the ensembles of loops (green) computed for all of the

ubiquitin loop regions are shown. The NMR reference

structure is shown in red. Table III summarizes the en-

semble of loops computed by POOL for each ubiquitin

loop, computed as described earlier. The results in Table

III show that POOL computed sub-angstrom accuracy

loop conformations in every case, and low-RMSD near-

native loop conformations were often included in the en-

semble. When additional RDCs are not available, or an

all-atom energy-based refinement of the loop conforma-

tions is needed, the set of loops generated by POOL can in

principle be evaluated using a molecular mechanics

energy function to obtain an ensemble of low-energy

loop conformations.10,18,34

The run-time complexity analysis of POOL is similar to

that in Ref. 62. In practice, for short loops, POOL runs in

minutes, and for longer loops (e.g., ubiquitin 50–65) it

runs in hours on a 2.5 GHz dual-core processor Linux

workstation.

Comparison with other structure
determination protocols

To investigate whether traditional SA/MD-based struc-

ture determination protocols can compute accurate loop

conformations using sparse data, we ran XPLOR-NIH53 on

the same input used by POOL for ubiquitin, FF2, DinI,

and GB3. Table II summarizes the results. In Figure 6, a

comparison is made between the results obtained by

applying POOL versus those obtained by applying XPLOR-

NIH. The loops computed by POOL have much smaller

(three- to six-fold less for longer loops) backbone RMSD

versus the reference structures than those computed

using XPLOR-NIH. For example, for ubiquitin loop 50–65,

the loop computed by POOL has backbone RMSD 0.66 Å,

a six-fold decrease versus the loop computed by XPLOR-

NIH (3.94 Å). This shows that when given sparse data,

our algorithm is able to compute more accurate loop

conformations than the SA/MD-based protocols.

Further, to compare our method with other sparse

data protocols, we used the CS-ROSETTA75,106,107 proto-

col with ROSETTA-3.2,108 with the same set of NMR

restraints including the RDCs used by POOL, in addition

Figure 4
Overlay of the lowest RMSD loops (green) of ubiquitin computed by POOL using Ca–Ha and N–HN RDCs versus the corresponding loops (red) in

the NMR reference structure (1d3z Model 1) without any structural alignment. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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to the backbone chemical shifts required by CS-ROSETTA.

Since POOL and CS-ROSETTA are both sparse-data algo-

rithms, we believe that the comparison made here sheds

some light on the limits on the sparsity of the experi-

mental NMR data which can be used to determine loop

conformations, and for structure determination in gen-

eral, in addition to assessing the relative performance of

these two algorithms based on two completely different

algorithmic techniques. For FF2, ubiquitin, and GB3, ex-

perimental chemical shifts were used. For DinI, since the

chemical shifts are not available in the BMRB,105 the

backbone chemical shifts were simulated using

SHIFTX2.109 Experimental RDCs were used for all four

proteins. In each case, 3000 ROSETTA models were gener-

ated, and the lowest-energy models were selected and

aligned with the respective NMR reference models by the

SSEs. The backbone RMSDs between CS-ROSETTA-com-

puted loops and the reference NMR loops for the loop

regions were then computed. Table II summarizes the

results for the loops computed by CS-ROSETTA for

Figure 5
(a) Overlay of an ensemble of 48 loop conformations (green) for the loop 50–65 of ubiquitin computed by POOL using Ca–Ha and N–HN RDCs

and filtered against Ca–C0 RDCs, versus the corresponding loop (red) in the NMR reference structure (1d3z Model 1) without any structural

alignment. (b) Overlay of the ensembles of all five ubiquitin loops (green) computed by POOL using Ca–Ha and N–HN RDCs and filtered against

Ca–C0 RDCs, versus the NMR reference structure (1d3z Model 1) shown in red without any structural alignment. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Table III
Summary of the POOL-Ensembles of Loops for Ubiquitin Computed Using Ca–Ha and N–HN RDCs and Filtered Against Ca–C0 RDCs, in One

