# A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion

Timothy R. Sampson<sup>a,b,c</sup>, Brooke A. Napier<sup>a,b,c,1,2</sup>, Max R. Schroeder<sup>a,1</sup>, Rogier Louwen<sup>d</sup>, Jinshi Zhao<sup>e</sup>, Chui-Yoke Chin<sup>b,c</sup>, Hannah K. Ratner<sup>a,b,c</sup>, Anna C. Llewellyn<sup>a,b,c,3</sup>, Crystal L. Jones<sup>a,b,c,4</sup>, Hamed Laroui<sup>f</sup>, Didier Merlin<sup>f</sup>, Pei Zhou<sup>e</sup>, Hubert P. Endtz<sup>d</sup>, and David S. Weiss<sup>b,c,g,5</sup>

<sup>a</sup>Department of Microbiology and Immunology, Microbiology and Molecular Genetics Program, <sup>b</sup>Emory Vaccine Center, and <sup>c</sup>Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; <sup>d</sup>Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, The Netherlands; <sup>e</sup>Department of Biochemistry, Duke University Medical Center, Durham, NC 27710; <sup>f</sup>Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302; and <sup>g</sup>Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322

Edited by Ralph R. Isberg, Howard Hughes Medical Institute/Tufts University School of Medicine, Boston, MA, and approved June 13, 2014 (received for review December 12, 2013)

Clustered, regularly interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems defend bacteria against foreign nucleic acids, such as during bacteriophage infection and transformation, processes which cause envelope stress. It is unclear if these machineries enhance membrane integrity to combat this stress. Here, we show that the Cas9-dependent CRISPR-Cas system of the intracellular bacterial pathogen Francisella novicida is involved in enhancing envelope integrity through the regulation of a bacterial lipoprotein. This action ultimately provides increased resistance to numerous membrane stressors, including antibiotics. We further find that this previously unappreciated function of Cas9 is critical during infection, as it promotes evasion of the host innate immune absent in melanoma 2/apoptosis associated specklike protein containing a CARD (AIM2/ASC) inflammasome. Interestingly, the attenuation of the cas9 mutant is complemented only in mice lacking both the AIM2/ASC inflammasome and the bacterial lipoprotein sensor Toll-like receptor 2, but not in single knockout mice, demonstrating that Cas9 is essential for evasion of both pathways. These data represent a paradigm shift in our understanding of the function of CRISPR-Cas systems as regulators of bacterial physiology and provide a framework with which to investigate the roles of these systems in myriad bacteria, including pathogens and commensals.

gene regulation | innate immune evasion

CRISPR associated (CRISPR-Cas) systems are adaptive bacterial defenses against foreign nucleic acids derived from bacteriophages, plasmids, and other sources (1–4). Foreign nucleic acids are targeted by direct hybridization of small CRISPR RNAs (crRNAs), which act in conjunction with conserved Cas proteins to mediate cleavage of the target. Interestingly, there is evidence that CRISPR-Cas components are up-regulated in the presence of bacteriophages or due to perturbations in the cell envelope (5–7), suggesting that CRISPR-Cas systems are induced in response to envelope stresses. Despite this up-regulation, it is unknown whether CRISPR-Cas systems function to counteract the stresses occurring at the envelope.

We demonstrated a role for components of a type II-B CRISPR-Cas system, which are encoded predominantly in pathogens and commensals (8–10), in the regulation of a membrane lipoprotein produced by the intracellular pathogen *Francisella novicida* (11). Through the action of the RNA-directed endonuclease Cas9 and two small RNAs, tracrRNA and scaRNA, the transcript for a bacterial lipoprotein (BLP; *FTN\_1103*) is targeted and its stability altered, resulting in a decrease in protein production (*SI Appendix*, Fig. S1) (11). As this is the only known

direct and natural example of CRISPR-Cas-mediated endogenous gene regulation, the *F. novicida* type II-B CRISPR-Cas system represents an important model to understand how these common prokaryotic genetic elements can act as regulators to control microbial physiology.

*F. novicida* is capable of causing disease in a number of mammalian species, including humans (12–14). During infection, *F. novicida* must resist the action of numerous antimicrobials that are present on mucosal surfaces and within phagosomes of innate immune cells such as macrophages (15). Compared with

### Significance

Increasing the integrity of the bacterial envelope is necessary to allow the successful survival of bacterial pathogens within the host and allow them to counteract damage caused by membrane-targeting antibiotics. We demonstrate that components of a clustered, regularly interspaced, short palindromic repeats–CRISPR associated (CRISPR-Cas) system, a prokaryotic defense against viruses and foreign nucleic acid, act to regulate the permeability of the bacterial envelope, ultimately providing these cells with the capability to resist membrane damage caused by antibiotics. This regulation further allows bacteria to resist detection by multiple host receptors to promote virulence. Overall, this study demonstrates the breadth of function of CRISPR-Cas systems in regulation, antibiotic resistance, innate immune evasion, and virulence.

Author contributions: T.R.S. and D.S.W. designed research; T.R.S., B.A.N., M.R.S., R.L., J.Z., C.-Y.C., H.K.R., A.C.L., C.L.J., P.Z., and H.P.E. performed research; H.L. and D.M. contributed new reagents/analytic tools; T.R.S., B.A.N., M.R.S., R.L., J.Z., C.-Y.C., H.K.R., C.L.J., P.Z., H.P.E., and D.S.W. analyzed data; B.A.N. performed the immunofluorescence staining and imaging; M.R.S. developed and executed the polymyxin B screen; R.L. and H.P.E. performed experiments with C. *jejuni*; J.Z. and P.Z. isolated and analyzed the lipid A; C.-Y.C. performed surface charge analysis; H.K.R. performed susceptibility assays; A.C.L. generated the *FTN\_1254* and *FTN\_0109* mutants; C.L.J. made fundamental contributions to experimental direction; T.R.S. performed all other experiments; and T.R.S. and D.S.W. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

<sup>1</sup>B.A.N. and M.R.S. contributed equally to this work.

<sup>2</sup>Present address: Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305.

<sup>3</sup>Present address: Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840.

<sup>4</sup>Present address: Department of Wound Infections, Walter Reed Army Institute of Research, Silver Spring, MD 20910.

<sup>5</sup>To whom correspondence should be addressed. Email: david.weiss@emory.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1323025111/-/DCSupplemental.



other Gram-negative species, F. novicida is highly resistant to the effects of several antimicrobials, including cationic antimicrobial peptides that disrupt bacterial membranes causing lysis and death (16-18). These cationic antimicrobial peptides act similarly to polymyxin antibiotics which are often used as surrogates for their study, and F. novicida is also extremely resistant to polymyxins. Following phagocytosis by macrophages, F. novicida escapes the phagosome and replicates to high titers in the cytosol (19). Throughout this cycle, the macrophage employs numerous pattern recognition receptors to respond to F. novicida infection. This includes the BLP receptor Toll-like receptor 2 (TLR2), present at both the plasma membrane and in the phagosome, which initiates a proinflammatory response (20). Additionally, F. novicida can be recognized in the host cytosol by the absent in melanoma 2/apoptosis associated speck-like protein containing a CARD (AIM2/ ASC) inflammasome (21-23). This protein complex triggers activation of the cysteine protease caspase-1, which mediates an inflammatory host cell death. Cell death results in the loss of the intracellular replicative niche for F. novicida, and as such, plays an important role in controlling infection. Because both TLR2 and the AIM2/ASC inflammasome are important for host defense against F. novicida infection, dampening the activation of these innate signaling pathways is critical for F. novicida pathogenesis (24-26).

We initially sought to identify genes that allow F. novicida to resist antimicrobials, using polymyxin for these studies. Surprisingly, we identified the CRISPR-Cas gene cas9 as being required for F. novicida resistance to this membrane-targeting antibiotic. We subsequently found that tracrRNA and scaRNA, two small RNAs that function with Cas9, were also necessary for polymyxin resistance, and that this process was dependent on their ability to repress production of the FTN 1103 BLP. We further observed that this regulation was critical for the enhancement of envelope integrity, which facilitated resistance to other antimicrobials as well. This process also occurred during infection of host cells and subsequently dampened AIM2/ASC inflammasome activation. The importance of Cas9-mediated evasion of the inflammasome, as well as evasion of TLR2, in F. novicida pathogenesis was highlighted by the demonstration that the *cas9* deletion mutant was rescued for virulence in mice lacking both ASC and TLR2, but not either component alone. Thus, the work presented here demonstrates that CRISPR-Cas systems are capable of enhancing the integrity of the bacterial envelope, a previously unappreciated role in bacterial physiology. This promotes resistance to antimicrobials and, during infection, facilitates the evasion of multiple innate defense pathways. This represents a previously unappreciated CRISPR-Cas function that is likely relevant to numerous bacteria, including pathogenic and commensal species.

#### Results

Cas9 Regulatory Axis Promotes Enhancement of Envelope Integrity. We sought to determine if CRISPR-Cas systems could enhance bacterial membrane integrity, because they are known to be upregulated in response to nucleic acid transfer events associated with envelope stress. A genetic screen for determinants of F. novicida resistance to the membrane targeting antibiotic polymyxin B (details of which can be found in the SI Appendix, Figs. S2 and S3 and Tables S1-S3) identified the gene encoding the CRISPR-Cas endonuclease Cas9 (FTN 0757). The cas9 mutant was significantly hindered in its ability to grow in the presence of polymyxin, even at doses that had little effect on the growth of WT bacteria (Fig. 1A and SI Appendix, Fig. S4), and was also unable to resist a lethal dose of this antimicrobial (Fig. 1B). This defect could be successfully complemented by restoration of the cas9 gene to the deletion mutant (SI Appendix, Fig. S5). In contrast, mutants lacking cas1, cas2, cas4, or the CRISPR locus were not defective in their ability to survive in the presence of polymyxin B (SI Appendix, Fig. S6). Resistance to polymyxin is often mediated by alterations to the structure of lipid A in the



**Fig. 1.** The Cas9 regulatory axis is necessary for polymyxin resistance. (*A*) WT, *cas9*, or *cas9/1103* deletion mutants were grown overnight in broth culture containing the indicated concentration of polymyxin B. Percent growth compared with untreated cultures is plotted (n = 3). (*B*) 10<sup>9</sup> cfu of WT, *cas9*, or *cas9/1103* deletion mutants were treated with 800 µg/mL of polymyxin B, and cfu were enumerated at the indicated times to quantify antimicrobial killing. (*C* and *D*) WT, *cas9*, or *cas9/1103* deletion mutants were grown to midlog phase, washed, and stained with (*C*) propidium iodide or (*D*) ethidium bromide, and fluorescence was measured (n = 3). \* $P \le 0.05$ ; \*\* $P \le 0.001$ .

outer membrane and an increase in surface charge. However, the *cas9* deletion mutant produced a lipid A identical to WT cells (*SI Appendix*, Fig. S7) and had similar total surface charge (*SI Appendix*, Fig. S8). Together, these data clearly demonstrate the importance of Cas9 in the enhancement of resistance against a membrane-damaging antibiotic through a mechanism independent of lipid A modifications.

Because F. novicida Cas9 functions with two small RNAs (tracrRNA and scaRNA; the three components are together referred to as the Cas9 regulatory system) to regulate an endogenous transcript encoding a membrane-localized BLP (FTN 1103) (11), we tested whether mutants lacking these small RNAs had a diminished ability to grow in the presence of polymyxin. tracrRNA and scaRNA deletion mutants exhibited an increase in susceptibility, similar to the cas9 deletion strain (SI Appendix, Fig. S9 A and B). Furthermore, deletion of FTN 1103 from the cas9, tracrRNA, or scaRNA mutants restored their resistance to polymyxin to near WT levels (Fig. 1A and SI Appendix, Fig. S9 A and B). In addition, we observed that the Cas9 regulatory axis mutants displayed a modest increase in susceptibility to the nonionic surfactant, Triton-X, but not hydrogen peroxide (SI Appendix, Figs. S10 and S11). We further found that these strains were more susceptible to streptomycin and kanamycin, first-line choices for treatment of Francisella infection (27) (SI Appendix, Figs. S12 and S13), in a manner dependent on overproduction of FTN 1103. These surprising observations suggest that the regulatory action of these CRISPR-Cas components promotes resistance to multiple antimicrobials through regulation of FTN 1103.

Because we observed a marked defect in antimicrobial resistance, we sought to address whether Cas9, tracrRNA, and scaRNA promoted resistance by enhancing the integrity of the bacterial envelope. We therefore directly analyzed the permeability of the *cas9* deletion mutant by measuring its uptake of propidium iodide (PI), which fluoresces when bound to nucleic acid. The *cas9* deletion mutant demonstrated a limited, yet significant, increase in fluorescence compared with WT bacteria, indicating that it is more permeable to PI (Fig. 1C). Importantly, similar levels of colony-forming units were recovered from the mutant and WT bacteria during this experiment (SI Appendix, Fig. S14), and we observed no significant difference in the ability of the strains to grow in rich or minimal media (SI Appendix, Fig. S15), together indicating that although envelope permeability was altered, bacterial viability was unaffected. As a further proof of principle, we performed similar experiments with the nucleic acid-staining dye ethidium bromide (EtBr) and observed a nearidentical increase in fluorescence in the cas9 mutant (Fig. 1D). Comparable effects were observed in both the tracrRNA and scaRNA deletion mutants (SI Appendix, Fig. S16), which also did not display an observable defect during growth in broth (SI Appendix, Fig. S15). Furthermore, the increased permeability of all three mutant strains could be restored to near WT levels through deletion of FTN 1103 (Fig. 1 C and D and SI Appendix, Fig. S16), demonstrating that overproduction of this envelope lipoprotein results in decreased envelope integrity. Thus, the Cas9 regulatory axis acts to directly enhance envelope integrity in part through regulation of a BLP and thereby mediates resistance to multiple antimicrobials.

**Cas9 Regulatory Axis Promotes Enhanced Bacterial Integrity During Intracellular Infection.** Because these data demonstrated a role for CRISPR-Cas components in enhancing envelope integrity during growth in broth culture, we examined whether they were necessary for a similar function during infection of macrophages, an important replicative niche for *F. novicida*. Importantly, Cas9 regulatory axis mutants and double mutants lacking *FTN\_1103* survived and replicated to WT levels in macrophages (Fig. 24 and *SI Appendix*, Fig. S17A). However, during intracellular



**Fig. 2.** Cas9 is necessary for enhanced envelope integrity during intracellular infection. (*A*) Bone marrow-derived macrophages were infected with WT, *cas9*, or *cas9/1103* deletion mutants at a multiplicity of infection (MOI) of 20:1 (bacteria per macrophage). At 4 h postinfection, macrophages were lysed and plated to enumerate colony-forming units. (*B* and *C*) Macrophages were infected as above, and at 4 h postinfection, were permeabilized with saponin and stained with anti-*Francisella* antibody (green), propidium iodide (nucleic acids, red), and DAPI (DNA, blue). Colocalization was determined as no less than 50% PI overlap with anti-*Francisella*. One thousand bacteria were counted per strain and quantified in *B*. Representative fluorescence micrographs are shown in C. Arrows indicate representative PI and anti-*Francisella* colocalization. Data are representative of at least three independent experiments in *A*, whereas *B* and *C* are compiled from four independent experiments. \*\*\*P ≤ 0.001.

infection we observed that *cas9*, tracrRNA, and scaRNA deletion mutants displayed an almost 10-fold increase in PI staining, a measure of membrane permeability (Fig. 2 *B* and *C* and *SI Appendix*, Fig. S17 *B* and *C*). Additionally, intracellular permeability to PI was dependent on *FTN\_1103*, further demonstrating the importance of repression of this membrane lipoprotein for the enhancement of envelope stability during infection of host cells (Fig. 2 *B* and *C* and *SI Appendix*, Fig. S17 *B* and *C*).

Cas9, tracrRNA, and scaRNA Are Required for Evasion of Inflammasome Activation. Because we observed an increase in the permeability of Cas9 regulatory axis mutants during intracellular infection, we sought to determine if the lack of enhanced membrane integrity might correlate with increased recognition of bacterial components by host cytosolic receptors that activate innate immune signaling pathways. Francisella is recognized in the cytosol by the AIM2 inflammasome, which contains the adaptor protein ASC, and is partially activated in a TLR2-dependent manner (21-23, 28). Inflammasome activation leads to an inflammatory host cell death and loss of Francisella's intracellular replicative niche. To determine if the loss of envelope integrity in the Cas9 regulatory axis mutants could result in an inability to dampen inflammasome activation, we measured cell death following infection of bone marrow-derived macrophages. Mutants lacking cas9, tracrRNA, or scaRNA (but not other components of the CRISPR-Cas system) displayed significantly higher levels of cytotoxicity than WT bacteria (Fig. 3A and SI Appendix, Figs. S18 and S19), through a signaling pathway that was partially dependent on TLR2 and completely dependent on ASC (Fig. 3A). We further found that in the absence of FTN\_1103, cytotoxicity decreased to near WT levels (Fig. 3A and SI Appendix, Fig. S18), demonstrating that dysregulation of the FTN 1103 BLP is indeed the primary factor responsible for the increased activation of ASCdependent cell death in the Cas9 regulatory axis mutants.

