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SUMMARY

LpxC is an essential enzyme in the lipid A biosynthetic
pathway ingram-negativebacteria.Several promising
antimicrobial lead compounds targeting LpxC have
been reported, though they typically display a large
variation in potency against different gram-negative
pathogens.Wereport that inhibitorswithadiacetylene
scaffold effectively overcome the resistance caused
by sequence variation in the LpxC substrate-binding
passage. Compound binding is captured in complex
with representative LpxC orthologs, and structural
analysis reveals large conformational differences
that mostly reflect inherent molecular features of
distinct LpxC orthologs, whereas ligand-induced
structural adaptations occur at a smaller scale. These
observationshighlight theneed for amolecular under-
standingof inherentstructural featuresandconforma-
tional plasticity of LpxC enzymes for optimizing LpxC
inhibitors as broad-spectrum antibiotics against
gram-negative infections.

INTRODUCTION

Development of novel antibiotics against multidrug-resistant

gram-negative infections by targeting the UDP-3-O-(acyl)-N-

acetylglucosamine deacetylase (LpxC) in the lipid A biosynthetic

pathway has been a major research focus for industrial groups

and academic laboratories in the last two decades (Barb and

Zhou, 2008; Raetz, 1998; Raetz et al., 2007). Lipid A (endotoxin)

is a glucosamine-based saccharolipid that serves as a hydro-

phobic membrane anchor of lipopolysaccharide (LPS). It is the

major lipid component of the outer leaflet of the outer membrane

of most gram-negative bacteria and shields bacterial cells from

damage by external agents, such as antibiotics and detergents.

Lipid A biosynthesis is an essential pathway in virtually all gram-
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negative bacteria, and it starts with the LpxA-catalyzed acylation

of UDP-N-acetylglucosamine (UDP-GlcNAc) (Figure 1A). With

the exception of gram-negative organisms that synthesize lipid

A from the analog UDP-2-acetamido-3-amino-2,3-dideoxy-a-

D-glucopyranose (UDP-GlcNAc3N) (Raetz et al., 2007), the

acylation reaction is thermodynamically unfavorable. Therefore,

the second reaction in the lipid A pathway, the deacetylation of

UDP-3-O-(acyl)-N-acetylglucosamine catalyzed by LpxC, is

generally considered as the committed step of lipid A biosyn-

thesis. Following deacetylation, seven additional enzymes are

needed to synthesize Kdo2-lipid A, the active component of

endotoxin and the LPS substructure sufficient to maintain

bacterial viability.

The lpxC gene is essential and conserved in virtually all

gram-negative organisms. Structural studies of LpxC have re-

vealed a unique protein fold, indicating that highly specific

LpxC inhibitors can be developed as novel antibiotics (Barb

et al., 2007a; Buetow et al., 2006; Coggins et al., 2003, 2005;

Gennadios and Christianson, 2006; Gennadios et al., 2006;

Hernick et al., 2005; Mochalkin et al., 2008; Shin et al., 2007;

Whittington et al., 2003). Consistent with this notion, several

well-characterized LpxC inhibitors (Figure 1B) have been re-

ported to display various degrees of antibiotic activity against

gram-negative bacteria, most notably Escherichia coli (Barb

and Zhou, 2008; Raetz et al., 2007). Very recently, a large number

of LpxC inhibitors with vastly different chemical scaffolds have

appeared in literature (Kline et al., 2002; Pirrung et al., 2003)

and in patent applications (Anderson et al., 2004; Dobler et al.,

2010; Mansoor et al., 2008, 2010; Moser et al., 2008; Raju

et al., 2010; Siddiqui et al., 2007; Takashima et al., 2010;

Yoshinaga et al., 2008); however, the potency and spectrum of

inhibition of these compounds have yet to be systematically

investigated.

Among the well-characterized compounds, CHIR-090 is

the best LpxC inhibitor reported to date, killing both E. coli and

Pseudomonas aeruginosa in bacterial disk diffusion assays

with an efficacy rivaling that of ciprofloxacin (McClerren et al.,

2005). Surprisingly, CHIR-090 is�600-fold less effective against

LpxC orthologs from the Rhizobium family than against E. coli
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Figure 1. Potent LpxC Inhibitors Block the Committed Step of Lipid A Biosynthesis

(A) LpxC is an essential enzyme that catalyzes the first irreversible step of the lipid A biosynthetic pathway.

(B) Representative LpxC inhibitors.
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LpxC (EcLpxC) (Barb et al., 2007b), raising concerns of rapid

evolution of antibiotic resistance for CHIR-090-sensitive strains

through point mutations. Through structural and biochemical

studies of the Aquifex aeolicus LpxC (AaLpxC)/CHIR-090

complex, we have revealed the molecular basis of the intrinsic

resistance of Rhizobium leguminosarum LpxC (RlLpxC) to

CHIR-090 (Barb et al., 2007a) (Figure 2A). These studies showed

that CHIR-090 occupies the hydrophobic substrate-binding

passage consisting of the Insert II region of Domain II in LpxC.