Alignment Medium

Ubiquitin
Loop

Ensemble
Size

RMSD of
reference loop to

the ensemble (min,max )

Average RMSD of
reference loop
to the ensemble

Average RMSD to
mean coordinates

Ubiquitin 7–12 66 0.64, 1.64 1.30 1.17
Ubiquitin 17–23 214 0.60, 1.40 0.93 0.53
Ubiquitin 33–41 67 0.89, 1.95 1.45 0.95
Ubiquitin 45–48 28 0.27, 0.85 0.59 0.72
Ubiquitin 50–65 48 0.66, 1.50 0.94 0.88

The backbone RMSDs and their averages for the POOL-ensembles were computed without any structural alignment. The reference loops are obtained from the NMR ref-

erence structure (PDB id: 1d3z) Model 1. The reference loops and the POOL-ensembles are in the same POF.
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comparison with POOL. While the POOL-computed loops

have RMSDs within the range of 0.11–1.57 Å versus the

reference NMR structures, CS-ROSETTA-computed loops

have RMSDs within a bigger range of 0.28–2.59 Å. The

average RMSD over all the loops computed by POOL is

0.64 Å, whereas the average RMSD over all the loops

computed by CS-ROSETTA is 1.17 Å. This shows that while

CS-ROSETTA performed comparably to POOL for the ubiq-

uitin loops in four out of 10 cases, and for one loop in

DinI, for other ubiquitin loops, and other proteins, POOL

performed better (in total, for 16 out of 21 cases; see Fig.

6). These results show that our algorithm POOL, using a

novel polynomial equation-based approach to compute

loop conformations from sparse RDC constraints, per-

forms better than CS-ROSETTA, for the above test cases.

Comparison with loop prediction algorithms

We compared the performance of POOL with three

other loop prediction algorithms including the CCD

method by Canutescu and Dunbrack,28 the CSJD algo-

rithm by Coutsias et al.,26 and the self-organizing super-

imposition (SOS) algorithm by Liu et al.78 Furthermore,

we compared the performance of our algorithm with the

kinematic closure (KIC) protocol by Mandell et al.,13

which uses a resultant-based analytic loop closure

method27 to serve as the loop conformation generator

within the ROSETTA108,110 framework. Unlike these algo-

rithms, which do not use any data, POOL is a sparse data-

driven algorithm. Although CCD, CSJD, SOS, and KIC algo-

rithms have applications in protein structure predic-

tion,11–13 none of them is specifically designed to incor-

porate geometric restraints from experimental NMR data.

Our algorithm POOL exploits this opportunity, and pro-

vides an approach to compute loops using sparse NMR

data, specifically, RDCs.

In our study, we used the same test set as in Refs.

26,28,78. This set consists of 10 loops each with 4, 8, and

12 residues chosen from a set of nonredundant X-ray

crystallographic structures from the PDB. Since there is

no experimental RDC data available for these proteins,

we simulated the RDCs using PALES.111,112 Gaussian

noise of 1 Hz was added to the RDCs to simulate experi-

mental error. Details of the RDC simulation are described

in Supporting Information Appendix B. The alignment

tensor, the RDC data, and the two anchors of the loop

were used by POOL to compute the loop conformations.

Table IV summarizes the results for POOL, CCD, CSJD,

and SOS algorithms. Figure 8 shows a graphical compari-

son of the results obtained by these algorithms. In Figure

7, examples of minimum RMSD loop conformations

determined by POOL are shown. For the 4-residue loops

the average minimum RMSD of the computed loops by

POOL is larger than that for SOS, but smaller than that for

CSJD and CCD. This can be explained by the fact that SOS

allows slight deviations from standard protein geometry.