To directly address whether loss of envelope integrity could lead to increased inflammasome activation, we treated WT bacteria with a sublethal dose of polymyxin B. Although this dose did not result in a loss of cellular viability (SI Appendix, Fig. S204), it resulted in an increase in envelope permeability as measured by EtBr staining (SI Appendix, Fig. S20B), similar in magnitude to that observed in the cas9 deletion mutant (Fig. 1C). Upon infection of macrophages, WT bacteria pretreated with polymyxin B showed significantly more cytotoxicity than untreated bacteria in a manner that was partially TLR2dependent and completely ASC-dependent (Fig. 3B), similar to the cell death elicited by the cas9 deletion mutant (Fig. 3A). Thus, these data directly show that loss of envelope integrity can lead to increased inflammasome activation. Along with both the increased permeability and cytotoxicity of Cas9 regulatory axis mutants, these data demonstrate that Cas9-dependent enhancement of envelope integrity acts to promote evasion of the inflammasome.

## The cas9 Mutant Is Rescued for Virulence in ASC/TLR2-Deficient Mice.

*cas9* deletion mutants are severely attenuated and unable to cause lethal infection in mice (11). However, the cause of this attenuation in vivo is not clear. Because Cas9 is important for evasion of both the inflammasome and TLR2, we tested whether the *cas9* mutant was rescued for virulence in the absence of these innate inflammatory pathways. Mice lacking ASC alone were able to control infection by the *cas9* deletion mutant, since the bacteria were undetectable in the spleen following infection (*SI Appendix*, Fig. S21*A*) and were unable to cause morbidity in these mice (*SI Appendix*, Fig. S21*B*). Similarly, mice lacking TLR2 alone were also capable of controlling infection by the *cas9* deletion mutant (*SI Appendix*, Fig. S21 *A* and *C*). We therefore generated mice lacking both of these innate immune



**Fig. 3.** Cas9 and enhanced envelope integrity promote evasion of inflammasome activation. (*A*) WT, TLR2<sup>-/-</sup>, and ASC<sup>-/-</sup> bone marrow-derived macrophages were infected with WT, *cas9*, or *cas9/1103* deletion mutants at a multiplicity of infection (MOI) of 20:1 (bacteria per macrophage). At 5.5 h postinfection, cells were assayed for cytotoxicity using the lactate dehydrogenase release assay (n = 3). (*B*) WT bacteria were untreated or pretreated for 30 min with 40 µg/mL polymyxin B and subsequently used to infect macrophages, and cytotoxicity was measured as in A (n = 3). Data are representative of at least three independent experiments. \*\* $P \le 0.005$ ; \*\*\* $P \le 0.001$ .

proteins, and infection of macrophages derived from these mice validated that the induction of both cell death and the inflammatory cytokine response by the *cas9* deletion mutant were completely abrogated (*SI Appendix*, Fig. S22 *A* and *B*). Strikingly, during infection of these mice, the *cas9* deletion mutant was significantly rescued for survival and replication (Fig. 4 *A* and *B* and *SI Appendix*, Fig. S21*A*). The level of the *cas9* mutant increased at least 3 logs in the spleen and 2–3 logs in the liver (above the limit of detection) of infected ASC/TLR2-deficient mice, reaching the levels of WT bacteria observed in WT mice (Fig. 4 *A* and *B*). This robust increase in bacterial burden correlated with mortality, because >90% of infected ASC/TLR2-deficient mice succumbed to infection with the *cas9* deletion

mutant (Fig. 4 C and D). This increase in virulence of the *cas9* mutant in ASC/TLR2-deficient mice highlights the essential role that Cas9 plays in facilitating the evasion of two distinct and critical host innate immune receptors, providing further evidence of the important roles that CRISPR-Cas systems can play in bacterial pathogenesis.

## Discussion

Here, we demonstrate that the CRISPR-Cas endonuclease Cas9, working in conjunction with tracrRNA and scaRNA, is critical for enhancing the stability of the bacterial envelope and promoting resistance to polymyxin B, as well as other antibiotics. Expression of CRISPR-Cas components can be induced by bacterial envelope stress, disruptions in envelope protein localization (5), the presence of bacteriophage (6, 7), and during infection of host cells (11, 29, 30). Taken together, this suggests that CRISPR-Cas systems are induced in response to membrane stressors, and their regulatory activity can subsequently result in the enhancement of envelope integrity to promote resistance to such stressors. It is therefore tempting to speculate that the CRISPR-Cas response to envelope stress serves two distinct purposes: (i) the activation of its canonical function as the adaptive, foreign nucleic acid restriction system and (ii) the regulation of envelope structure and content to enhance the integrity of the bacterial envelope and combat membrane stress, which represents a previously unappreciated role in bacterial physiology and a shift in the understanding of these systems.

Our data demonstrate a role for CRISPR-Cas systems in promoting antibiotic resistance, whereas previous studies have focused instead on their ability to limit this process by restricting the acquisition of mobile elements, including those which carry resistance cassettes. Studies in several bacterial species revealed a correlation between increased antibiotic resistance and non-functional CRISPR-Cas systems (31–33). In fact, it has been demonstrated that acquisition of resistance traits can be restricted by CRISPR-Cas systems in vivo (34). In contrast, the



**Fig. 4.** A cas9 deletion mutant is rescued for virulence in mice lacking both ASC and TLR2. (*A* and *B*) WT or ASC/TLR2-deficient mice were inoculated s.c. with  $10^5$  cfu of WT or the cas9 deletion strain. Forty-eight hours postinfection, the (*A*) spleen and (*B*) liver were harvested and plated to quantify bacterial levels (*n* = 5). (*C* and *D*) Groups of 15 (*C*) WT or (*D*) ASC/TLR2-deficient mice were inoculated s.c. with  $10^8$  cfu of WT or cas9 deletion strains. Mice were monitored for survival over 15 d. Data are representative of at least two independent experiments in *A* and *B*; data are compiled from three independent experiments for *C* and *D*. \*\**P* ≤ 0.005.

data presented here suggest that CRISPR-Cas systems with regulatory functions may provide bacteria with the capacity to resist certain antibiotics. Thus, loss of these systems in antibioticresistant species may have unappreciated regulatory effects leading to altered bacterial physiology (i.e., envelope structure) and enhanced susceptibility to certain antibiotics. Delineating the regulatory functions of CRISPR-Cas systems in diverse bacteria will be required to more broadly assess their potential roles as antibiotic resistance determinants.

During infection, the ability of CRISPR-Cas systems to enhance envelope integrity has important ramifications for the virulence of F. novicida. We demonstrate here that Cas9 regulatory axis-mediated envelope enhancement is necessary to inhibit activation of the inflammasome and host cell death. This is broadly in agreement with the idea that mutant strains with membrane defects induce increased levels of inflammasome activation (24). Furthermore, we directly demonstrate that an increase in envelope permeability induced by polymyxin B treatment leads to enhanced inflammasome activation. Because the AIM2/ ASC inflammasome responds to DNA released from Francisella, it is likely that increased envelope stability serves to prevent the release of nucleic acid, thereby subverting inflammasome activation (21, 23, 24). It has been posited that the AIM2/ASC inflammasome has a low threshold for activation, perhaps requiring only a single bacterium to release DNA (24). Therefore, small changes in envelope integrity may have drastic effects on inflammasome activation, while not having any observable effects on a bacterial population's viability as a whole. The regulation of BLP expression by the Cas9 regulatory axis thus limits the levels of this TLR2 ligand and subsequent activation of TLR2 (11), as well as promoting enhanced envelope integrity and subversion of the inflammasome. In the absence of both ASC and TLR2, the virulence of the cas9 mutant is significantly restored (Fig. 4 A, B, and D), demonstrating the importance of Cas9-mediated innate immune evasion in the ability of F. novicida to cause disease.

Although F. novicida is the only known bacterial species in which Cas9 plays a clearly demonstrated regulatory role, it is likely that Cas9-dependent regulation contributes to the virulence of other pathogens encoding this protein including Streptococcus spp., Legionella pneumophila, Listeria monocytogenes, Staphylococcus aureus, and Haemophilus parainfluenzae (8, 9, 11, 29). In fact, a role for Cas9 in controlling virulence traits has been demonstrated in Neisseria meningitidis and Campylobacter *jejuni*. Each has been observed to require Cas9 for both invasion and replication in eukaryotic cells (11, 35). In addition, both of these species require Cas9 to attach to host cells, further supporting the hypothesis that CRISPR-Cas systems can have effects on the bacterial envelope (11, 35). Interestingly, we have additionally observed defects in the C. jejuni envelope in the absence of Cas9. A cas9 deletion mutant in C. jejuni displays an increase in envelope permeability, similar to that observed in F. novicida (SI Appendix, Fig. S23A), and is significantly more sensitive to erythromycin, a first-line treatment for invasive campylobacteriosis (SI Appendix, Fig. S23B) (36). Therefore, although it is yet unknown how Cas9 may function as a regulator in C. jejuni, it is clear that these findings represent a broader role for Cas9 systems in modulating this important aspect of bacterial physiology.

CRISPR-Cas systems have more broadly been linked to other processes that involve the bacterial envelope and extracellular structures. For instance, the type I CRISPR-Cas system in *Pseudomonas aeruginosa* is capable of modulating biofilm formation (37, 38), and the type I system in *Myxococcus xanthus* is an essential component in regulating the development of fruiting bodies (39–41). These examples provide further support for a broader CRISPR-Cas function in the modification and regulation of the envelope and extracellular structures, extending beyond those organisms that encode Cas9. This unappreciated

role for CRISPR-Cas systems would allow the myriad bacterial species encoding them to respond to envelope stresses that occur as a result of not only bacteriophage attack but also infection of host cells and exposure to other environmental conditions.

## **Experimental Procedures**

**Bacterial Manipulations.** *F. novicida* strain U112 and all derivatives used in this study were routinely grown at 37 °C with aeration in tryptic soy broth (TSB) supplemented with 0.2% L-cysteine (BD Biosciences), or on tryptic soy agar plates supplemented with 0.1% L-cysteine. Cas9 regulatory axis deletion mutants and complementation strains were described previously (11, 42). *FTN\_1254* and *FTN\_0109* mutants were constructed by allelic exchange as described previously (43, 44) using primers in *SI Appendix*, Table S3.

**Polymyxin Treatments.** The indicated strains were grown overnight and subsequently diluted to an OD<sub>600</sub> of 0.03 in Mueller-Hinton/cation-adjusted broth with 0.2% L-cysteine containing the specified doses of polymyxin B (USB Corporation). Following overnight growth at 37 °C with aeration, OD<sub>600</sub> was measured and used to calculate the percent growth compared with the growth of the strain in media alone. For the killing assay, cultures were treated with 800 µg/mL of polymyxin B, incubated at 37 °C with aeration, and plated for colony-forming units at the indicated time points. For sublethal treatments with polymyxin, bacterial cultures were washed once and resuspended in media containing 40 µg/mL polymyxin B for 30 min. Treated cells were subsequently washed twice before preparing for infections as described below.

In Vitro Permeability. The indicated strains were grown overnight and subsequently subcultured 1:50 in TSB and grown to an OD<sub>600</sub> of ~0.8–0.9. Cells were washed twice in 50 mM phosphate buffer and resuspended in 50 mM phosphate buffer containing 30 µg/mL EtBr (Fisher Scientific) or 200 µM PI (Life Technologies). Fluorescence was measured immediately in a Biotek Synergy Mx plate reader using an excitation of 250 nm and emission of 605 nm for EtBr or excitation of 534 nm and emission of 617 nm for PI, correcting with samples lacking bacteria.

**Macrophage Culture and Infection.** Murine bone marrow-derived macrophages were prepared from WT C57BL/6 mice or the indicated knockout strains and cultured as described previously (42). Macrophages were seeded overnight and infected with overnight cultures of the indicated bacterial strains at a MOI of 20:1 bacteria per macrophage. Plates were centrifuged for 15 min at 335 × g at room temperature to promote bacterial uptake. Infected macrophages were incubated for 30 min at 37 °C and washed twice before adding DMEM containing 10  $\mu$ g/mL gentamicin.

Intracellular Permeability. WT murine bone marrow-derived macrophages were seeded onto glass coverslips and infected as above. At 4 h postinfection, macrophages were gently permeabilized for 15 min at room temperature with 0.1% saponin/3% (wt/vol) BSA in PBS. Cells were first stained with 2.6  $\mu$ M PI and chicken–anti-*F. novicida* antibody (a kind gift from Denise Monack, Stanford University) for 12 min at 37 °C. Following washing, cells were fixed with 4% (vol/vol) paraformaldehyde and incubated with FITC-labeled antichicken antibody. Coverslips were mounted onto glass slides with SlowFade Gold reagent with DAPI (Life Technologies). Slides were imaged on a Zeiss Axioscope Z.1 microscope and a Zeiss Imager 2.1 camera. Images were analyzed with Volocity 5.5 software (Perkin–Elmer). Colocalization was determined by no less than 50% overlap between PI and *Francisella*-positive cells, and 1,000 cells were counted for each strain.

**Cytotoxicity Assays.** Murine bone marrow-derived macrophages prepared from the indicated mice were infected with bacterial strains as described above. At 5.5 h postinfection, supernatants were collected and assayed for levels of lactate dehydrogenase using the nonradioactive cytotoxicity assay kit (Promega).

**Murine Infections.** ASC<sup>-/-</sup> and TLR2<sup>-/-</sup> C57BL/6 mice were a generous gift from Bali Pulendran, Emory Vaccine Center, Atlanta (with much appreciated assistance from Paul Hakimpour) and were bred together to generate mice deficient in both ASC and TLR2. Mice were bred and kept under specific-pathogen free conditions in filter-top cages at Yerkes National Primate Center, Emory University, and provided food and water ad libitum. For bacterial burden assays, female WT or ASC/TLR2-deficient mice (of 8–10 wk of age) were infected s.c. with  $2 \times 10^5$  cfu of the indicated bacterial strains in sterile PBS. At 48 h postinfection, liver and spleen were harvested,

weighed, and homogenized in PBS, and serial dilutions were plated to enumerate colony-forming units. For survival experiments, mice were infected with 10<sup>8</sup> cfu s.c. and monitored for signs of illness. Mice were killed when they appeared moribund. All experimental procedures were approved by the Emory University Institutional Animal Care and Use Committee (Protocol #069-2008Y).

**Statistics.** Two-tailed, Student t tests were performed to analyze pairs of data as indicated, excluding the experiments in Fig. 4 A and B, which were analyzed with the Mann–Whitney test.

- Richter C, Chang JT, Fineran PC (2012) Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses 4(10):2291–2311.
- Fineran PC, Charpentier E (2012) Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information. *Virology* 434(2):202–209.
- Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266.
- Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 54(2):234–244.
- Perez-Rodriguez R, et al. (2011) Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in *Escherichia coli. Mol Microbiol* 79(3):584–599.
- Quax TE, et al. (2013) Massive activation of archaeal defense genes during viral infection. J Virol 87(15):8419–8428.
- Young JC, et al. (2012) Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in *Streptococcus thermophilus*. *PLoS ONE* 7(5): e38077.
- Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. *RNA Biol* 10(5):726–737.
- Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. *Nucleic Acids Res*, 10.1093/nar/gku241.
- Schunder E, Rydzewski K, Grunow R, Heuner K (2013) First indication for a functional CRISPR/Cas system in *Francisella tularensis. Int J Med Microbiol* 303(2):51–60.
- Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. *Nature* 497(7448):254–257.
- Hand J, Scott-Waldron C, Balsamo G (2012) Outbreak of Francisella novicida infections among occupants at a long-term residential facility - Louisiana, April-July, 2011. Louisiana Morbidity Rep 23(1):1–6.
- 13. Birdsell DN, et al. (2009) Francisella tularensis subsp. novicida isolated from a human in Arizona. BMC Res Notes 2:1–6.
- Leelaporn A, Yongyod S, Limsrivanichakorn S, Yungyuen T, Kiratisin P (2008) Francisella novicida Bacteremia, Thailand. Emerg Infect Dis 14(12):1935–1937.
- 15. Jones CL, et al. (2012) Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 76(2):383-404.
- Han S, Bishop BM, van Hoek ML (2008) Antimicrobial activity of human beta-defensins and induction by Francisella. Biochem Biophys Res Commun 371(4):670–674.
- Mohapatra NP, et al. (2007) Identification of an orphan response regulator required for the virulence of *Francisella* spp. and transcription of pathogenicity island genes. *Infect Immun* 75(7):3305–3314.
- Urban C, Tiruvury H, Mariano N, Colon-Urban R, Rahal JJ (2011) Polymyxin-resistant clinical isolates of *Escherichia coli. Antimicrob Agents Chemother* 55(1):388–389.
- Golovliov I, Baranov V, Krocova Z, Kovarova H, Sjöstedt A (2003) An attenuated strain of the facultative intracellular bacterium *Francisella tularensis* can escape the phagosome of monocytic cells. *Infect Immun* 71(10):5940–5950.
- Cole LE, et al. (2010) Phagosomal retention of *Francisella tularensis* results in TIRAP/ Mal-independent TLR2 signaling. *J Leukoc Biol* 87(2):275–281.
- Fernandes-Alnemri T, et al. (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11(5):385–393.
- Jones JW, et al. (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci USA 107(21):9771–9776.
- Rathinam VA, et al. (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402.
- Peng K, Broz P, Jones J, Joubert LM, Monack D (2011) Elevated AIM2-mediated pyroptosis triggered by hypercytotoxic *Francisella* mutant strains is attributed to increased intracellular bacteriolysis. *Cell Microbiol* 13(10):1586–1600.

ACKNOWLEDGMENTS. We thank Emily Crispell, Thayer King, William Shafer, and Eric Skaar for helpful discussions and critical reading of this manuscript. This work was supported by National Institutes of Health (NIH) Grants U54-AI057157 from the Southeastern Regional Center of Excellence for Emerging Infections and Biodefense, R56-AI87673, and R01-AI110701 (to D.S.W., a Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease). T.R.S. was supported by the National Science Foundation Graduate Research Fellowship Program and the Achievement Rewards for College Scientists Foundation. J.Z. and P.Z. were supported by NIH R01-AI055588 and GM5-1310.

- Jones CL, Sampson TR, Nakaya HI, Pulendran B, Weiss DS (2012) Repression of bacterial lipoprotein production by *Francisella novicida* facilitates evasion of innate immune recognition. *Cell Microbiol* 14(10):1531–1543.
- Mariathasan S, Weiss DS, Dixit VM, Monack DM (2005) Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med 202(8): 1043–1049.
- Word Health Organization (2007) WHO Guidelines on Tularaemia. WHO Library Cataloguing-in Publication Data (World Health Organization, Geneva), 978 92 4 154737 6.
- Jones CL, Weiss DS (2011) TLR2 signaling contributes to rapid inflammasome activation during F. novicida infection. PLoS ONE 6(6):e20609.
- Louwen R, Staals RH, Endtz HP, van Baarlen P, van der Oost J (2014) The role of CRISPR-Cas systems in virulence of pathogenic bacteria. *Microbiol Mol Biol Rev* 78(1): 74–88.
- Gunderson FF, Cianciotto NP (2013) The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. MBio 4(2): e00074-e13.
- Palmer KL, Gilmore MS (2010) Multidrug-resistant enterococci lack CRISPR-cas. MBio 1(4):e00227–e10.
- Dang TN, et al. (2013) Uropathogenic Escherichia coli are less likely than paired fecal E. coli to have CRISPR loci. Infect Genet Evol 19:212–218.
- Burley KM, Sedgley CM (2012) CRISPR-Cas, a prokaryotic adaptive immune system, in endodontic, oral, and multidrug-resistant hospital-acquired *Enterococcus faecalis*. *J Endod* 38(11):1511–1515.
- Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA (2012) CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. *Cell Host Microbe* 12(2):177–186.
- Louwen R, et al. (2013) A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur J Clin Microbiol Infect Dis 32(2): 207–226.
- Allos BM (2001) Campylobacter jejuni infections: Update on emerging issues and trends. Clin Infect Dis 32(8):1201–1206.
- Cady KC, O'Toole GA (2011) Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins. J Bacteriol 193(14):3433–3445.
- Zegans ME, et al. (2009) Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of *Pseudomonas aeruginosa*. J Bacteriol 191(1): 210–219.
- Viswanathan P, Murphy K, Julien B, Garza AG, Kroos L (2007) Regulation of dev, an operon that includes genes essential for *Myxococcus xanthus* development and CRISPR-associated genes and repeats. J Bacteriol 189(10):3738–3750.
- Boysen A, Ellehauge E, Julien B, Søgaard-Andersen L (2002) The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in *Myxococcus xanthus*. J Bacteriol 184(6):1540–1546.
- Thöny-Meyer L, Kaiser D (1993) devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J Bacteriol 175(22):7450–7462.
- 42. Weiss DS, et al. (2007) In vivo negative selection screen identifies genes required for *Francisella* virulence. *Proc Natl Acad Sci USA* 104(14):6037–6042.
- Brotcke A, et al. (2006) Identification of MgIA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun 74(12):6642–6655.
- Anthony LS, Gu MZ, Cowley SC, Leung WW, Nano FE (1991) Transformation and allelic replacement in *Francisella* spp. J Gen Microbiol 137(12):2697–2703.

## **Supplemental Results and Discussion**

*Francisella* species are extremely resistant to polymyxin in comparison to other bacteria. We therefore set out to identify genes necessary for *F. novicida* polymyxin resistance. We initiated a screen of 470 transposon mutants from a library (1) representing 229 genes that have previously been identified as necessary for virulence *in vivo* and/or intracellular replication in mammalian cells. Each mutant was grown overnight in the presence of polymyxin B, and compared to wild-type. Mutants that failed to reach at least 75% of wild-type growth were deemed to have mutations in genes required for complete fitness in the presence of polymyxin (Supplemental Tables 1 and 2).

We identified 120 genes as playing roles in *F. novicida* resistance to polymyxin. The majority of these are categorized as having Unknown Function by COG analysis, while the remainder are primarily grouped into pathways necessary for the generation of envelope structures or within metabolic pathways that can act upstream of envelope biogenesis and modification (Supplemental Figure 2). Resistance to polymyxin is often mediated by alterations to the structure of lipid A and O-antigen, components of lipopolysaccharide (LPS) in the bacterial outer membrane. Notably, we identified *FTN\_0544*, *FTN\_0545*, and *lpxE* which have roles in lipid A modification and have previously been implicated in polymyxin resistance (2-4), providing validation for the results of the screen (Supplemental Table 1). Additionally, *wbtD*, *wbtF*, and *wbtH*, which are part of the O-antigen biosynthetic machinery were also identified (Supplemental Table 1)(5). To further confirm the results of the screen, we generated deletion mutants in two genes encoding proteins of unknown function, *FTN\_0109* and *FTN\_1254*. These deletion mutants demonstrated a significant decrease in polymyxin resistance compared to wild-type, providing additional support for screen's validity (Supplemental Figure 3).

In addition to a number of genes known to be involved in the biogenesis or modification of envelope structures, and numerous genes encoding hypothetical proteins, the screen also implicated numerous potential metabolic pathways in mediating polymyxin resistance (Supplemental Table 1 and Supplemental Figure 2). These pathways may be involved in creating necessary precursors for envelope structures, and/or increasing metabolic output, allowing sufficient energy to resist and repair damage induced by polymyxin. In either case, the results suggest an important interplay between the metabolic status of the bacterial cell and its ability to resist the action of polymyxin. It is important to note that this screen does not differentiate between mutant strains which failed to grow in the presence of polymyxin, mutant strains which can replicate in polymyxin but subsequently are killed, and those mutant strains which are actively killed more effectively by polymyxin. However, this broad screen of 229 genes already implicated in *Francisella* virulence allows the foundation for future studies to determine their precise contribution to polymyxin resistance and virulence.

## **Supplemental Methods**

## Screen for polymyxin resistance determinants

Four hundred and seventy transposon mutants, representing 229 genes were obtained from the *Francisella* two-allele transposon mutant library (1, 6). Each transposon mutant was grown overnight in a well of a 96 well plate containing cation-adjusted Mueller Hinton broth (MH/C-A) with 0.2% L-cysteine (BD Biosciences). Subsequently, each mutant was diluted to an  $OD_{600}$  of 0.03 in MH/C-A containing  $100\mu g/mL$  of polymyxin B (USB Corporation, Cleveland, OH). Following overnight growth at 37°C with aeration, the  $OD_{600}$  was measured and used to calculate the percent growth compared to wild-type bacteria. Strains that grew to an  $OD_{600}$  of less than 75% than that of wild-type were deemed to have increased sensitivity.

## Bacterial growth kinetics.

The indicated strains were grown overnight and subsequently diluted to an  $OD_{600}$  of 0.03 in TSB with 0.2% L-cysteine or Chamberlain's Defined Media (CDM). Subcultures were placed at 37°C with aeration in a Biotek Synergy Mx plate reader and  $OD_{600}$  was measured each hour for 15 hours.

## Lipid A isolation and analysis.

Total lipid A was isolated from the indicated strains as described previously (2). Lipid A was analyzed by LC/MS as described previously (2). Briefly, LC/MS of lipids was performed using a Shimadzu LC system coupled to a QSTAR XL quadrupole time-of-flight tandem mass spectrometer.

## Surface charge analysis by zeta potential

Zeta electrokinetic potentials of the indicated strains were calculated as described previously (2). Briefly, bacteria were subcultured and grown to  $OD_{600} = 1.0$ , and subsequently washed and resuspended at a 5× concentration in 20 mM potassium chloride. Twenty microlitres of the concentrated bacteria were added to 3.2 ml of 20 mM potassium chloride in the zeta potential electrokinetic cuvette from Brookhaven

Instruments Corporation (BIC, Holtsville, NY). The bacterial cell sizes and zeta electrokinetic potentials were measured using the 90Plus size and zeta potential analyser (BIC). Data were analysed using BIC Zeta Potential Analyser Software Version 5.20, which corrects for bacterial cell size.

## Antimicrobial resistance.

The indicated strains were grown overnight and subsequently diluted to an  $OD_{600}$  of 0.03 in MH/C-A with 0.2% L-cysteine containing the specified doses of Triton X (Fisher Scientific, Pittsburgh, PA), hydrogen peroxide (Fisher Scientific, Pittsburgh, PA), kanamycin (Teknova, Hollister, CA), and streptomycin (Teknova). Following overnight growth at 37°C with aeration,  $OD_{600}$  was measured and used to calculate the percent growth compared to the growth of the strain in media alone.

## Intracellular survival.

Murine bone marrow-derived macrophages were infected as described in the Experimental Procedures with the indicated bacterial strains. At 4 hours post infection, macrophages were lysed with 1% saponin. Lysates were serially diluted in PBS and plated onto TSA containing 0.1% cysteine to enumerate colony forming units.

## **Campylobacter manipulations and experiments**

The GB11 (wild-type) and its cognate  $\Delta cas9$  deletion mutant have been described previously (7). Strains were routinely grown on Columbia blood agar plates containing 7% sheep blood (Becton Dickinson, Breda, The Netherlands), supplemented with vancomycin (Sigma-Aldrich, Zwijndrecht, The Netherlands) and chloramphenicol (Sigma-Aldrich) under micro-aerophilic conditions at 37°C using anaerobic jars and an Anoxomat (Mart Microbiology B.V., Drachten, The Netherlands). To measure bacterial permeability, plate-grown bacteria were recovered, washed in PBS, and diluted to a concentration of 7.5x10<sup>7</sup> cfu/mL in PBS containing 30µg/mL ethidium bromide (Sigma-Aldrich). Fluorescence was measured immediately in a Fluostar Optima plate reader (BMG Labtech) using an excitation of 250nm and an emission of 605nm. Erythromycin susceptibility was determined using an Epsilometer-test (bioMérieux, Zaltbommel, The Netherlands). Bacteria were diluted to a 1 MacFarland suspension, swabbed onto Columbia blood agar plates, and an E-test deposited. Plates were incubated overnight, as described above, and at 24 hours the MIC was determined.

## **Supplemental Figure Legends**

# Supplemental Figure 1. Model of the Cas9/dual RNA complex mediating *FTN\_1103* repression. Cas9 associates with two small RNAs, tracrRNA and scaRNA. This complex is then targeted to the *FTN\_1103* transcript, encoding a bacterial lipoprotein (BLP), and ultimately mediates the repression of BLP production by altering the stability of its mRNA. Since BLP can be recognized by TLR2, leading to a proinflammatory innate immune response, the ability of Cas9 to act as a regulatory element against this transcript is critical for *Francisella* evasion of the innate immune response.

## Supplemental Figure 2. COG categories of genes identified as being involved in polymyxin B

**resistance.** COG categories were assigned to each locus identified within the screen as defined by the *Francisella novicida* U112 genome database through NCBI (Accession #: NC\_008601.1). Quantities of each COG category were plotted as percent of all categories identified within the screen.

Supplemental Figure 3. *FTN\_1254* and *FTN\_0109* contribute to *F. novicida* polymyxin resistance. Wild-type (WT), *FTN\_0544*, *FTN\_1254*, or *FTN\_0109* deletion mutants were grown overnight in TSB with or without polymyxin B (200 ug/mL). Percent growth compared to untreated cultures is plotted (n=3). \*\*;  $p \le 0.005$ , \*\*\*;  $p \le 0.001$ .

Supplemental Figure 4. Growth kinetics of the *cas9* deletion mutant in the presence of polymyxin B. Overnight cultures of wild-type (WT; circles) or the *cas9* deletion mutant (squares) were diluted to an  $OD_{600}$  of ~0.03 into the media containing indicated doses of polymyxin B in a 96-well plate. Cultures were incubated at 37°C with aeration in a Biotek Synergy Mx plate reader and  $OD_{600}$  was measured each hour for 18 hours (n=3).

Supplemental Figure 5. Complementation of the *cas9* deletion mutant restores polymyxin resistance. Wild-type (WT), *cas9* deletion mutant, or a *cas9*:complement strain were grown overnight

with or without polymyxin B (200 ug/mL). Percent growth compared to untreated cultures is plotted (n=3). \*\*;  $p \leq 0.005$ .

**Supplemental Figure 6. Other** *cas* **genes are not involved in polymyxin resistance.** Wild-type (WT) or deletion mutants in the indicated *cas* genes were grown overnight with or without polymyxin B (400 ug/mL). Percent growth compared to untreated cultures is plotted (n=3). \*\*;  $p \le 0.005$ 

**Supplemental Figure 7. Cas9 is not involved in modification of lipid A.** Total lipid A was analyzed by LC/MS from wild-type (WT), the *cas9* deletion mutant, or the *cas9*/1103 double deletion strain.

**Supplemental Figure 8. Cas9 is not involved in alteration of cell surface charge.** Cultures of wild-type (WT), the *cas9* deletion mutant, or the *cas9/1103* double deletion strain were subjected to zeta electrokinetic potential analysis. Data presented for each strain is pooled from 3 independent cultures, with multiple technical replicates.

Supplemental Figure 9. *FTN\_1103* regulation by tracrRNA and scaRNA is necessary for polymyxin resistance. (A) Wild-type (WT), tracrRNA or tracrRNA/*1103* deletion mutants, or (B) WT, scaRNA or scaRNA/*1103* deletion mutants, were grown overnight in TSB containing the indicated concentrations of polymyxin B. Percent growth compared to untreated cultures is plotted (n=3). Data presented was generated during the same experiment as Figures 1a, b, utilizing the same controls, and plotted separately for clarity. \*\*;  $p \leq 0.005$ .

**Supplemental Figure 10. Cas9 regulatory axis provides resistance to Triton X.** (A) Wild-type (WT), *cas9* and *cas9/1103* deletion mutants, (B) tracrRNA and tracrRNA/*1103* deletion mutants, or (C) scaRNA and scaRNA/*1103* deletion mutants were grown overnight in TSB, in the presence or absence of the non-ionic detergent Triton X (0.0125%). Percent growth compared to untreated cultures is plotted (n=3). Data

presented was generated during the same experiment, utilizing the same controls, and plotted separately for clarity. \*;  $p \leq 0.05$ .

Supplemental Figure 11. Cas9 regulatory axis is not required for resistance to hydrogen peroxide. (A) Wild-type (WT), *cas9* and *cas9/1103* deletion mutants, (B) WT, tracrRNA and tracrRNA/*1103* deletion mutants, or (C) WT, scaRNA and scaRNA/*1103* deletion mutants were grown overnight in TSB containing the indicated concentrations of hydrogen peroxide. Percent growth compared to untreated cultures is plotted (n=3). Data presented was generated during the same experiment, utilizing the same controls, and plotted separately for clarity. \*p > 0.05.

Supplemental Figure 12. Cas9 regulatory axis is required for resistance to kanamycin. Wild-type (WT), *cas9*, *cas9/1103*, tracrRNA, tracrRNA/*1103*, scaRNA, and scaRNA/*1103* deletion mutants were grown overnight in TSB containing the indicated concentrations of kanamycin. Percent growth compared to untreated cultures is plotted (n=3). \*p > 0.05, \*\*\*;  $p \le 0.001$ .

Supplemental Figure 13. Cas9 regulatory axis is required for resistance to streptomycin. Wild-type (WT), *cas9*, *cas9/1103*, tracrRNA, tracrRNA/*1103*, scaRNA, and scaRNA/*1103* deletion mutants were grown overnight in TSB containing the indicated concentrations of streptomycin. Percent growth compared to untreated cultures is plotted (n=3). \*p > 0.05.

**Supplemental Figure 14.** *cas9* mutant does not have altered viability during growth in broth. Prior to propidium iodide staining (Figure 1c), wild-type (WT), *cas9*, or *cas9/1103* deletion mutants were grown to mid-log phase in TSB, washed and plated to enumerate colony forming units (n=3).

Supplemental Figure 15. Cas9 regulatory axis mutants exhibit wild-type growth kinetics in rich or synthetic media. Wild-type (WT), *cas9*, tracrRNA, scaRNA, *cas9/1103*, tracrRNA/*1103* and

scaRNA/*1103* deletion mutants were grown in (A) TSB or (B) Chamberlain's defined media (CHB) for 15 hours, and  $OD_{600}$  was measured every hour (n=3).

Supplemental Figure 16. *FTN\_1103* regulation by tracrRNA and scaRNA is necessary for enhanced envelope integrity. Wild-type (WT), tracrRNA, tracrRNA/*1103*, scaRNA, or scaRNA/*1103* deletion mutants were grown to mid-log phase, washed, and stained with ethidium bromide. Fluorescence was measured at excitation 250nm and emission 605nm (n=3). \*\*;  $p \le 0.005$ , \*\*\*;  $p \le 0.001$ .