For the 8- and 12-residue loops POOL computes more

accurate loops than other algorithms. For example, for

Figure 6
The loops computed by POOL achieve up to six-fold improvement in backbone RMSD compared to loops computed by XPLOR-NIH. The loops

computed by POOL are more accurate than those computed by CS-ROSETTA in 16 out of 21 cases. CS-ROSETTA used the same RDCs as POOL, plus the

backbone chemical shifts. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the 12-residue loops, the average minimum RMSD of the

loops are 1.14, 2.25, 2.34, and 3.05 Å for POOL, SOS, CSJD,

and CCD, respectively, which shows a two-fold improve-

ment in accuracy by POOL. For five of these loops, POOL

computed loops with sub-angstrom accuracy. In a recent

work by Lee et al.,32 the authors developed an approach

based on a combination of fragment assembly and ana-

lytical loop closure to model loops. The average back-

bone RMSDs of the loops computed by their algorithm,

which can be found in Table II of Ref. 32, for the same

set of loops in Table IV and Figure 8 of length 4, 8, and

12 are 0.22, 0.72, and 1.81 Å, respectively. When com-

pared with the results from POOL (0.37, 0.69, and 1.14 Å

for loops of length 4, 8, and 12, respectively), it illustrates

that POOL can compute loops with better accuracy for

longer loops.

In a recent work by Mandell et al.,13 the authors

developed a robotics-inspired conformational sampling

and loop reconstruction method, called KIC, and showed

that the KIC protocol frequently samples conformational

space within 1.0 Å from the X-ray crystallographic refer-

ence loops. To assess the added value of the NMR

restraints, we used the same set of twenty 12-residue

long loops published in Ref. 13, and simulated RDCs as

described in Supporting Information Appendix B. POOL

was then used to compute the loop conformations using

these synthetic RDCs. POOL computed better loop confor-

mations than the previous methods. The mean backbone

RMSD of the loop conformations computed by POOL is

0.89 Å (Table V and Fig. 9), which is more than two-fold

improvement in accuracy compared with the standard

ROSETTA110 and KIC de novo protocols. In Ref. 13, the

authors also computed loop conformations starting from

a set of loop conformations, called therein ‘‘perturbed,’’

that began with the starting loop conformations that are

sampled away from the native X-ray loop conformations

published in Ref. 113. Starting with perturbed X-ray

loops may be viewed as providing KIC with a structural

Table IV
The Minimum RMSD (Å) from X-ray Structures for these Four Algorithms

4-Residue loops 8-Residue loops 12-Residue loops

Loop POOL SOS CSJD CCD Loop POOL SOS CSJD CCD Loop POOL SOS CSJD CCD

1dvjA_20 0.74 0.23 0.38 0.61 1cruA_85 0.72 1.48 0.99 1.75 1cruA_358 1.54 2.39 2.00 2.54
1dysA_47 0.25 0.16 0.37 0.68 1ctqA_144 0.91 1.37 0.96 1.34 1ctqA_26 0.65 2.54 1.86 2.49
1eguA_404 0.42 0.16 0.36 0.68 1d8wA_334 0.28 1.18 0.37 1.51 1d4oA_88 1.83 2.44 1.60 2.33
1ej0A_74 0.18 0.16 0.21 0.34 1ds1A_20 0.70 0.93 1.30 1.58 1d8wA_46 0.93 2.17 2.94 4.83
1i0hA_123 0.27 0.22 0.26 0.62 1gk8A_122 0.87 0.96 1.29 1.68 1ds1A_282 1.50 2.33 3.10 3.04
1id0A_405 0.63 0.33 0.72 0.67 1i0hA_122 0.45 1.37 0.36 1.35 1dysA_291 0.76 2.08 3.04 2.48
1qnrA_195 0.47 0.32 0.39 0.49 1ixh_106 0.68 1.21 2.36 1.61 1eguA_508 1.25 2.36 2.82 2.14
1qopA_44 0.36 0.13 0.61 0.63 1lam_420 0.42 0.90 0.83 1.60 1f74A_11 0.76 2.23 1.53 2.72
1tca_95 0.12 0.15 0.28 0.39 1qopB_14 0.87 1.24 0.69 1.85 1qlwA_31 1.27 1.73 2.32 3.38
1thfD_121 0.25 0.11 0.36 0.50 3chbD_51 0.96 1.23 0.96 1.66 1qopA_178 0.87 2.21 2.18 4.57