Supplemental Figure 17. *FTN\_1103* regulation by tracrRNA and scaRNA is necessary for enhanced envelope integrity during intracellular infection. (A) Bone marrow-derived macrophages were infected with wild-type (WT), tracrRNA, tracrRNA/*1103*, scaRNA, or scaRNA/*1103* deletion mutants at a multiplicity of infection (MOI) of 20:1 (bacteria per macrophage). At 4 hours post infection, macrophages were permeabilized with saponin and lysates were plated to enumerate intracellular bacterial levels (n=3). (B) Macrophages were infected as above, and at 4 hours post infection, macrophages were permeabilized with saponin and stained with anti-*Francisella* antibody (green), and propidium iodide (nucleic acids; red). Co-localization was quantified as no less than 50% PI overlap with *Francisella*, and 1,000 bacteria were counted for each strain. (C) Representative fluorescence micrographs of WT, tracrRNA, tracrRNA/*1103*, scaRNA, or scaRNA/*1103* deletion mutants. DAPI (DNA; blue), anti-*Francisella* antibody (green), and propidium iodide representative PI and anti-*Francisella* co-localization. \*\*;  $p \leq 0.005$ , \*\*\*;  $p \leq 0.001$ .

Supplemental Figure 18. *FTN\_1103* regulation by tracrRNA and scaRNA promotes evasion of the inflammasome. Wild-type (WT), ASC<sup>-/-</sup>, and TLR2<sup>-/-</sup>, knockout macrophages were infected with WT, tracrRNA, tracrRNA/*1103*, scaRNA, or scaRNA/*1103* deletion mutants at a multiplicity of infection (MOI) of 20:1. At 5.5 hours post infection, cells were assayed for cytotoxicity through LDH release (n=3). \*;  $p \le 0.05$ , \*\*;  $p \le 0.005$ , \*\*\*;  $p \le 0.001$ .

Supplemental Figure 19. Other CRISPR/Cas components are not required for evasion of the inflammasome. Wild-type bone marrow-derived macrophages were infected with wild-type (WT), *cas9*, *cas1*, *cas2*, *cas4*, tracrRNA, crRNA, or scaRNA deletion mutants at a multiplicity of infection (MOI) of 20:1. At 5.5 hours post infection, cells were assayed for cytotoxicity through LDH release (n=3). \*\*\*;  $p \leq 0.001$ .

Supplemental Figure 20. Sublethal treatment with polymyxin induces increased permeability without loss of bacterial viability. Wild-type bacteria were treated with  $40\mu$ g/mL polymyxin B for 30min, at 37°C with aeration. (A) Treated and untreated cultures were plated and colony forming units enumerated. (B) Treated and untreated cultures were grown to mid-log phase, washed, and stained with ethidium bromide and fluorescence measured (n=3). \*\*\*;  $p \le 0.001$ .

Supplemental Figure 21. Virulence of the *cas9* mutant is not restored in ASC<sup>-/-</sup> or TLR2<sup>-/-</sup> mice. (A) Wild-type (WT), ASC<sup>-/-</sup>, TLR2<sup>-/-</sup>, or ASC/TLR2-deficient mice were inoculated subcutaneously with 10<sup>5</sup> cfu of the *cas9* deletion strain. Forty-eight hours post infection, spleens were harvested and plated to quantify bacterial levels (n=5). (B, C) Groups of 5 (B) WT or TLR2<sup>-/-</sup> and (C) WT or ASC<sup>-/-</sup> mice were inoculated subcutaneously with 10<sup>8</sup> cfu of WT or *cas9* deletion strains. Mice were monitored for survival over 20 days. \*\*;  $p \leq 0.005$ .

**Supplemental Figure 22. ASC and TLR2 control inflammasome activation and cytokine response against** *cas9* **deletion mutants.** (A) Wild-type (WT), TLR2<sup>-/-</sup>, ASC<sup>-/-</sup> and ASC/TLR2-deficient bone marrow-derived macrophages were infected with wild-type (WT), *cas9*, or *cas9/1103* deletion mutants at a multiplicity of infection (MOI) of 20:1 (bacteria per macrophage). At 5.5 hours post infection, cells were assayed for cytotoxicity using the LDH release assay (n=3). (B) Identical infections as above were performed and at 4 hours post infection, infection supernatants collected, and ELISA performed for the pro-inflammatory cytokine IL-6 (n=3). \*;  $p \le 0.05$ , \*\*;  $p \le 0.005$ .

## Supplemental Figure 23. Campylobacter jejuni Cas9 controls envelope permeability and

**erythromycin resistance.** (A) Cultures of wild-type GB11 (WT) and the *cas9* deletion mutant were washed, stained with ethidium bromide, and fluorescence measured (n=4). (B) MIC breakpoints as determined by erythromycin E-test for WT or the *cas9* deletion mutant. \*\*\*;  $p \le 0.001$ .

## **Supplemental References**

- Llewellyn AC, Jones CL, Napier BA, Bina JE, & Weiss DS (2011) Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. (Translated from eng) *PLoS One* 6(9):e24201 (in eng).
- Llewellyn AC, *et al.* (2012) NaxD is a deacetylase required for lipid A modification and Francisella pathogenesis. (Translated from eng) *Mol Microbiol* 86(3):611-627 (in eng).
- 3. Kanistanon D, *et al.* (2008) A Francisella mutant in lipid A carbohydrate modification elicits protective immunity. (Translated from eng) *PLoS Pathog* 4(2):e24 (in eng).
- 4. Wang X, Karbarz MJ, McGrath SC, Cotter RJ, & Raetz CR (2004) MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of francisella novicida LpxE expressed in Escherichia coli. (Translated from eng) *J Biol Chem* 279(47):49470-49478 (in eng).
- Raynaud C, *et al.* (2007) Role of the wbt locus of Francisella tularensis in lipopolysaccharide Oantigen biogenesis and pathogenicity. (Translated from eng) *Infect Immun* 75(1):536-541 (in eng).
- Gallagher LA, *et al.* (2007) A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate. (Translated from eng) *Proc Natl Acad Sci U S A* 104(3):1009-1014 (in eng).
- Louwen R, *et al.* (2013) A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome. (Translated from Eng) *Eur J Clin Microbiol Infect Dis* 32(2):207-226 (in Eng).



## Supplemental Figure 2.



# **Supplemental Figure 3.**



# **Supplemental Figure 4.**



# **Supplemental Figure 5.**



**Supplemental Figure 6.** 



# **Supplemental Figure 7.**



**Supplemental Figure 8.** 



# **Supplemental Figure 9.**



# **Supplemental Figure 10.**



0%





**Supplemental Figure 11.** 





С

## **Supplemental Figure 12.**



# **Supplemental Figure 13.**



# **Supplemental Figure 14.**



# **Supplemental Figure 15.**



# **Supplemental Figure 16.**



**Supplemental Figure 17.** 





# **Supplemental Figure 18.**



# **Supplemental Figure 19.**



# **Supplemental Figure 20.**

Α Β Arbitrary Fluorescence Units (10<sup>3</sup>) 10<sup>10</sup> 20 \*\*\* 10<sup>9</sup>-10<sup>8</sup>-15 cfu/mL 107. 10 -106-10<sup>5</sup>-5 104-Polymy Ain B Treated Polymytin B Treated 10<sup>3</sup>-Untreated 0 Untreated

# **Supplemental Figure 21.**



# **Supplemental Figure 22.**



# **Supplemental Figure 23.**



| Locus    | <u>Name</u> | COG       | Description                                                                                     | <u>% WT Growth in Polymyxin</u> |
|----------|-------------|-----------|-------------------------------------------------------------------------------------------------|---------------------------------|
| FTN_0019 | руrВ        | COG0540F  | aspartate carbamoyltransferase                                                                  | 68.9                            |
| FTN_0021 | carA        | COG0505EF | carbamoyl phosphate synthase small subunit                                                      | 62.4                            |
| FTN_0036 | pyrD        | COG0167F  | dihydroorotate oxidase                                                                          | 68.7                            |
| FTN_0097 | -           | COG0814E  | hydroxy/aromatic amino acid permease<br>(HAAAP) family protein                                  | 73.0                            |
| FTN_0098 | gidB        | COG0357M  | 16S rRNA methyltransferase GidB                                                                 | 69.0                            |
| FTN_0109 | -           | -         | hypothetical protein FTN_0109                                                                   | 0.2                             |
| FTN_0113 | ribC        | COG0307H  | riboflavin synthase subunit alpha                                                               | 0.0                             |
| FTN_0132 | -           | -         | hypothetical protein FTN_0132                                                                   | 63.9                            |
| FTN_0177 | purH        | COG0138F  | bifunctional<br>phosphoribosylaminoimidazolecarboxamide<br>formyltransferase/IMP cyclohydrolase | 70.1                            |
| FTN_0178 | purA        | COG0104F  | adenylosuccinate synthetase                                                                     | 57.0                            |
| FTN_0196 | суоВ        | COG0843C  | cytochrome bo terminal oxidase subunit I                                                        | 73.4                            |
| FTN_0197 | суоС        | COG1845C  | cytochrome bo terminal oxidase subunit III                                                      | 65.7                            |
| FTN_0202 | pdxY        | COG2240H  | pyridoxal kinase                                                                                | 68.1                            |
| FTN_0296 | lysP        | COG0833E  | lysine:H+ symporter                                                                             | 28.5                            |
| FTN_0298 | glpX        | COG1494G  | fructose 1,6-bisphosphatase II                                                                  | 68.5                            |
| FTN_0300 | -           | COG1215M  | glycosyl transferase                                                                            | 63.5                            |
| FTN_0325 | -           | COG2854Q  | membrane protein                                                                                | 71.9                            |
| FTN_0330 | minD        | COG2894D  | septum site-determining protein MinD                                                            | 71.0                            |
| FTN_0331 | minC        | COG0850D  | septum site-determining protein MinC                                                            | 64.9                            |

Supplemental Table 1. Transposon mutants with increased sensitivity to polymyxin B

| FTN_0358 | rimO  | COG0621J  | ribosomal protein S12 methylthiotransferase                                                                 | 73.7 |
|----------|-------|-----------|-------------------------------------------------------------------------------------------------------------|------|
| FTN_0416 | lpxE  | COG0671I  | lipid A 1-phosphatase                                                                                       | 52.6 |
| FTN_0417 | folD  | COG0190H  | bifunctional 5,10-methylene-tetrahydrofolate<br>dehydrogenase/ 5,10-methylene-<br>tetrahydrofolate cyclohyd | 29.6 |
| FTN_0419 | purM  | COG0150F  | phosphoribosylaminoimidazole synthetase                                                                     | 72.6 |
| FTN_0421 | purN  | COG0299F  | phosphoribosylglycinamide formyltransferase                                                                 | 70.8 |
| FTN_0422 | purE  | COG0041F  | N5-carboxyaminoimidazole ribonucleotide<br>mutase                                                           | 69.0 |
| FTN_0427 | -     | -         | hypothetical protein FTN_0427                                                                               | 60.6 |
| FTN_0434 | parB  | COG1475K  | chromosome partition protein B                                                                              | 68.8 |
| FTN_0436 | -     | COG3240IR | hypothetical protein FTN_0436                                                                               | 68.4 |
| FTN_0444 | -     | -         | membrane protein                                                                                            | 48.1 |
| FTN_0494 | -     | -         | hypothetical protein FTN_0494                                                                               | 62.6 |
| FTN_0495 | -     | COG4692G  | BNR/Asp-box repeat-containing protein                                                                       | 67.0 |
| FTN_0507 | gcvP1 | COG0403E  | glycine dehydrogenase subunit 1                                                                             | 72.2 |
| FTN_0514 | pgm   | COG0033G  | phosphoglucomutase                                                                                          | 61.9 |
| FTN_0515 | glgC  | COG0448G  | glucose-1-phosphate adenylyltransferase                                                                     | 55.6 |
| FTN_0534 | -     | COG1289S  | hypothetical protein FTN_0534                                                                               | 74.4 |
| FTN_0544 | naxD  | COG3394S  | N-acetylhexosamine deacetylase                                                                              | 36.5 |
| FTN_0545 | -     | COG0463M  | glycosyl transferase                                                                                        | 4.3  |
| FTN_0546 | -     | COG1807M  | dolichyl-phosphate-mannose-protein<br>mannosyltransferase family protein                                    | 1.0  |
| FTN_0554 | -     | COG0219J  | RNA methyltransferase                                                                                       | 57.3 |
| FTN_0561 | араН  | COG0639T  | diadenosine tetraphosphatase                                                                                | 53.7 |

| FTN_0593 | sucD | COG0074C   | succinyl-CoA synthetase, alpha subunit                        | 72.0 |
|----------|------|------------|---------------------------------------------------------------|------|
| FTN_0594 | sucC | COG0045C   | succinyl-CoA synthetase subunit beta                          | 63.5 |
| FTN_0599 | -    | -          | hypothetical protein FTN_0599                                 | 55.6 |
| FTN_0624 | -    | COG0814E   | serine permease                                               | 74.0 |
| FTN_0651 | cdd  | COG0295F   | cytidine deaminase                                            | 69.0 |
| FTN_0669 | deoD | COG0813F   | purine nucleoside phosphorylase                               | 65.0 |
| FTN_0672 | secA | COG0653U   | preprotein translocase subunit SecA                           | 66.8 |
| FTN_0690 | deaD | COG0513LKJ | DEAD/DEAH box helicase                                        | 73.3 |
| FTN_0719 | -    | -          | hypothetical protein FTN_0719                                 | 60.9 |
| FTN_0728 | -    | COG0053P   | Co/Zn/Cd cation transporter                                   | 73.4 |
| FTN_0757 | cas9 | -          | CRISPR/Cas associated protein                                 | 69.9 |
| FTN_0772 | -    | COG05450   | hypothetical protein FTN_0772                                 | 72.5 |
| FTN_0806 | -    | COG1472G   | glycosyl hydrolase family protein                             | 60.0 |
| FTN_0814 | bioF | COG0156H   | 8-amino-7-oxononanoate synthase                               | 73.1 |
| FTN_0815 | bioB | COG0502H   | biotin synthase                                               | 74.4 |
| FTN_0816 | bioA | COG0161H   | adenosylmethionine-8-amino-7-oxononanoate<br>aminotransferase | 66.8 |
| FTN_0842 | aroG | COG0722E   | phospho-2-dehydro-3-deoxyheptonate aldolase                   | 68.3 |
| FTN_0848 | -    | COG0531E   | amino acid antiporter                                         | 65.0 |
| FTN_0855 | -    | -          | hypothetical protein FTN_0855                                 | 74.0 |
| FTN_0945 | rsuA | COG1187J   | 16S rRNA pseudouridine synthase                               | 50.1 |
| FTN_0998 | -    | COG2898S   | potassium channel protein                                     | 69.0 |
| FTN_0999 | udhA | COG1249C   | soluble pyridine nucleotide transhydrogenase                  | 71.0 |

| FTN_1016 | -     | COG1335Q  | hypothetical protein FTN_1016                                                        | 72.6 |
|----------|-------|-----------|--------------------------------------------------------------------------------------|------|
| FTN_1055 | lon   | COG04660  | DNA-binding, ATP-dependent protease La                                               | 70.8 |
| FTN_1056 | clpX  | COG12190  | ATP-dependent protease ATP-binding subunit<br>ClpX                                   | 5.1  |
| FTN_1057 | clpP  | COG0740OU | ATP-dependent Clp protease proteolytic subunit                                       | 64.1 |
| FTN_1058 | tig   | COG0544O  | trigger factor                                                                       | 74.0 |
| FTN_1064 | -     | COG1702T  | PhoH family protein ATPase                                                           | 72.5 |
| FTN_1066 | -     | COG4535P  | HlyC/CorC family transporter-associated protein                                      | 68.2 |
| FTN_1091 | aroA  | COG0128E  | 3-phosphoshikimate 1-carboxyvinyltransferase                                         | 59.4 |
| FTN_1107 | metlQ | COG1464P  | methionine uptake transporter (MUT) family protein, membrane and periplasmic protein | 69.7 |
| FTN_1111 | -     | COG0769M  | Mur ligase family protein                                                            | 64.3 |
| FTN_1133 | -     | -         | Ohr-like protein                                                                     | 72.3 |
| FTN_1146 | -     | COG0436E  | aspartate aminotransferase                                                           | 68.2 |
| FTN_1199 | -     | -         | hypothetical protein FTN_1199                                                        | 70.9 |
| FTN 1201 | сарВ  | COG0769M  | capsule biosynthesis protein CapB                                                    | 70.7 |
|          | -     | COG1011R  | haloacid dehalogenase-like hydrolase                                                 | 74.2 |
|          | -     | COG0438M  | glycosyl transferases group 1 family protein                                         | 73.3 |
| FTN_1213 | -     | COG1215M  | glycosyl transferase family protein                                                  | 65.5 |
| FTN_1217 | -     | COG1132V  | ABC transporter ATP-binding protein                                                  | 74.0 |
| FTN_1219 | galE  | COG1087M  | UDP-glucose 4-epimerase                                                              | 63.7 |
| FTN_1240 | -     | COG0271T  | hypothetical protein FTN_1240                                                        | 50.7 |
| FTN_1240 | -     | COG0271T  | hypothetical protein FTN_1240                                                        | 64.4 |