Average 0.37 0.20 0.40 0.56 Average 0.69 1.19 1.01 1.59 Average 1.14 2.25 2.34 3.05

The loops computed by POOL using only one /-defining and one w-defining RDC per residue simulated as described in Supporting Information Appendix B. SOS, CSJD,

and CCD results were obtained from Table 1, Table 1 and 2 of Refs. 78, 26, and 28, respectively. These three methods do not use any experimental NMR data.

Figure 7
Overlay of the lowest RMSD loops (green) computed by POOL for 4-, 8-, and 12-residue loops versus the X-ray structures of the reference loops

(red) without any structural alignment. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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prior. However, the KIC de novo protocol does not use

any structural prior. KIC performed better (than KIC de

novo) when started with the perturbed X-ray loop con-

formations, with a mean backbone RMSD of 1.6 Å. Our

algorithm POOL, in contrast, does not use any such struc-

tural prior, but computes the loop conformations de

novo from the data-derived orientational restraints, and

performed 1.8-fold better than KIC. Fifteen out of the

Figure 8
Comparison of the results from POOL, SOS, CSJD, and CCD algorithms when applied on (a) 4-residue loops, (b) 8-residue loops, (c) 12-residue loops.
The data comes from Table IV. For 8- and 12-residue loops POOL computes loops with higher accuracy than other methods. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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twenty loops computed by POOL had backbone RMSD

less than 1.0 Å, which shows its ability to consistently

compute near-native loop conformations using sparse

RDC data.

Further, the reference loops in Tables IV and V have

deviations from standard protein geometry; therefore, the

RDCs simulated on them inherit these deviations, in

addition to a Gaussian noise of 1 Hz added to account

for experimental errors. These results suggest that POOL is

robust to both experimental uncertainties in RDCs, and

minor deviations from standard protein geometry

assumptions. Therefore, POOL can be useful to compute

longer loops with high accuracy using a minimal amount

of RDC data.

Computing near-native loop conformations
in the presence of dynamics

RDCs provide a sensitive probe to protein conforma-

tional dynamics114–117 from nanosecond to millisecond

timescales. Loop regions of proteins are usually more

flexible, and their motional fluctuations often contribute

to their recognition dynamics. To study the ability of our

algorithm to compute loop conformations in the pres-

ence of a moderate level of dynamics, we chose to work

on ubiquitin, which is an important protein involved in

various biological processes such as protein degradation

and signal transduction. While the structure and function

of ubiquitin have been well studied, its dynamics and

implications for function have been an active area of

research.117–119 In general, RDCs in at least five inde-

pendent alignment media are required to extract dynam-

ics information from RDCs.120 In a recent study using

RDCs measured in 36 different alignment media, Lange

et al.117 demonstrated that unbound ubiquitin samples

conformations similar to those found in ubiquitin com-

plexes; thus, providing evidence of conformational selec-

tion, rather than induced-fit motion, for the binding

process of ubiquitin.

Since POOL is a sparse-data algorithm, it is not possible

to probe protein dynamics directly, since the sparse

amount of data leads to an underdetermined system

from the dynamics viewpoint. However, we show that in

the presence of moderate dynamics, such as those found

in ubiquitin loop regions, POOL can compute near-native

ensembles of loop conformations with high accuracy.

Only RDCs in one alignment medium were used in our

study. We focused on two loops of ubiquitin, between

residues Thr7–Thr12 and Phe45–Lys48. To reduce the

effect of rigid loop anchors obtained from ubiquitin

NMR Model 1, we extended the loop region by one resi-

due in either end; therefore, POOL computed an eight-

and a six-residue loop, (Lys6–Ile13 and Ile44–Gln49,

respectively). Henceforth, we refer to these two loops as

the 6–13 and 44–49 loops, respectively. POOL used Ca–Ha

and N–HN RDCs to compute the analytic solutions for

the backbone dihedrals to build the conformation tree of

loops that satisfy both the loop closure criterion and the

RDCs. Sampling RDCs from the experimental error win-

dow alone is not sufficient to account for the variations

in RDC magnitudes due to internal dynamics causing

fluctuations of the internuclear vector orientations.117

Therefore, we sampled the RDCs from a normal distribu-

tion with wider Gaussian intervals, with standard devia-

tions r of 1.5 and 2.0 Hz for N–HN and Ca–Ha RDCs,

respectively. Roughly 32% of the sampled RDC values

were expected to deviate from the recorded values by

more than r, and can be in the range of 3r, or more.69

An additional set of Ca–C0 RDCs was used as a filter to

prune the conformation tree.71 For the 6–13 and 44–49

loops, ensembles of 232 and 229 loop conformations

were respectively computed by POOL after filtering against

Ca–C0 RDCs. To analyze the conformational variations

and properties of these loop ensembles, we obtained the

46 ubiquitin X-ray structures from the PDB that were

used in the study of Ref. 117. First, these X-ray structures

were protonated using the REDUCE module of MOLPRO-

BITY,121–123 and then aligned with ubiquitin NMR

Model 1 by their SSEs only. Then, the loops from these

X-ray structures were extracted. As the X-ray-ensemble of

Table V
Performance in Terms of Backbone RMSD (Å) of POOL, KIC Protocol13

and Standard ROSETTA Protocol110 on a Set of X-ray Reference Loops

of Length 12 Published in Refs. 13, 113

Loop POOL

KIC de
novo

protocol

KIC starting
from

perturbed
X-ray loopsa

Standard
ROSETTA
de novo

Standard ROSETTA
starting from
perturbed

X-ray loopsb

1a8d_155 0.93 6.9 0.6 5.4 5.3
1arb_182 0.69 1.0 1.4 1.6 5.1
1bhe_121 0.92 0.8 0.7 7.1 4.9
1bn8_298 1.28 0.8 0.6 2.5 1.7
1c5e_83 0.62 0.5 0.4 0.8 5.1
1cb0_33 0.93 0.6 0.7 1.0 1.1
1cnv_188 0.34 1.4 2.1 2.3 2.8
1cs6_145 1.79 3.0 3.0 2.5 4.0
1dqz_209 0.70 0.7 2.6 1.9 1.8
1exm_291 1.51 0.9 0.9 0.6 2.8
1f46_64 1.34 2.5 2.3 2.1 0.7
1i7p_63 0.57 2.7 0.4 0.7 0.8
1m3s_68 0.64 6.3 5.6 3.6 2.2
1ms9_529 0.95 0.4 1.0 2.5 2.8
1my7_254 0.95 2.3 2.3 2.0 0.6
1oth_69 0.65 0.6 0.6 0.6 1.9
1oyc_203 0.79 4.0 3.9 3.2 1.7
1qlw_31 1.27 1.0 0.9 3.3 5.0
1t1d_127 0.56 0.8 0.8 0.5 0.6
2pia_30 0.45 1.0 0.9 1.1 1.0

Average 0.89 1.9 1.6 2.3 2.6

The loops were computed by POOL using only one /-defining and one w-defining
RDC per residue simulated as described in Supporting Information Appendix B. The

minimum RMSD loop from the computed ensemble is reported here. Results for KIC

and ROSETTA protocols were obtained from the Supplementary Table 2 of Ref. 13.
a,bSimulations reported in Ref. 13, called therein ‘‘perturbed,’’ that began with the

starting loop conformations that are sampled away from their X-ray conforma-

tions published in Ref. 113. KIC and ROSETTA protocols do not use any experimen-

tal NMR data.
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loops and the POOL-ensemble of loops were in the

same reference frame and aligned, this allowed us

to directly compare the POOL-ensemble of loops with the

X-ray-ensemble.