| FTN_1254 | -     | -         | hypothetical protein FTN_1254              | 64.7 |
|----------|-------|-----------|--------------------------------------------|------|
| FTN_1263 | comL  | COG4105R  | competence lipoprotein ComL                | 73.0 |
|          |       |           |                                            |      |
| FTN_1272 | -     | COG3104E  | proton-dependent oligopeptide transporter  | 68.0 |
|          |       |           | (POT) family protein, di- or tripeptide:H+ |      |
|          |       |           | symporter                                  |      |
| FTN_1277 | -     | COG1538MU | outer membrane efflux protein              | 59.5 |
| FTN_1311 | -     | -         | hypothetical protein FTN_1311              | 67.0 |
| FTN_1312 | -     | -         | hypothetical protein FTN_1312              | 74.7 |
| FTN_1313 | -     | -         | hypothetical protein FTN_1313              | 52.5 |
| FTN_1314 | -     | -         | hypothetical protein FTN_1314              | 70.9 |
| FTN_1315 | -     | -         | hypothetical protein FTN_1315              | 71.8 |
| FTN_1316 | -     | COG3455S  | hypothetical protein FTN_1316              | 74.2 |
| FTN_1317 | -     | -         | hypothetical protein FTN_1317              | 70.2 |
| FTN_1323 | iglB  | COG3517S  | intracellular growth locus protein B       | 74.7 |
| FTN_1421 | wbtH  | COG0367E  | glutamine amidotransferase/asparagine      | 72.5 |
|          |       |           | synthase                                   |      |
| FTN_1425 | wbtF  | COG0451MG | NAD dependent epimerase                    | 67.8 |
| FTN_1427 | wbtD  | COG0438M  | group 1 glycosyl transferase               | 59.5 |
| FTN_1470 | ispA  | COG0142H  | geranyl diphosphate synthase/farnesyl      | 2.0  |
|          |       |           | diphosphate synthase                       |      |
| FTN_1471 | pcs   | COG1183I  | phosphatidylcholine synthase               | 73.8 |
| FTN_1500 | -     | -         | hypothetical protein FTN_1500              | 66.5 |
| FTN_1513 | xerC  | COG4973L  | site-specific recombinase                  | 73.6 |
| FTN_1518 | relA  | COG0317TK | GDP pyrophosphokinase/GTP                  | 68.7 |
|          |       |           | pyrophosphokinase                          |      |
| FTN_1538 | groEL | COG0459O  | chaperonin GroEL                           | 71.5 |
| FTN_1551 | ampD  | COG3023V  | N-acetyl-anhydromuramyl-L-alanine amidase  | 57.8 |
| FTN_1597 | prfC  | COG4108J  | peptide chain release factor 3             | 57.0 |
| FTN_1602 | deoB  | COG1015G  | phosphopentomutase                         | 74.5 |
| FTN_1610 | -     | COG0841V  | RND efflux transporter                     | 74.4 |

| FTN_1633 | apt  | COG0503F | adenine phosphoribosyltransferase                        | 60.2 |
|----------|------|----------|----------------------------------------------------------|------|
| FTN_1653 | -    | -        | hypothetical protein FTN_1653                            | 74.7 |
| FTN_1699 | purL | COG0046F | phosphoribosylformylglycinamidine synthase               | 66.0 |
| FTN_1700 | purF | COG0034F | amidophosphoribosyltransferase                           | 73.8 |
| FTN_1715 | kdpD | COG2205T | two component regulator, sensor histidine<br>kinase kdpD | 61.7 |
| FTN_1743 | clpВ | COG0542O | chaperone clpB                                           | 70.5 |
| FTN_1745 | purT | COG0027F | phosphoribosylglycinamide formyltransferase 2            | 72.2 |
| FTN_1762 | -    | COG0488R | putative ABC transporter ATP-binding protein             | 68.5 |

| Locus Tag | <u>Gene</u><br>name | COG      | <u>Gene product</u>                                                                                      | <u>% WT growth in</u><br>polymyxin | Library Plate | Well |
|-----------|---------------------|----------|----------------------------------------------------------------------------------------------------------|------------------------------------|---------------|------|
| FTN_0113  | ribC                | COG0307H | riboflavin synthase subunit alpha                                                                        | 0                                  | NR-8043       | E03  |
| FTN_0109  | -                   | -        | hypothetical protein FTN_0109                                                                            | 0.2                                | NR-8048       | G06  |
| FTN_0546  | -                   | COG1807M | dolichyl-phosphate-mannose-protein mannosyltransferase family protein                                    | 1.0                                | NR-8060       | A06  |
| FTN_1470  | ispA                | COG0142H | geranyl diphosphate synthase/farnesyl diphosphate synthase                                               | 2.0                                | NR-8058       | F05  |
| FTN_0113  | ribC                | COG0307H | riboflavin synthase subunit alph                                                                         | 4.0                                | NR-8060       | C12  |
| FTN_0545  | -                   | COG0463M | glycosyl transferase                                                                                     | 4.3                                | NR-8040       | D09  |
| FTN_1056  | clpX                | COG1219O | ATP-dependent protease ATP-binding subunit ClpX                                                          | 5.1                                | NR-8061       | H09  |
| FTN_0545  | -                   | COG0463M | glycosyl transferase                                                                                     | 5.9                                | NR-8055       | G11  |
| FTN_0546  | -                   | COG1807M | dolichyl-phosphate-mannose-protein mannosyltransferase family protein                                    | 11.9                               | NR-8050       | D09  |
| FTN_0296  | lysP                | COG0833E | lysine:H+ symporter                                                                                      | 28.5                               | NR-8058       | A05  |
| FTN_0417  | folD                | COG0190H | bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-<br>methylene-tetrahydrofolate cyclohyd | 29.6                               | NR-8047       | G04  |
| FTN_0544  | naxD                | COG3394S | N-acetylhexosamine deacteylase                                                                           | 36.5                               | NR-8055       | F02  |
| FTN_0544  | naxD                | COG3394S | N-acetylhexosamine deacteylase                                                                           | 40.6                               | NR-8052       | G01  |
| FTN_0444  | -                   | -        | membrane protein                                                                                         | 48.1                               | NR-8061       | C10  |
| FTN_0945  | rsuA                | COG1187J | 16S rRNA pseudouridine synthase                                                                          | 50.1                               | NR-8064       | E06  |
| FTN_1240  | -                   | COG0271T | hypothetical protein FTN_1240                                                                            | 50.7                               | NR-8058       | C11  |
| FTN_0444  | -                   | -        | membrane protein                                                                                         | 51.4                               | NR-8047       | C03  |
| FTN_1313  | -                   | -        | hypothetical protein FTN_1313                                                                            | 52.5                               | NR-8046       | F07  |
| FTN_0416  | <i>lpxE</i>         | COG06711 | lipid A 1-phosphatase                                                                                    | 52.6                               | NR-8043       | E11  |
| FTN_0561  | apaH                | COG0639T | diadenosine tetraphosphatase                                                                             | 53.7                               | NR-8056       | H07  |
| FTN_0599  | -                   | -        | hypothetical protein FTN_0599                                                                            | 55.6                               | NR-8052       | G11  |
| FTN_0515  | glgC                | COG0448G | glucose-1-phosphate adenylyltransferase                                                                  | 55.6                               | NR-8046       | F05  |
| FTN_1597  | prfC                | COG4108J | peptide chain release factor 3                                                                           | 57.0                               | NR-8063       | F06  |
| FTN_0178  | purA                | COG0104F | adenylosuccinate synthetase                                                                              | 57.0                               | NR-8037       | A05  |

Supplemental Table 2. Percent wild-type growth of each transposon mutant in polymyxin B

| FTN_0554 | -           | COG0219J  | RNA methyltransferase                                 | 57.3 | NR-8049 | F08 |
|----------|-------------|-----------|-------------------------------------------------------|------|---------|-----|
| FTN_1551 | ampD        | COG3023V  | N-acetyl-anhydromuranmyl-L-alanine amidase            | 57.8 | NR-8048 | E10 |
| FTN_0178 | purA        | COG0104F  | adenylosuccinate synthetase                           | 59.2 | NR-8065 | G11 |
| FTN_1091 | aroA        | COG0128E  | 3-phosphoshikimate 1-carboxyvinyltransferase          | 59.4 | NR-8064 | E08 |
| FTN_1277 | -           | COG1538MU | outer membrane efflux protein                         | 59.5 | NR-8049 | G08 |
| FTN_1427 | wbtD        | COG0438M  | group 1 glycosyl transferase                          | 59.5 | NR-8065 | G01 |
| FTN_0806 | -           | COG1472G  | glycosyl hydrolase family protein                     | 60.0 | NR-8065 | C03 |
| FTN_1633 | apt         | COG0503F  | adenine phosphoribosyltransferase                     | 60.2 | NR-8064 | G01 |
| FTN_0427 | -           | -         | hypothetical protein FTN_0427                         | 60.6 | NR-8036 | D12 |
| FTN_0513 | glgB        | COG0296G  | glycogen branching protein                            | 60.9 | NR-8066 | D01 |
| FTN_0719 | -           | -         | hypothetical protein FTN_0719                         | 60.9 | NR-8047 | A05 |
| FTN_1715 | kdpD        | COG2205T  | two component regulator, sensor histidine kinase kdpD | 61.7 | NR-8065 | D11 |
| FTN_0416 | <i>lpxE</i> | COG0671I  | lipid A 1-phosphatase                                 | 61.8 | NR-8054 | B11 |
| FTN_0514 | pgm         | COG0033G  | phosphoglucomutase                                    | 61.9 | NR-8064 | H04 |
| FTN_0021 | carA        | COG0505EF | carbamoyl phosphate synthase small subunit            | 62.4 | NR-8064 | D08 |
| FTN_0494 | -           | -         | hypothetical protein FTN_0494                         | 62.6 | NR-8036 | D02 |
| FTN_0594 | sucC        | COG0045C  | succinyl-CoA synthetase subunit beta                  | 63.5 | NR-8040 | G06 |
| FTN_0300 | -           | COG1215M  | glycosyl transferase                                  | 63.5 | NR-8060 | F06 |
| FTN_1219 | galE        | COG1087M  | UDP-glucose 4-epimerase                               | 63.7 | NR-8064 | C10 |
| FTN_0132 | -           | -         | hypothetical protein FTN_0132                         | 63.9 | NR-8036 | A02 |
| FTN_1057 | clpP        | COG0740OU | ATP-dependent Clp protease proteolytic subunit        | 64.1 | NR-8044 | E02 |
| FTN_1111 | -           | COG0769M  | Mur ligase family protein                             | 64.3 | NR-8054 | B01 |
| FTN_1240 | -           | COG0271T  | hypothetical protein FTN_1240                         | 64.4 | NR-8049 | E10 |
| FTN_1254 | -           | -         | hypothetical protein FTN_1254                         | 64.7 | NR-8065 | C05 |
| FTN_0331 | minC        | COG0850D  | septum site-determining protein MinC                  | 64.9 | NR-8060 | F09 |
| FTN_0945 | rsuA        | COG1187J  | 16S rRNA pseudouridine synthase                       | 65.0 | NR-8047 | E08 |
| FTN_0848 | -           | COG0531E  | amino acid antiporter                                 | 65.0 | NR-8054 | C07 |
| FTN_0669 | deoD        | COG0813F  | purine nucleoside phosphorylase                       | 65.0 | NR-8065 | E02 |
| FTN_1213 | -           | COG1215M  | glycosyl transferase family protein                   | 65.5 | NR-8066 | D03 |
| FTN_0296 | lysP        | COG0833E  | lysine:H+ symporter                                   | 65.7 | NR-8058 | B04 |
| FTN_0506 | gcvH        | COG0509E  | glycine cleavage system H protein                     | 65.7 | NR-8061 | C05 |

| FTN_0197 | cyoC        | COG1845C  | cytochrome bo terminal oxidase subunit III                                                        | 65.7 | NR-8056 | C11 |
|----------|-------------|-----------|---------------------------------------------------------------------------------------------------|------|---------|-----|
| FTN_1699 | purL        | COG0046F  | phosphoribosylformylglycinamidine synthase                                                        | 66.0 | NR-8065 | E03 |
| FTN_0494 | -           | -         | hypothetical protein FTN_0494                                                                     | 66.5 | NR-8057 | B06 |
| FTN_1500 | -           | -         | hypothetical protein FTN_1500                                                                     | 66.5 | NR-8064 | C05 |
| FTN_0672 | secA        | COG0653U  | preprotein translocase subunit SecA                                                               | 66.8 | NR-8046 | G03 |
| FTN_0816 | <i>bioA</i> | COG0161H  | adenosylmethionine-8-amino-7-oxononanoate aminotransferase                                        | 66.8 | NR-8047 | H01 |
| FTN_0495 | -           | COG4692G  | BNR/Asp-box repeat-containing protein                                                             | 67.0 | NR-8048 | H03 |
| FTN_1311 | -           | -         | hypothetical protein FTN_1311                                                                     | 67.0 | NR-8051 | G10 |
| FTN_1357 | recB        | COG1074L  | ATP-dependent exonuclease V subunit beta                                                          | 67.2 | NR-8053 | B08 |
| FTN_1056 | clpX        | COG1219O  | ATP-dependent protease ATP-binding subunit ClpX                                                   | 67.3 | NR-8036 | A06 |
| FTN_0561 | apaH        | COG0639T  | diadenosine tetraphosphatase                                                                      | 67.4 | NR-8056 | H07 |
| FTN_1551 | ampD        | COG3023V  | N-acetyl-anhydromuranmyl-L-alanine amidase                                                        | 67.7 | NR-8066 | E04 |
| FTN_0296 | lysP        | COG0833E  | lysine:H+ symporter                                                                               | 67.7 | NR-8046 | E12 |
| FTN_1425 | wbtF        | COG0451MG | NAD dependent epimerase                                                                           | 67.8 | NR-8066 | E05 |
| FTN_1272 | -           | COG3104E  | proton-dependent oligopeptide transporter (POT) family protein, di- or<br>tripeptide:H+ symporter | 68.0 | NR-8050 | B10 |
| FTN_0202 | pdxY        | COG2240H  | pyridoxal kinase                                                                                  | 68.1 | NR-8054 | D06 |
| FTN_1066 | -           | COG4535P  | HlyC/CorC family transporter-associated protein                                                   | 68.2 | NR-8062 | G03 |
| FTN_1146 | -           | COG0436E  | aspartate aminotransferase                                                                        | 68.2 | NR-8036 | B07 |
| FTN_0842 | aroG        | COG0722E  | phospho-2-dehydro-3-deoxyheptonate aldolase                                                       | 68.3 | NR-8066 | G04 |
| FTN_0436 | -           | COG3240IR | hypothetical protein FTN_0436                                                                     | 68.4 | NR-8062 | C03 |
| FTN_0848 | -           | COG0531E  | amino acid antiporter                                                                             | 68.4 | NR-8036 | D05 |
| FTN_0298 | glpX        | COG1494G  | fructose 1,6-bisphosphatase II                                                                    | 68.5 | NR-8056 | D09 |
| FTN_1762 | -           | COG0488R  | putative ABC transporter ATP-binding protein                                                      | 68.5 | NR-8058 | F09 |
| FTN_0036 | pyrD        | COG0167F  | dihydroorotate oxidase                                                                            | 68.7 | NR-8066 | G12 |
| FTN_1518 | relA        | COG0317TK | GDP pyrophosphokinase/GTP pyrophosphokinase                                                       | 68.7 | NR-8055 | F10 |
| FTN_1091 | aroA        | COG0128E  | 3-phosphoshikimate 1-carboxyvinyltransferase                                                      | 68.7 | NR-8058 | D09 |
| FTN_0434 | parB        | COG1475K  | chromosome partition protein B                                                                    | 68.8 | NR-8065 | H12 |
| FTN_0019 | pyrB        | COG0540F  | aspartate carbamoyltransferase                                                                    | 68.9 | NR-8037 | C03 |
| FTN_0098 | gidB        | COG0357M  | 16S rRNA methyltransferase GidB                                                                   | 69.0 | NR-8055 | D05 |
| FTN_0651 | cdd         | COG0295F  | cytidine deaminase                                                                                | 69.0 | NR-8055 | D09 |

| FTN_0422      | purE  | COG0041F  | N5-carboxyaminoimidazole ribonucleotide mutase                                               | 69.0 | NR-8066 | H09 |
|---------------|-------|-----------|----------------------------------------------------------------------------------------------|------|---------|-----|
| FTN_0998      | -     | COG2898S  | potassium channel protein                                                                    | 69.0 | NR-8059 | C12 |
| FTN_1470      | ispA  | COG0142H  | geranyl diphosphate synthase/farnesyl diphosphate synthase                                   | 69.2 | NR-8046 | B03 |
| FTN_1107      | metlQ | COG1464P  | methionine uptake transporter (MUT) family protein, membrane and periplasmic protein         | 69.7 | NR-8054 | G08 |
| FTN 0098      | gidB  | COG0357M  | 16S rRNA methyltransferase GidB                                                              | 69.8 | NR-8046 | C06 |
|               | cas9  | -         | CRISPR/Cas associated protein                                                                | 69.9 | NR-8058 | H09 |
| FTN_1715      | kdpD  | COG2205T  | two component regulator, sensor histidine kinase kdpD                                        | 69.9 | NR-8043 | H03 |
| FTN 1038      | -     | COG0670R  | hypothetical protein FTN 1038                                                                | 70.0 | NR-8056 | H01 |
| _<br>FTN_0177 | purH  | COG0138F  | bifunctional phosphoribosylaminoimidazolecarboxamide<br>formyltransferase/IMP cyclohydrolase | 70.1 | NR-8046 | D12 |
| FTN 0554      | -     | COG0219J  | RNA methyltransferase                                                                        | 70.1 | NR-8066 | A05 |
| FTN 1317      | -     | -         | hypothetical protein FTN 1317                                                                | 70.2 | NR-8062 | E10 |
|               | cas9  | -         | CRISPR/Cas associated protein                                                                | 70.3 | NR-8056 | D11 |
|               | clpB  | COG0542O  | chaperone clpB                                                                               | 70.5 | NR-8064 | F04 |
| FTN_1201      | capB  | COG0769M  | capsule biosynthesis protein CapB                                                            | 70.7 | NR-8053 | E03 |
| FTN_0421      | purN  | COG0299F  | phosphoribosylglycinamide formyltransferase                                                  | 70.8 | NR-8064 | D04 |
| FTN_1055      | lon   | COG0466O  | DNA-binding, ATP-dependent protease La                                                       | 70.8 | NR-8045 | E04 |
| FTN_1199      | -     | -         | hypothetical protein FTN_1199                                                                | 70.9 | NR-8054 | G10 |
| FTN_1314      | -     | -         | hypothetical protein FTN_1314                                                                | 70.9 | NR-8054 | A06 |
| FTN_0330      | minD  | COG2894D  | septum site-determining protein MinD                                                         | 71.0 | NR-8043 | D01 |
| FTN_0999      | udhA  | COG1249C  | soluble pyridine nucleotide transhydrogenase                                                 | 71.0 | NR-8053 | G08 |
| FTN_1057      | clpP  | COG0740OU | ATP-dependent Clp protease proteolytic subunit                                               | 71.3 | NR-8057 | D05 |
| FTN_1538      | groEL | COG0459O  | chaperonin GroEL                                                                             | 71.5 | NR-8047 | E04 |
| FTN_0515      | glgC  | COG0448G  | glucose-1-phosphate adenylyltransferase                                                      | 71.6 | NR-8065 | C02 |
| FTN_1315      | -     | -         | hypothetical protein FTN_1315                                                                | 71.8 | NR-8062 | A05 |
| FTN_0325      | -     | COG2854Q  | membrane protein                                                                             | 71.9 | NR-8053 | E09 |
| FTN_0593      | sucD  | COG0074C  | succinyl-CoA synthetase, alpha subunit                                                       | 72.0 | NR-8044 | A06 |
| FTN_0507      | gcvP1 | COG0403E  | glycine dehydrogenase subunit 1                                                              | 72.2 | NR-8063 | H03 |

| FTN_1745 | purT | COG0027F   | phosphoribosylglycinamide formyltransferase 2                                                | 72.2 | NR-8063 | H08 |
|----------|------|------------|----------------------------------------------------------------------------------------------|------|---------|-----|
| FTN_1133 | -    | -          | Ohr-like protein                                                                             | 72.3 | NR-8046 | E04 |
| FTN_1357 | recB | COG1074L   | ATP-dependent exonuclease V subunit beta                                                     | 72.3 | NR-8042 | E09 |
| FTN_1064 | -    | COG1702T   | PhoH family protein ATPase                                                                   | 72.5 | NR-8035 | A04 |
| FTN_0772 | -    | COG0545O   | hypothetical protein FTN_0772                                                                | 72.5 | NR-8056 | C02 |
| FTN_1421 | wbtH | COG0367E   | glutamine amidotransferase/asparagine synthase                                               | 72.5 | NR-8062 | H02 |
| FTN_1016 | -    | COG1335Q   | hypothetical protein FTN_1016                                                                | 72.6 | NR-8056 | F09 |
| FTN_0419 | purM | COG0150F   | phosphoribosylaminoimidazole synthetase                                                      | 72.6 | NR-8064 | D05 |
| FTN_0132 | -    | -          | hypothetical protein FTN_0132                                                                | 72.8 | NR-8036 | C02 |
| FTN_0177 | purH | COG0138F   | bifunctional phosphoribosylaminoimidazolecarboxamide<br>formyltransferase/IMP cyclohydrolase | 72.8 | NR-8065 | F08 |
| FTN_0097 | -    | COG0814E   | hydroxy/aromatic amino acid permease (HAAAP) family protein                                  | 73.0 | NR-8048 | F08 |
| FTN_1263 | comL | COG4105R   | competence lipoprotein ComL                                                                  | 73.0 | NR-8048 | G09 |
| FTN_0331 | minC | COG0850D   | septum site-determining protein MinC                                                         | 73.0 | NR-8042 | F06 |
| FTN_0814 | bioF | COG0156H   | 8-amino-7-oxononanoate synthase                                                              | 73.1 | NR-8056 | F05 |
| FTN_1317 | -    | -          | hypothetical protein FTN_1317                                                                | 73.1 | NR-8036 | B06 |
| FTN_0690 | deaD | COG0513LKJ | DEAD/DEAH box helicase                                                                       | 73.3 | NR-8060 | D08 |
| FTN_1212 | -    | COG0438M   | glycosyl transferases group 1 family protein                                                 | 73.3 | NR-8062 | A01 |
| FTN_0021 | carA | COG0505EF  | carbamoyl phosphate synthase small subunit                                                   | 73.3 | NR-8046 | A09 |
| FTN_0196 | суоВ | COG0843C   | cytochrome bo terminal oxidase subunit I                                                     | 73.4 | NR-8052 | E03 |
| FTN_0728 | -    | COG0053P   | Co/Zn/Cd cation transporter                                                                  | 73.4 | NR-8047 | G03 |
| FTN_0594 | sucC | COG0045C   | succinyl-CoA synthetase subunit beta                                                         | 73.5 | NR-8057 | E02 |
| FTN_1513 | xerC | COG4973L   | site-specific recombinase                                                                    | 73.6 | NR-8048 | E09 |
| FTN_1254 | -    | -          | hypothetical protein FTN_1254                                                                | 73.6 | NR-8066 | C05 |
| FTN_0358 | rimO | COG0621J   | ribosomal protein S12 methylthiotransferase                                                  | 73.7 | NR-8055 | E09 |
| FTN_1471 | pcs  | COG1183I   | phosphatidylcholine synthase                                                                 | 73.8 | NR-8040 | D11 |
| FTN_1700 | purF | COG0034F   | amidophosphoribosyltransferase                                                               | 73.8 | NR-8055 | B12 |
| FTN_1058 | tig  | COG0544O   | trigger factor                                                                               | 74.0 | NR-8053 | B10 |
| FTN_1217 | -    | COG1132V   | ABC transporter ATP-binding protein                                                          | 74.0 | NR-8053 | G01 |
| FTN_0624 | -    | COG0814E   | serine permease                                                                              | 74.0 | NR-8064 | H07 |

| FTN_0855 | -    | -         | hypothetical protein FTN_0855                    | 74.0 | NR-8062 | D10 |
|----------|------|-----------|--------------------------------------------------|------|---------|-----|
| FTN_1211 | -    | COG1011R  | haloacid dehalogenase-like hydrolase             | 74.2 | NR-8053 | G04 |
| FTN_1316 | -    | COG3455S  | hypothetical protein FTN_1316                    | 74.2 | NR-8055 | A04 |
| FTN_0534 | -    | COG1289S  | hypothetical protein FTN_0534                    | 74.4 | NR-8054 | H05 |
| FTN_0815 | bioB | COG0502H  | biotin synthase                                  | 74.4 | NR-8056 | B10 |
| FTN_1610 | -    | COG0841V  | RND efflux transporter                           | 74.4 | NR-8054 | B03 |
| FTN_1602 | deoB | COG1015G  | phosphopentomutase                               | 74.5 | NR-8051 | B10 |
| FTN_0436 | -    | COG3240IR | hypothetical protein FTN_0436                    | 74.6 | NR-8040 | H04 |
| FTN_1055 | lon  | COG0466O  | DNA-binding, ATP-dependent protease La           | 74.7 | NR-8051 | E07 |
| FTN_1312 | -    | -         | hypothetical protein FTN_1312                    | 74.7 | NR-8048 | D06 |
| FTN_1653 | -    | -         | hypothetical protein FTN_1653                    | 74.7 | NR-8047 | A11 |
| FTN_1323 | iglB | COG3517S  | intracellular growth locus protein B             | 74.7 | NR-8055 | A06 |
| FTN_1655 | rluC | COG0564J  | ribosomal large subunit pseudouridine synthase C | 75.0 | NR-8064 | A09 |
| FTN_1684 | -    | COG0019E  | diaminopimelate decarboxylase                    | 75.0 | NR-8064 | C12 |
| FTN_0183 | -    | COG0803P  | periplasmic solute binding family protein        | 75.0 | NR-8055 | A09 |
| FTN_0822 | -    | COG0147EH | para-aminobenzoate synthase component I          | 75.1 | NR-8040 | C06 |
| FTN_0298 | glpX | COG1494G  | fructose 1,6-bisphosphatase II                   | 75.2 | NR-8047 | D09 |
| FTN_0624 | -    | COG0814E  | serine permease                                  | 75.3 | NR-8054 | A08 |
| FTN_0666 | uvrA | COG0178L  | excinuclease ABC subunit A                       | 75.5 | NR-8066 | D09 |
| FTN_1558 | xerD | COG4974L  | site-specific recombinase                        | 75.5 | NR-8043 | C10 |
| FTN_0096 | -    | COG3619S  | hypothetical protein FTN_0096                    | 75.6 | NR-8048 | E08 |
| FTN_0429 | -    | COG4372S  | hypothetical protein FTN_0429                    | 75.6 | NR-8048 | G12 |
| FTN_0506 | gcvH | COG0509E  | glycine cleavage system H protein                | 75.6 | NR-8049 | G01 |
| FTN_1066 | -    | COG4535P  | HlyC/CorC family transporter-associated protein  | 75.7 | NR-8045 | B05 |
| FTN_1091 | aroA | COG0128E  | 3-phosphoshikimate 1-carboxyvinyltransferase     | 75.8 | NR-8046 | A01 |
| FTN_0109 | -    | -         | hypothetical protein FTN_0109                    | 76.0 | NR-8054 | E12 |
| FTN_0122 | recA | COG0468L  | recombinase A                                    | 76.0 | NR-8035 | D07 |
| FTN_1500 | -    | -         | hypothetical protein FTN_1500                    | 76.3 | NR-8048 | C07 |
| FTN_1313 | -    | -         | hypothetical protein FTN_1313                    | 76.4 | NR-8057 | F02 |
| FTN_0122 | recA | COG0468L  | recombinase A                                    | 76.5 | NR-8066 | E09 |
| FTN_1050 | hflX | COG2262R  | protease, GTP-binding subunit                    | 76.6 | NR-8058 | A04 |
| FTN_1097 | -    | COG1335Q  | isochorismatase hydrolase family protein         | 76.6 | NR-8054 | F03 |

| FTN_1200 | capC  | -         | capsule biosynthesis protein CapC                                                    | 76.6 | NR-8052 | G05 |
|----------|-------|-----------|--------------------------------------------------------------------------------------|------|---------|-----|
| FTN_1318 | -     | -         | hypothetical protein FTN_1318                                                        | 76.6 | NR-8054 | F08 |
| FTN_1558 | xerD  | COG4974L  | site-specific recombinase                                                            | 76.6 | NR-8053 | A03 |
| FTN_0504 | -     | COG1982E  | lysine decarboxylase                                                                 | 76.6 | NR-8066 | D07 |
| FTN_0289 | proQ  | COG3109T  | activator of osmoprotectant transporter ProP                                         | 76.7 | NR-8036 | D01 |
| FTN_0821 | -     | COG0318IQ | AMP-binding protein                                                                  | 76.8 | NR-8036 | E05 |
| FTN_0728 | -     | COG0053P  | Co/Zn/Cd cation transporter                                                          | 76.9 | NR-8053 | A07 |
| FTN_1617 | -     | COG0642T  | two-component regulator, sensor histidine kinase                                     | 76.9 | NR-8054 | A01 |
| FTN_1133 | -     | -         | Ohr-like protein                                                                     | 76.9 | NR-8059 | G08 |
| FTN_1582 | -     | -         | hypothetical protein FTN_1582                                                        | 76.9 | NR-8060 | B01 |
| FTN_0358 | rimO  | COG0621J  | ribosomal protein S12 methylthiotransferase                                          | 77.0 | NR-8048 | E03 |
| FTN_0330 | minD  | COG2894D  | septum site-determining protein MinD                                                 | 77.1 | NR-8043 | C09 |
| FTN_1277 | -     | COG1538MU | outer membrane efflux protein                                                        | 77.2 | NR-8054 | F05 |
| FTN_1608 | dsbB  | COG1495O  | disulfide bond formation protein                                                     | 77.3 | NR-8064 | A08 |
| FTN_0210 | -     | -         | hypothetical protein FTN_0210                                                        | 77.3 | NR-8042 | E07 |
| FTN_0419 | purM  | COG0150F  | phosphoribosylaminoimidazole synthetase                                              | 77.4 | NR-8042 | E12 |
| FTN_0495 | -     | COG4692G  | BNR/Asp-box repeat-containing protein                                                | 77.4 | NR-8061 | D05 |
| FTN_1107 | metlQ | COG1464P  | methionine uptake transporter (MUT) family protein, membrane and periplasmic protein | 77.4 | NR-8065 | F04 |
| FTN_0119 | -     | COG2825M  | hypothetical protein FTN_0119                                                        | 77.5 | NR-8057 | D03 |
| FTN_1146 | -     | COG0436E  | aspartate aminotransferase                                                           | 77.5 | NR-8057 | B10 |
| FTN_0337 | fumA  | COG1951C  | fumerate hydratase                                                                   | 77.6 | NR-8045 | D06 |
| FTN_1699 | purL  | COG0046F  | phosphoribosylformylglycinamidine synthase                                           | 77.6 | NR-8040 | D02 |
| FTN_1242 | -     | COG0586S  | DedA family protein                                                                  | 77.6 | NR-8052 | B12 |
| FTN_0234 | pgsA  | COG0558I  | phosphatidylglycerophosphate synthetase                                              | 77.6 | NR-8040 | B01 |
| FTN_0720 | -     | COG1414K  | IclR family transcriptional regulator                                                | 77.6 | NR-8054 | G01 |
| FTN_1750 | -     | COG0204I  | acyltransferase                                                                      | 77.7 | NR-8044 | B05 |
| FTN_0297 | -     | COG2945R  | hypothetical protein FTN_0297                                                        | 77.8 | NR-8062 | B05 |
| FTN_1318 | -     | -         | hypothetical protein FTN_1318                                                        | 77.8 | NR-8048 | H06 |
| FTN_1209 | cphB  | COG4242QP | cyanophycinase                                                                       | 77.8 | NR-8055 | F05 |
| FTN_1362 | -     | -         | hypothetical protein FTN_1362                                                        | 77.9 | NR-8055 | E08 |
| FTN_1362 | -     | -         | hypothetical protein FTN_1362                                                        | 78.0 | NR-8038 | G09 |

| FTN 1322             | ialC         | _             | intracellular growth locus protein C                              | 78.1         | NR-8052 | H02        |
|----------------------|--------------|---------------|-------------------------------------------------------------------|--------------|---------|------------|
| FTN 1426             | whtF         | COG0677M      | LIDP-glucose/GDP-mannose dehydrogenase                            | 78.1         | NR-8054 | H102       |
| FTN_0728             | -            | COG0053P      | $C_0/7n/Cd$ cation transporter                                    | 78.1         | NR-8048 | H04        |
| FTN 1326             | anmK         | COG23770      | anhydro-N-acetylmuramic acid kinase                               | 78.1         | NR-8048 | C11        |
| FTN_0020             | carR         | COG0458FF     | carbamovl phosphate synthase large subunit                        | 78.2         | NR-8043 | D03        |
| FTN_0756             | fon A        | COG2885M      | OmnA family protein                                               | 78.3         | NR-8063 | G12        |
| FTN 1219             | galE         | COG1087M      | LIDP-glucose 4-enimerase                                          | 78.3         | NR-8064 | E10        |
| FTN 1425             | gui£<br>whtF | COG0451MG     | NAD dependent enimerase                                           | 78.3         | NR-8040 | E10<br>E08 |
| FTN_1423             | aalF         | COG1087M      | LIDP glucose 4 enimerase                                          | 78.3         | NR-8050 | C05        |
| FTN_1219             | guiL         | CO0108/101    | hypothetical protein FTN 0210                                     | 78.5         | NR-8030 | D07        |
| FTN_0210<br>FTN_1613 | -            | -<br>COG1610V | LIG1 family pentidase                                             | 78.4<br>78.4 | NR-8042 | D07        |
| FTN_1656             | -            | COG1485P      |                                                                   | 78.5         | NR-8040 | D11<br>D11 |
| FTN_1050             | -<br>fimT    | COG4070NU     | All asc<br>Type IV nili, nilys assembly protein                   | 78.5         | NR-8050 | A06        |
| FIN_0004             | jim1<br>tia  | COC05440      | trigger fector                                                    | 78.5         | NR-8037 | A00        |
| FTN_1038             | lig          | COG03440      |                                                                   | /8.0         | NR-8040 | A00        |
| FIN_0560             | KSGA         | COG0030J      | dimethyladenosine transferase                                     | /8./         | NR-8053 | D06        |
| FTN_0210             | -            | -             | hypothetical protein FTN_0210                                     | /8./         | NR-8063 | G07        |
| FTN_1273             | -            | COG0318IQ     | long chain fatty acid CoA ligase                                  | 78.8         | NR-8066 | A07        |
| FTN_0427             | -            | -             | hypothetical protein FTN_0427                                     | 78.9         | NR-8054 | A05        |
| FTN_0429             | -            | COG4372S      | hypothetical protein FTN_0429                                     | 78.9         | NR-8053 | F10        |
| FTN_1090             | -            | -             | hypothetical protein FTN_1090                                     | 79.0         | NR-8036 | C05        |
| FTN_1264             | rluD         | COG0564J      | ribosomal large subunit pseudouridine synthase D                  | 79.0         | NR-8065 | C11        |
| FTN_1201             | capB         | COG0769M      | capsule biosynthesis protein CapB                                 | 79.0         | NR-8044 | C01        |
| FTN_1617             | -            | COG0642T      | two-component regulator, sensor histidine kinase                  | 79.0         | NR-8042 | E05        |
| FTN_0096             | -            | COG3619S      | hypothetical protein FTN_0096                                     | 79.1         | NR-8057 | C09        |
| FTN_1309             | <i>pdpA</i>  | -             | hypothetical protein FTN_1309                                     | 79.1         | NR-8065 | E06        |
| FTN_1029             | -            | COG3155Q      | isoprenoid biosynthesis protein with amidotransferase-like domain | 79.2         | NR-8057 | F06        |
| FTN_0505             | gcvT         | COG0404E      | glycine cleavage system aminomethyltransferase T                  | 79.3         | NR-8041 | C06        |
| FTN_1209             | cphB         | COG4242QP     | cyanophycinase                                                    | 79.4         | NR-8038 | E10        |
| FTN_1048             | hflK         | COG0330O      | HflK-HflC membrane protein complex, HflK                          | 79.5         | NR-8041 | E03        |
| FTN_0560             | ksgA         | COG0030J      | dimethyladenosine transferase                                     | 79.5         | NR-8056 | C05        |