Figure 10(a) and (e) show the overlay of the X-ray-

ensemble versus the POOL-ensemble for 6–13 and 44–49

loops, respectively. We used the following simple measure

of similarity between the X-ray-ensemble and the POOL-

ensemble. For the loop 6–13, for each loop in the X-ray-

ensemble, we computed the nearest loop (in terms of

backbone RMSD) in the POOL-ensemble. This is shown in

Figure 10(b), which plots the number of X-ray loops

(out of 46) on the y-axis within the distance interval

measured from the POOL-ensemble on the x-axis. For

example, 13 X-ray loops are within 0.6–0.8 Å, and 19 X-

ray loops are within 0.8–1.0 Å from the POOL-ensemble.

The distance of the POOL-ensemble from the X-ray-en-

semble was similarly computed [Fig. 10(c)]. Since a large

fraction of loops in each ensemble have low-RMSD near-

est loops in the other ensemble, and vice versa, Figure

10(b) and (c) together indicate that the two ensembles

have considerable similarity. An identical analysis for the

loop 44–49, shows the similarity between the X-ray-en-

semble and POOL-ensemble [Figure 10(f) and (g)]. Figure

10(d) and (h) plot the spread of both the X-ray-ensemble

and the POOL-ensemble with respect to each of the X-ray

loops, which show that the POOL-ensemble covers the X-

ray-ensemble well, and therefore, captures the conforma-

tional diversity. In Figure 10(h), it can be seen that the

POOL-ensemble contains most of the X-ray-ensemble, but

is larger. This can be explained, in part from the fact that

the sparse amount of RDCs and backbone kinematics

here allowed the exploration of a larger conformation

space, and in part by the solution-state dynamics sam-

pling a larger conformation space than the frozen X-ray

structures. In addition, we believe that the relatively

higher backbone RMSD for some of the loops in both

the ensembles is due to the kinematic constraints

imposed on the POOL-ensemble by the rigid anchors,

which can limit the exploration of certain regions of the

conformational space.

The ubiquitin experimental RDCs should reflect an en-

semble average over an ensemble of loop conformations

that is subject to conformational selection during binding

and other protein functions. However, these loop confor-

mations may have very different populations, and the rela-

tive population weighting affects the RDC ensemble aver-

age. Although these relative populations for the ubiquitin

loops are not known from experimental measurements, in

the following computational experiment, we used the

aforementioned 46 X-ray loops for the ubiquitin loop 6–

13, and computed a simulated ensemble-averaged RDC

dataset assuming they had equal populations. The goal

was to see how much of the correct ubiquitin ensemble

could be recovered from this simulated RDC data. This is

a challenging loop reconstruction problem since the back-

Figure 9
A representative set of eight 12-residue loops (see Table V) computed by POOL are shown in green. Shown in red are the corresponding loops in the

reference X-ray crystallographic structures. The corresponding PDB ids and the backbone RMSDs between the POOL-computed loops and the

reference X-ray loops are shown. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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bone RMSDs of the 46 X-ray loops vary up to 3.2 Å [see

the red line in Figure 10(d)] in span, which is large for a

8-residue segment. This simulated ensemble-averaged

RDC dataset was used by POOL to compute an ensemble of

295 loop conformations. By doing a similar analysis as

earlier, we observed that the computed POOL-ensemble

covers the X-ray-ensemble, and each member in the POOL-

ensemble was within 1.2 Å from the X-ray-ensemble, sug-

gesting that POOL can be used successfully to compute an

ensemble of loops from ensemble-averaged RDCs repre-

senting a dynamic ensemble.