| FTN_0689 | ppiC  | COG0760O   | parvulin-like peptidyl-prolyl isomerase domain-containing protein | 79.6 | NR-8059 | D08 |
|----------|-------|------------|-------------------------------------------------------------------|------|---------|-----|
| FTN_0534 | -     | COG1289S   | hypothetical protein FTN_0534                                     | 79.6 | NR-8047 | F04 |
| FTN_1513 | xerC  | COG4973L   | site-specific recombinase                                         | 79.6 | NR-8065 | E12 |
| FTN_1684 | -     | COG0019E   | diaminopimelate decarboxylase                                     | 79.6 | NR-8064 | E12 |
| FTN_1111 | -     | COG0769M   | Mur ligase family protein                                         | 79.6 | NR-8040 | F04 |
| FTN_0593 | sucD  | COG0074C   | succinyl-CoA synthetase, alpha subunit                            | 79.7 | NR-8057 | H02 |
| FTN_0893 | -     | -          | hypothetical protein FTN_0893                                     | 79.7 | NR-8061 | D08 |
| FTN_1324 | iglA  | COG3516S   | intracellular growth locus protein A                              | 79.7 | NR-8061 | A04 |
| FTN_0690 | deaD  | COG0513LKJ | DEAD/DEAH box helicase                                            | 79.8 | NR-8041 | G12 |
| FTN_1586 | -     | COG2814G   | major facilitator superfamily sugar transporter                   | 79.8 | NR-8051 | B07 |
| FTN_1705 | -     | COG0826O   | U32 family peptidase                                              | 79.8 | NR-8047 | E01 |
| FTN_0672 | secA  | COG0653U   | preprotein translocase subunit SecA                               | 79.8 | NR-8052 | F04 |
| FTN_1715 | kdpD  | COG2205T   | two component regulator, sensor histidine kinase kdpD             | 79.8 | NR-8055 | B07 |
| FTN_1064 | -     | COG1702T   | PhoH family protein ATPase                                        | 79.9 | NR-8061 | E03 |
| FTN_0514 | pgm   | COG0033G   | phosphoglucomutase                                                | 80.1 | NR-8045 | C12 |
| FTN_1218 | -     | COG0438M   | group 1 glycosyl transferase                                      | 80.1 | NR-8062 | E08 |
| FTN_1433 | -     | -          | hypothetical protein FTN_1433                                     | 80.1 | NR-8060 | B06 |
| FTN_0599 | -     | -          | hypothetical protein FTN_0599                                     | 80.1 | NR-8066 | G06 |
| FTN_1613 | -     | COG1619V   | U61 family peptidase                                              | 80.1 | NR-8057 | H10 |
| FTN_1313 | -     | -          | hypothetical protein FTN_1313                                     | 80.4 | NR-8043 | D06 |
| FTN_0494 | -     | -          | hypothetical protein FTN_0494                                     | 80.4 | NR-8063 | C09 |
| FTN_1038 | -     | COG0670R   | hypothetical protein FTN_1038                                     | 80.4 | NR-8036 | D07 |
| FTN_1382 | -     | -          | hypothetical protein FTN_1382                                     | 80.6 | NR-8055 | C03 |
| FTN_1548 | groEL | COG0459O   | chaperonin GroEL                                                  | 80.6 | NR-8040 | B07 |
| FTN_0818 | -     | COG0657I   | lipase/esterase                                                   | 80.6 | NR-8036 | D08 |
| FTN_1316 | -     | COG3455S   | hypothetical protein FTN_1316                                     | 80.6 | NR-8040 | F08 |
| FTN_1097 | -     | COG1335Q   | isochorismatase hydrolase family protein                          | 80.7 | NR-8052 | A01 |
| FTN_0756 | fopA  | COG2885M   | OmpA family protein                                               | 80.7 | NR-8061 | H10 |
| FTN_1048 | hflK  | COG0330O   | HflK-HflC membrane protein complex, HflK                          | 80.7 | NR-8059 | D12 |
| FTN_1218 | -     | COG0438M   | group 1 glycosyl transferase                                      | 80.8 | NR-8041 | C04 |

| FTN_1319 | pdpC | -         | hypothetical protein FTN_1319                                                                | 80.9 | NR-8054 | F01 |
|----------|------|-----------|----------------------------------------------------------------------------------------------|------|---------|-----|
| FTN_0177 | purH | COG0138F  | bifunctional phosphoribosylaminoimidazolecarboxamide<br>formyltransferase/IMP cyclohydrolase | 80.9 | NR-8040 | H02 |
| FTN_1242 | -    | COG0586S  | DedA family protein                                                                          | 80.9 | NR-8043 | G08 |
| FTN_1252 | -    | COG3049M  | choloylglycine hydrolase family protein                                                      | 81.1 | NR-8058 | G09 |
| FTN_1257 | -    | -         | hypothetical protein FTN_1257                                                                | 81.1 | NR-8057 | B07 |
| FTN_0855 | -    | -         | hypothetical protein FTN_0855                                                                | 81.2 | NR-8047 | A04 |
| FTN_0407 | -    | COG0833E  | amino acid ABC transporter permease                                                          | 81.3 | NR-8053 | G07 |
| FTN_0925 | -    | -         | hypothetical protein FTN_0925                                                                | 81.4 | NR-8058 | H11 |
| FTN_1321 | iglD | -         | intracellular growth locus protein D                                                         | 81.5 | NR-8063 | B02 |
| FTN_1410 | bfr  | COG2193P  | bacterioferritin                                                                             | 81.5 | NR-8061 | C12 |
| FTN_0818 | -    | COG0657I  | lipase/esterase                                                                              | 81.6 | NR-8036 | C08 |
| FTN_0266 | htpG | COG0326O  | heat shock protein 90                                                                        | 81.6 | NR-8050 | F02 |
| FTN_0325 | -    | COG2854Q  | membrane protein                                                                             | 81.7 | NR-8046 | C03 |
| FTN_1750 | -    | COG0204I  | acyltransferase                                                                              | 81.8 | NR-8064 | A10 |
| FTN_0297 | -    | COG2945R  | hypothetical protein FTN_0297                                                                | 81.8 | NR-8042 | C01 |
| FTN_0643 | -    | -         | hypothetical protein FTN_0643                                                                | 81.9 | NR-8055 | A08 |
| FTN_0842 | aroG | COG0722E  | phospho-2-dehydro-3-deoxyheptonate aldolase                                                  | 82.0 | NR-8041 | G10 |
| FTN_1501 | -    | COG0025P  | monovalent cation:proton antiporter-1                                                        | 82.0 | NR-8045 | E10 |
| FTN_1157 | -    | COG1217T  | GTP binding translational elongation factor Tu and G family protein                          | 82.0 | NR-8061 | D10 |
| FTN_0817 | -    | COG2050Q  | hypothetical protein FTN_0817                                                                | 82.1 | NR-8040 | F09 |
| FTN_1597 | prfC | COG4108J  | peptide chain release factor 3                                                               | 82.1 | NR-8043 | F01 |
| FTN_0544 | naxD | COG3394S  | galactosamine deacteylase                                                                    | 82.2 | NR-8062 | D08 |
| FTN_0756 | fopA | COG2885M  | OmpA family protein                                                                          | 82.2 | NR-8038 | G11 |
| FTN_1633 | apt  | COG0503F  | adenine phosphoribosyltransferase                                                            | 82.2 | NR-8035 | B09 |
| FTN_0020 | carB | COG0458EF | carbamoyl phosphate synthase large subunit                                                   | 82.3 | NR-8043 | B03 |
| FTN_0505 | gcvT | COG0404E  | glycine cleavage system aminomethyltransferase T                                             | 82.3 | NR-8045 | E03 |
| FTN_1745 | purT | COG0027F  | phosphoribosylglycinamide formyltransferase 2                                                | 82.3 | NR-8050 | E09 |
| FTN_1548 | -    | COG1520S  | hypothetical protein FTN_1548                                                                | 82.4 | NR-8043 | A01 |
| FTN_1657 | -    | COG2271G  | major facilitator transporter                                                                | 82.5 | NR-8052 | G02 |

| FTN_1319 | pdpC  | -         | hypothetical protein FTN_1319                                                     | 82.5 | NR-8035 | G09 |
|----------|-------|-----------|-----------------------------------------------------------------------------------|------|---------|-----|
| FTN_0507 | gcvP1 | COG0403E  | glycine dehydrogenase subunit 1                                                   | 82.6 | NR-8040 | E04 |
| FTN_0822 | -     | COG0147EH | para-aminobenzoate synthase component I                                           | 82.7 | NR-8062 | H01 |
| FTN_1320 | -     | -         | hypothetical protein FTN_1320                                                     | 82.7 | NR-8059 | E10 |
| FTN_1744 | chiB  | COG3469G  | chitinase                                                                         | 82.7 | NR-8058 | G04 |
| FTN_0817 | -     | COG2050Q  | hypothetical protein FTN_0817                                                     | 82.7 | NR-8051 | A06 |
| FTN_1656 | -     | COG1485R  | ATPase                                                                            | 82.9 | NR-8060 | C04 |
| FTN_0643 | -     | -         | hypothetical protein FTN_0643                                                     | 83.0 | NR-8042 | A02 |
| FTN_0818 | -     | COG0657I  | lipase/esterase                                                                   | 83.0 | NR-8046 | C10 |
| FTN_1312 | -     | -         | hypothetical protein FTN_1312                                                     | 83.1 | NR-8057 | H04 |
| FTN_0664 | fimT  | COG4970NU | Type IV pili, pilus assembly protein                                              | 83.1 | NR-8045 | C11 |
| FTN_1586 | -     | COG2814G  | major facilitator superfamily sugar transporter                                   | 83.1 | NR-8043 | B02 |
| FTN_0633 | katG  | COG0376P  | peroxidase/catalase                                                               | 83.2 | NR-8040 | A05 |
| FTN_1743 | clpB  | COG0542O  | chaperone clpB                                                                    | 83.2 | NR-8059 | H05 |
| FTN_1607 | сса   | COG0617J  | tRNA CCA-pyrophosphorylase                                                        | 83.3 | NR-8046 | G12 |
| FTN_0624 | -     | COG0814E  | serine permease                                                                   | 83.3 | NR-8040 | H08 |
| FTN_0535 | -     | COG2814G  | drug:H+ antiporter-1 (DHA1) family protein                                        | 83.3 | NR-8053 | A09 |
| FTN_0198 | cyoD  | COG3125C  | cytochrome bo terminal oxidase subunit IV                                         | 83.4 | NR-8061 | F07 |
| FTN_0593 | sucD  | COG0074C  | succinyl-CoA synthetase, alpha subunit                                            | 83.4 | NR-8061 | B09 |
| FTN_0422 | purE  | COG0041F  | N5-carboxyaminoimidazole ribonucleotide mutase                                    | 83.4 | NR-8042 | F12 |
| FTN_1438 | -     | COG1250I  | fusion product of 3-hydroxacyl-CoA dehydrogenase and acyl-CoA-<br>binding protein | 83.4 | NR-8041 | E09 |
| FTN_1050 | hflX  | COG2262R  | protease, GTP-binding subunit                                                     | 83.6 | NR-8042 | E08 |
| FTN_1256 | -     | -         | hypothetical protein FTN_1256                                                     | 83.7 | NR-8062 | H12 |
| FTN_1325 | pdpD  | -         | hypothetical protein FTN_1325                                                     | 83.7 | NR-8058 | H01 |
| FTN_1654 | -     | COG2271G  | major facilitator transporter                                                     | 83.7 | NR-8058 | G07 |
| FTN_1311 | -     | -         | hypothetical protein FTN_1311                                                     | 83.7 | NR-8043 | F12 |
| FTN_0132 | -     | -         | hypothetical protein FTN_0132                                                     | 83.9 | NR-8063 | G03 |
| FTN_1112 | cphA  | COG0769M  | cyanophycin synthetase                                                            | 83.9 | NR-8061 | B03 |
| FTN_1263 | comL  | COG4105R  | competence lipoprotein ComL                                                       | 83.9 | NR-8060 | G10 |
| FTN_1276 | -     | COG1566V  | membrane fusion protein                                                           | 83.9 | NR-8061 | A02 |
| FTN_1682 | frgA  | COG4264Q  | siderophore biosynthesis protein                                                  | 83.9 | NR-8058 | H10 |

| FTN_0812 | bioD        | COG0132H | dethiobiotin synthetase                                     | 84.0 | NR-8051 | C10 |
|----------|-------------|----------|-------------------------------------------------------------|------|---------|-----|
| FTN_0719 | -           | -        | hypothetical protein FTN_0719                               | 84.0 | NR-8039 | G09 |
| FTN_0925 | -           | -        | hypothetical protein FTN_0925                               | 84.0 | NR-8045 | G06 |
| FTN_0097 | -           | COG0814E | hydroxy/aromatic amino acid permease (HAAAP) family protein | 84.0 | NR-8059 | H10 |
| FTN_0771 | -           | COG16510 | protein-disulfide isomerase                                 | 84.2 | NR-8058 | F12 |
| FTN_1326 | anmK        | COG2377O | anhydro-N-acetylmuramic acid kinase                         | 84.2 | NR-8061 | F03 |
| FTN_1744 | chiB        | COG3469G | chitinase                                                   | 84.3 | NR-8045 | D11 |
| FTN_1058 | tig         | COG0544O | trigger factor                                              | 84.3 | NR-8038 | G01 |
| FTN_1427 | wbtD        | COG0438M | group 1 glycosyl transferase                                | 84.3 | NR-8035 | B05 |
| FTN_0035 | pyrF        | COG0284F | orotidine-5'-phosphate decarboxylase                        | 84.3 | NR-8063 | E04 |
| FTN_1321 | iglD        | -        | intracellular growth locus protein D                        | 84.3 | NR-8061 | E05 |
| FTN_0430 | -           | -        | hypothetical protein FTN_0430                               | 84.5 | NR-8040 | E09 |
| FTN_1016 | -           | COG1335Q | hypothetical protein FTN_1016                               | 84.6 | NR-8043 | A09 |
| FTN_0211 | рср         | COG2039O | pyrrolidone carboxylylate peptidase                         | 84.7 | NR-8053 | E10 |
| FTN_0407 | -           | COG0833E | amino acid ABC transporter permease                         | 84.8 | NR-8041 | F04 |
| FTN_1657 | -           | COG2271G | major facilitator transporter                               | 84.8 | NR-8044 | G09 |
| FTN_0197 | cyoC        | COG1845C | cytochrome bo terminal oxidase subunit III                  | 84.9 | NR-8050 | D07 |
| FTN_0816 | <i>bioA</i> | COG0161H | adenosylmethionine-8-amino-7-oxononanoate aminotransferase  | 85.0 | NR-8060 | E06 |
| FTN_0666 | uvrA        | COG0178L | excinuclease ABC subunit A                                  | 85.0 | NR-8045 | E09 |
| FTN_1211 | -           | COG1011R | haloacid dehalogenase-like hydrolase                        | 85.1 | NR-8035 | E11 |
| FTN_1427 | wbtD        | COG0438M | group 1 glycosyl transferase                                | 85.2 | NR-8058 | D12 |
| FTN_1310 | <i>pdpB</i> | COG3523S | hypothetical protein FTN_1310                               | 85.3 | NR-8039 | G10 |
| FTN_1220 | -           | COG2148M | lipopolysaccharide synthesis sugar transferase              | 85.3 | NR-8040 | C12 |
| FTN_1683 | -           | COG2814G | drug:H+ antiporter-1 (DHA1) family protein                  | 85.3 | NR-8044 | D12 |
| FTN_0812 | bioD        | COG0132H | dethiobiotin synthetase                                     | 85.5 | NR-8035 | A12 |
| FTN_1421 | wbtH        | COG0367E | glutamine amidotransferase/asparagine synthase              | 85.5 | NR-8040 | C03 |
| FTN_1705 | -           | COG0826O | U32 family peptidase                                        | 85.5 | NR-8062 | G04 |
| FTN_1007 | rplY        | COG1825J | 50S ribosomal protein L25                                   | 85.6 | NR-8036 | H08 |
| FTN_0019 | pyrB        | COG0540F | aspartate carbamoyltransferase                              | 85.7 | NR-8063 | A02 |
| FTN_0431 | -           | COG3307M | hypothetical protein FTN_0431                               | 85.8 | NR-8060 | H05 |