While our algorithm POOL has been shown to work in

the presence of a moderate level of dynamics, as such it

does not characterize protein dynamics explicitly, specif-

ically, due to the fact that the system it solves is under-

determined from the standpoint of probing dynamics.

Therefore, model bias cannot be ruled out. However,

results obtained for ubiquitin loops 6–13 and 44–49

suggest a future direction, to probe protein dynamics

using our polynomial equation-based approach with

RDCs measured in a relatively fewer number of align-

ment media. We envision that while such an approach

can lead to a new methodological development, it

would complement the current methods by providing

an alternative way of exploiting the geometric informa-

tion from the RDC data.

CONCLUSIONS

While the global fold of a protein can often be deter-

mined from experimental NMR data,59,61,62,64,71

determining loop conformations from sparse NMR data

is a difficult problem. We described a novel, efficient,

and practical deterministic algorithm, POOL, that deter-

mines accurate loop conformations from sparse RDC

data. Empirical comparisons with traditional structure

determination protocols,53 and also with previous

sparse-data protocols,75 demonstrate that POOL performs

better than these approaches when using sparse data.

Previous approaches, such as Ref. 32, SOS, CSJD, and

CCD randomly sample the conformation space of the loop

to compute an ensemble of loop conformations in a gen-

erate-and-test fashion, that can subsequently be filtered

against experimental data. In contrast, POOL takes a com-

plementary approach, and uses constraint posting in a

rigorous algorithmic framework to restrict the solution

space by exploiting the algebra of RDCs and protein

Figure 10
(a) Overlay of the loop ensemble containing 232 loops computed by POOL (green) for the loop 6-13 of ubiquitin versus the loops extracted from

the 46 X-ray structures of ubiquitin (red). (e) Overlay of the loop ensemble containing 229 loops computed by POOL (green) for the loop 44-49 of

ubiquitin versus the loops extracted from the 46 X-ray structures of ubiquitin (red). (b and f) The number of X-ray loops in y-axis within the

backbone RMSD interval measured from POOL-ensemble in x-axis. (c and g) The number of loops from POOL-ensemble in y-axis within the

backbone RMSD interval measured from X-ray-ensemble in x-axis. (d and h) For each of the 46 X-ray loops, the backbone RMSDs of the X-ray

loops are shown using red dots, and the backbone RMSDs of the loops from the POOL-ensemble are shown using green dots. The minimal

backbone RMSDs for POOL-ensemble of loops are shown as green lines. The maximal backbone RMSDs for X-ray loops are shown as red lines.
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kinematics, to compute a complete set of loop conforma-

tions that satisfy the RDC data. While a minimal amount

of RDCs are required by POOL, additional distance, orien-

tational, and torsion-angle constraints, whenever avail-

able, can be directly incorporated into our framework.

Since an accurate and complete protein backbone is a

prerequisite for NOE-assignment algorithms50,71 and

side-chain resonance assignment methods70 in many

NMR structure determination protocols, POOL will be

useful in high-resolution protein structure determination.

Whenever RDCs can be collected for proteins with

known X-ray structures containing missing loops, POOL

can be used to determine the loop conformations.

POOL has been shown to compute ensembles of near-

native loop conformations, from RDCs in one alignment

medium, in the presence of modest levels of dynamics in

protein loops. Since RDCs provide sensitive probes to

protein conformational dynamics114–117 from nanosec-

ond to millisecond timescales, it will be interesting to

extend our algorithm to capture and characterize the

motional fluctuations, and deconvolve the dynamics

from measured RDCs. In such cases, the ensemble of

loops computed by POOL will effectively define a normal

distribution of conformations centered at the experimen-

tally measured RDCs, and as such encode a dynamic en-

semble about a protein’s native fold. Our algorithm can

even be a stepping stone to computing ensembles reflect-

ing more complex dynamics.

Availability

The source code of our algorithm is available by con-

tacting the authors, and is freely distributed open-source

under the GNU Lesser General Public License (Gnu,

2002).
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