| FTN_1107 | metlQ | COG1464P  | methionine uptake transporter (MUT) family protein, membrane and periplasmic protein | 86.1 | NR-8044 | A02 |
|----------|-------|-----------|--------------------------------------------------------------------------------------|------|---------|-----|
| FTN_0266 | htpG  | COG0326O  | heat shock protein 90                                                                | 86.2 | NR-8044 | A08 |
| FTN_1518 | relA  | COG0317TK | GDP pyrophosphokinase/GTP pyrophosphokinase                                          | 86.2 | NR-8041 | C09 |
| FTN_0620 | -     | COG2271G  | major facilitator transporter                                                        | 86.3 | NR-8058 | C09 |
| FTN_1277 | -     | COG1538MU | outer membrane efflux protein                                                        | 86.3 | NR-8063 | D05 |
| FTN_1548 | -     | COG1520S  | hypothetical protein FTN_1548                                                        | 86.5 | NR-8061 | F12 |
| FTN_1426 | wbtE  | COG0677M  | UDP-glucose/GDP-mannose dehydrogenase                                                | 86.5 | NR-8045 | H08 |
| FTN_1750 | -     | COG0204I  | acyltransferase                                                                      | 86.6 | NR-8057 | D04 |
| FTN_1214 | -     | COG1215M  | glycosyl transferase family protein                                                  | 86.7 | NR-8053 | B07 |
| FTN_1254 | -     | -         | hypothetical protein FTN_1254                                                        | 86.8 | NR-8036 | G07 |
| FTN_0812 | bioD  | COG0132H  | dethiobiotin synthetase                                                              | 86.9 | NR-8050 | H08 |
| FTN_0620 | -     | COG2271G  | major facilitator transporter                                                        | 86.9 | NR-8035 | E06 |
| FTN_1157 | -     | COG1217T  | GTP binding translational elongation factor Tu and G family protein                  | 87.0 | NR-8041 | F11 |
| FTN_0358 | rimO  | COG0621J  | ribosomal protein S12 methylthiotransferase                                          | 87.1 | NR-8045 | G10 |
| FTN_0731 | -     | COG5006R  | hypothetical protein FTN_0731                                                        | 87.1 | NR-8044 | D01 |
| FTN_0410 | -     | COG0436E  | aspartate aminotransferase                                                           | 87.2 | NR-8035 | B06 |
| FTN_0689 | ppiC  | COG0760O  | parvulin-like peptidyl-prolyl isomerase domain-containing protein                    | 87.2 | NR-8035 | B03 |
| FTN_1090 | -     | -         | hypothetical protein FTN_1090                                                        | 87.3 | NR-8052 | C12 |
| FTN_0823 | pabA  | COG0512EH | anthranilate synthase component II                                                   | 87.4 | NR-8035 | H06 |
| FTN_0120 | -     | COG0607P  | rhodanese-related sulfurtransferase                                                  | 87.5 | NR-8053 | A11 |
| FTN_1431 | wbtA  | COG1086MG | dTDP-glucose 4,6-dehydratase                                                         | 87.5 | NR-8057 | B09 |
| FTN_1501 | -     | COG0025P  | monovalent cation:proton antiporter-1                                                | 87.5 | NR-8057 | H12 |
| FTN_1683 | -     | COG2814G  | drug:H+ antiporter-1 (DHA1) family protein                                           | 87.5 | NR-8058 | E01 |
| FTN_1256 | -     | -         | hypothetical protein FTN_1256                                                        | 87.5 | NR-8041 | B06 |
| FTN_0806 | -     | COG1472G  | glycosyl hydrolase family protein                                                    | 87.6 | NR-8036 | H01 |
| FTN_1745 | purT  | COG0027F  | phosphoribosylglycinamide formyltransferase 2                                        | 87.6 | NR-8063 | A05 |
| FTN_0431 | -     | COG3307M  | hypothetical protein FTN_0431                                                        | 87.7 | NR-8044 | A10 |
| FTN_0651 | cdd   | COG0295F  | cytidine deaminase                                                                   | 87.8 | NR-8051 | D03 |
| FTN_1315 | -     | -         | hypothetical protein FTN_1315                                                        | 87.8 | NR-8048 | G08 |

| FTN_0410 | -           | COG0436E  | aspartate aminotransferase                                                        | 88.0 | NR-8059 | B07 |
|----------|-------------|-----------|-----------------------------------------------------------------------------------|------|---------|-----|
| FTN_1214 | -           | COG1215M  | glycosyl transferase family protein                                               | 88.0 | NR-8063 | B10 |
| FTN_1131 | putA        | COG4230C  | bifunctional proline dehydrogenase/pyrroline-5-carboxylate<br>dehydrogenase       | 88.1 | NR-8044 | C10 |
| FTN_0289 | proQ        | COG3109T  | activator of osmoprotectant transporter ProP                                      | 88.1 | NR-8058 | E05 |
| FTN_1750 | -           | COG0204I  | acyltransferase                                                                   | 88.3 | NR-8053 | H02 |
| FTN_1682 | frgA        | COG4264Q  | siderophore biosynthesis protein                                                  | 88.4 | NR-8047 | B07 |
| FTN_0183 | -           | COG0803P  | periplasmic solute binding family protein                                         | 88.5 | NR-8058 | C01 |
| FTN_0669 | deoD        | COG0813F  | purine nucleoside phosphorylase                                                   | 88.5 | NR-8038 | H09 |
| FTN_0599 | -           | -         | hypothetical protein FTN_0599                                                     | 88.6 | NR-8048 | A10 |
| FTN_1654 | -           | COG2271G  | major facilitator transporter                                                     | 88.6 | NR-8050 | A12 |
| FTN_1438 | -           | COG1250I  | fusion product of 3-hydroxacyl-CoA dehydrogenase and acyl-CoA-<br>binding protein | 88.6 | NR-8052 | F03 |
| FTN_0999 | udhA        | COG1249C  | soluble pyridine nucleotide transhydrogenase                                      | 88.7 | NR-8035 | G04 |
| FTN_1214 | -           | COG1215M  | glycosyl transferase family protein                                               | 88.7 | NR-8048 | A07 |
| FTN_1159 | ggt         | COG0405E  | gamma-glutamyltranspeptidase                                                      | 88.9 | NR-8050 | H10 |
| FTN_0202 | pdxY        | COG2240H  | pyridoxal kinase                                                                  | 89.0 | NR-8039 | D03 |
| FTN_0430 | -           | -         | hypothetical protein FTN_0430                                                     | 89.1 | NR-8057 | F04 |
| FTN_0643 | -           | -         | hypothetical protein FTN_0643                                                     | 89.1 | NR-8051 | F07 |
| FTN_1323 | iglB        | COG3517S  | intracellular growth locus protein B                                              | 89.3 | NR-8044 | G02 |
| FTN_1582 | -           | -         | hypothetical protein FTN_1582                                                     | 89.3 | NR-8042 | E11 |
| FTN_1610 | -           | COG0841V  | RND efflux transporter                                                            | 89.5 | NR-8036 | G04 |
| FTN_0814 | bioF        | COG0156H  | 8-amino-7-oxononanoate synthase                                                   | 89.9 | NR-8041 | E11 |
| FTN_0513 | glgB        | COG0296G  | glycogen branching protein                                                        | 90.0 | NR-8039 | F12 |
| FTN_0633 | katG        | COG0376P  | peroxidase/catalase                                                               | 90.0 | NR-8052 | D04 |
| FTN_1273 | -           | COG0318IQ | long chain fatty acid CoA ligase                                                  | 90.0 | NR-8048 | B09 |
| FTN_1252 | -           | COG3049M  | choloylglycine hydrolase family protein                                           | 90.3 | NR-8038 | E09 |
| FTN_1423 | wbtG        | COG0438M  | group 1 glycosyl transferase                                                      | 90.4 | NR-8051 | F12 |
| FTN_0036 | pyrD        | COG0167F  | dihydroorotate oxidase                                                            | 90.5 | NR-8037 | D06 |
| FTN_0561 | apaH        | COG0639T  | diadenosine tetraphosphatase                                                      | 90.7 | NR-8039 | C12 |
| FTN_0120 | -           | COG0607P  | rhodanese-related sulfurtransferase                                               | 90.9 | NR-8050 | A04 |
| FTN_1310 | <i>pdpB</i> | COG3523S  | hypothetical protein FTN_1310                                                     | 90.9 | NR-8052 | A09 |

| FTN_1325 | pdpD | -         | hypothetical protein FTN_1325                    | 91.1 | NR-8036 | F02 |
|----------|------|-----------|--------------------------------------------------|------|---------|-----|
| FTN_1276 | -    | COG1566V  | membrane fusion protein                          | 91.5 | NR-8064 | C03 |
| FTN_1213 | -    | COG1215M  | glycosyl transferase family protein              | 92.0 | NR-8037 | D07 |
| FTN_1518 | relA | COG0317TK | GDP pyrophosphokinase/GTP pyrophosphokinase      | 92.1 | NR-8040 | B02 |
| FTN_1322 | iglC | -         | intracellular growth locus protein C             | 92.4 | NR-8048 | G02 |
| FTN_1357 | recB | COG1074L  | ATP-dependent exonuclease V subunit beta         | 92.4 | NR-8038 | H07 |
| FTN_1324 | iglA | COG3516S  | intracellular growth locus protein A             | 92.8 | NR-8039 | C08 |
| FTN_1431 | wbtA | COG1086MG | dTDP-glucose 4,6-dehydratase                     | 92.8 | NR-8040 | G03 |
| FTN_0731 | -    | COG5006R  | hypothetical protein FTN_0731                    | 93.1 | NR-8037 | F11 |
| FTN_1257 | -    | -         | hypothetical protein FTN_1257                    | 93.3 | NR-8037 | B01 |
| FTN_1220 | -    | COG2148M  | lipopolysaccharide synthesis sugar transferase   | 93.6 | NR-8061 | G05 |
| FTN_0505 | gcvT | COG0404E  | glycine cleavage system aminomethyltransferase T | 93.6 | NR-8037 | D04 |
| FTN_1743 | clpB | COG0542O  | chaperone clpB                                   | 93.7 | NR-8045 | F03 |
| FTN_0211 | рср  | COG2039O  | pyrrolidone carboxylylate peptidase              | 93.9 | NR-8038 | B01 |
| FTN_0561 | apaH | COG0639T  | diadenosine tetraphosphatase                     | 93.9 | NR-8039 | C12 |
| FTN_1159 | ggt  | COG0405E  | gamma-glutamyltranspeptidase                     | 94.1 | NR-8051 | F06 |
| FTN_1762 | -    | COG0488R  | putative ABC transporter ATP-binding protein     | 94.1 | NR-8046 | E09 |
| FTN_1112 | cphA | COG0769M  | cyanophycin synthetase                           | 94.1 | NR-8045 | H04 |
| FTN_1199 | -    | -         | hypothetical protein FTN_1199                    | 94.2 | NR-8038 | C05 |
| FTN_0823 | pabA | COG0512EH | anthranilate synthase component II               | 94.2 | NR-8052 | B05 |
| FTN_1655 | rluC | COG0564J  | ribosomal large subunit pseudouridine synthase C | 94.4 | NR-8038 | D08 |
| FTN_1682 | frgA | COG4264Q  | siderophore biosynthesis protein                 | 94.4 | NR-8038 | G04 |
| FTN_1410 | bfr  | COG2193P  | bacterioferritin                                 | 94.6 | NR-8047 | B12 |
| FTN_1417 | manB | COG1109G  | phosphomannomutase                               | 94.7 | NR-8065 | F11 |
| FTN_1684 | -    | COG0019E  | diaminopimelate decarboxylase                    | 94.9 | NR-8045 | B09 |
| FTN_0720 | -    | COG1414K  | IclR family transcriptional regulator            | 94.9 | NR-8038 | A11 |
| FTN_0265 | rplQ | COG0203J  | 50S ribosomal protein L17                        | 95.2 | NR-8037 | E11 |
| FTN_1602 | deoB | COG1015G  | phosphopentomutase                               | 95.5 | NR-8038 | E05 |
| FTN_1255 | -    | COG1442M  | glycosyl transferase family protein              | 95.7 | NR-8039 | C11 |
| FTN_0535 | -    | COG2814G  | drug:H+ antiporter-1 (DHA1) family protein       | 96.2 | NR-8038 | B04 |
| FTN_0815 | bioB | СОG0502Н  | biotin synthase                                  | 96.3 | NR-8037 | G05 |

| FTN_1029 | -           | COG3155Q | isoprenoid biosynthesis protein with amidotransferase-like domain           | 96.3  | NR-8038 | F11 |
|----------|-------------|----------|-----------------------------------------------------------------------------|-------|---------|-----|
| FTN_1264 | rluD        | COG0564J | ribosomal large subunit pseudouridine synthase D                            | 96.6  | NR-8038 | G05 |
| FTN_1683 | -           | COG2814G | drug:H+ antiporter-1 (DHA1) family protein                                  | 96.7  | NR-8037 | G08 |
| FTN_1254 | -           | -        | hypothetical protein FTN_1254                                               | 97.2  | NR-8036 | H07 |
| FTN_1608 | dsbB        | COG1495O | disulfide bond formation protein                                            | 97.2  | NR-8039 | A10 |
| FTN_0035 | pyrF        | COG0284F | orotidine-5\'-phosphate decarboxylase                                       | 97.3  | NR-8038 | D10 |
| FTN_0196 | суоВ        | COG0843C | cytochrome bo terminal oxidase subunit I                                    | 98.0  | NR-8039 | B03 |
| FTN_0504 | -           | COG1982E | lysine decarboxylase                                                        | 98.8  | NR-8039 | B11 |
| FTN_1683 | -           | COG2814G | drug:H+ antiporter-1 (DHA1) family protein                                  | 98.9  | NR-8052 | E12 |
| FTN_1212 | -           | COG0438M | glycosyl transferases group 1 family protein                                | 99.1  | NR-8039 | F08 |
| FTN_0893 | -           | -        | hypothetical protein FTN_0893                                               | 99.4  | NR-8037 | E12 |
| FTN_1423 | wbtG        | COG0438M | group 1 glycosyl transferase                                                | 99.4  | NR-8037 | A12 |
| FTN_0198 | cyoD        | COG3125C | cytochrome bo terminal oxidase subunit IV                                   | 99.9  | NR-8046 | F12 |
| FTN_0421 | purN        | COG0299F | phosphoribosylglycinamide formyltransferase                                 | 100.6 | NR-8038 | C03 |
| FTN_0813 | bioC        | -        | biotin synthesis protein BioC                                               | 101.2 | NR-8038 | H12 |
| FTN_0998 | -           | COG2898S | potassium channel protein                                                   | 101.2 | NR-8039 | D11 |
| FTN_1320 | -           | -        | hypothetical protein FTN_1320                                               | 101.2 | NR-8037 | H05 |
| FTN_0487 | rpsU        | COG0828J | 30S ribosomal protein S21                                                   | 101.4 | NR-8038 | A01 |
| FTN_1217 | -           | COG1132V | ABC transporter ATP-binding protein                                         | 101.4 | NR-8038 | G03 |
| FTN_1309 | <i>pdpA</i> | -        | hypothetical protein FTN_1309                                               | 101.4 | NR-8039 | D04 |
| FTN_1433 | -           | -        | hypothetical protein FTN_1433                                               | 104.8 | NR-8039 | F07 |
| FTN_1131 | putA        | COG4230C | bifunctional proline dehydrogenase/pyrroline-5-carboxylate<br>dehydrogenase | 105.4 | NR-8038 | G10 |
| FTN_1412 | -           | COG0202K | DNA-directed RNA polymerase subunit alpha                                   | 105.4 | NR-8038 | D11 |
| FTN_1417 | manB        | COG1109G | phosphomannomutase                                                          | 105.9 | NR-8050 | G02 |
| FTN_1314 | -           | -        | hypothetical protein FTN_1314                                               | 111.5 | NR-8037 | G10 |
| FTN_1309 | <i>pdpA</i> | -        | hypothetical protein FTN_1309                                               | 123.5 | NR-8039 | F04 |

Supplemental Table 3. Primers used in this study

| rimer name <u>Sequence</u>                                         |
|--------------------------------------------------------------------|
| 109 Arm1 FWD cacccagttttaaaagaggt                                  |
| 109 Arm 1 REV ttatcgataccgtcgacctcactaaatttccatgatttaataac         |
| 109 frt_sKAN_frt FWD gttattaaatcatggaaatttagtgaggtcgacggtatcgataa  |
| 109 frt_sKAN_frt REV ttatttaggattacttatttaatttgcatagctgcaggatcgata |
| 109 Arm 2 FWD tatcgatcctgcagctatgcaaattaaataagtaatcctaaataa        |
| 109 Arm 2 REVtttcctataggcaacattga                                  |
|                                                                    |
| 430 Arm1 FWD tttacttagatactctagctg                                 |
| 430 Arm 1 REV ttatcgataccgtcgacctctagtattacctgttatttcatta          |
| 430 frt_sKAN_frt FWD taatgaaataacaggtaatactagaggtcgacggtatcgataa   |
| 430 frt_sKAN_frt REV tcttataaaaagacggcaaaaagcatagctgcaggatcgata    |
| 430 Arm 2 FWD tatcgatcctgcagctatgctttttgccgtctttttataaga           |
| 430 Arm 2 REV aaaaatcgtactgctttagaat                               |