The diphenyl-acetylene group of CHIR-090 penetrates through

this hydrophobic substrate-binding passage, with the first

phenyl group (proximal to the hydroxamate group) located close

to the active site and next to the entrance of the hydrophobic

passage, the acetylene group threading through the narrowest

part of the passage, and the second phenyl ring (distal to the

hydroxamate group) emerging from the passage. The exit of

the substrate-binding passage contains a critical glycine residue

that is conserved in LpxC orthologs sensitive to CHIR-090 inhibi-

tion. In Rhizobium LpxC, however, this critical glycine residue is

replaced by a serine residue, which narrows the exit of the

substrate-binding passage and decreases its susceptibility to

CHIR-090 inhibition by generating van der Waals clashes with

the distal phenyl ring of CHIR-090 (Figure 2A). Consistent with

this notion, a single Ser-to-Gly mutation that broadens the exit

to the substrate-binding passage renders RlLpxC 100-fold

more sensitive to CHIR-090 inhibition, whereas an EcLpxC

mutant with a narrower passage is more resistant to CHIR-090

inhibition compared to the wild-type enzyme (Barb et al.,

2007a). The knowledge that crucial residues in the hydrophobic

substrate-binding passage of CHIR-090-resistant LpxC ortho-

logs can cause van der Waals clashes with the distal aromatic

ring of CHIR-090 motivated us to evaluate novel inhibitors based

on a narrower scaffold for their ability to overcome this resis-

tance mechanism.

Here, we report the biochemical and structural characteriza-

tion of compounds based on the linear diacetylene scaffold.
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These compounds effectively diminish the resistance of RlLpxC.

Excitingly, the best compound, LPC-009, also shows a general

enhancement of potency (2–64-fold) over CHIR-090 against

a variety of clinically important gram-negative pathogens,

including E. coli, P. aeruginosa, Salmonella typhimurium, Klebsi-

ella pneumonia, Vibrio cholera, Bordetella bronchiseptica, Burk-

holderia cepacia, Burkholderia cenocepacia, and Burkholderia

dolosa. Furthermore, we have captured the binding mode of

LPC-009 in complex with LpxC enzymes from E. coli,A. aeolicus,

and P. aeruginosa. Structural comparison of diverse LpxC

enzymes in complex with the same LPC-009 inhibitor reveals

large, inherent conformational variations of individual LpxC

orthologs and unexpected inhibitor flexibility. The binding of

distinct inhibitors to the same LpxC enzyme also induces notice-

able conformational changes, but at a smaller scale. Thus,

understanding the contribution of inherent molecular features

of representative LpxC enzymes and their associated conforma-

tional dynamics is essential for the design of broad-spectrum

LpxC-targeting antibiotics.

RESULTS

Compounds Based on the Diacetylene Scaffold Potently
Inhibit a Wide Range of LpxC Orthologs
Because point mutations that narrow the LpxC substrate-

binding passage can be a source of antibiotic resistance to

CHIR-090, we reasoned that compounds with a narrower

chemical scaffold—the diacetylene group—would be able to

overcome the CHIR-090 resistance represented by RlLpxC.

The diacetylene scaffold was among the many chemical struc-

tures initially discussed in the international patent WO 2004/

062601 A2 (Anderson et al., 2004), but its effect on the antibiotic

profile was not quantified. To facilitate the analysis, we con-

structed a RlLpxC knock-in strain of E. coli by replacing the

genomic lpxC gene with that of R. leguminosarum (W3110RL)

(Barb et al., 2007b). Because the W3110RL strain is identical to
38–47, January 28, 2011 ª2011 Elsevier Ltd All rights reserved 39



Figure 2. Inhibitors Based on the Diacetylene Scaffold Overcome the Resistance Mechanism Represented by RlLpxC and Display Enhanced

Antibiotic Activity

(A) Antibiotic resistance generated by steric clashes between S214 in RlLpxC and the distal ring of CHIR-090. CHIR-090 and the S214 side chain are shown in

stick and transparent-sphere models. The distal phenyl ring of CHIR-090 and the side chain of S214 in RlLpxC are highlighted in red. The Insert II conformation

was generated using homology modeling based on the structure of the AaLpxC/CHIR-090 complex (PDB entry: 2JT2), which contains a Gly (G198) at the

corresponding position of S214 in RlLpxC.

(B) The MICs of each compound against strains of wild-type E. coli (W3110) and E. coli with its genomic lpxC gene replaced by that of R. leguminosarum

(W3110RL). The narrow diacetylene scaffold not only overcomes the CHIR-090 resistance of RlLpxC, but also displays enhanced antibiotic activity against E. coli.

Table 1. MIC Values (mg/ml)

Pathogen

MIC

CHIR-090 LPC-009

Pseudomonas aeruginosa

PAO1

1.6 0.74

Salmonella typhimurium

LT2

0.16 0.024

Klebsiella pneumonia

43816

0.64 0.10

Vibrio cholera

P4 (P27459DctxAB::KmR, SmR)

0.16 0.010

Bordetella bronchiseptica

RB50

16 2.0

Burkholderia cepacia

ATCC 25146

>32 12

Burkholderia cenocepacia

GIIIa J2315 lineage ET12

>32 32

Burkholderia dolosa

AU0158 lineage 5LC6

8.0 0.125
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the wild-type E. coli strain W3110 except for the lpxC gene, any

difference in the minimum inhibitory concentration (MIC) values

should directly reflect the different KI values of a compound

against LpxC enzymes, but not other factors such as membrane

permeability. As expected, the MIC values of CHIR-090 are

vastly different for these two bacterial strains, and a �600-fold

variation in MIC values correlates quite well with the KI differ-

ences measured by enzyme kinetic studies (Barb et al.,

2007b). LPC-004, which was identical to CHIR-090 except that

the morpholine moiety was removed, was still significantly less

effective (�800 fold) for RlLpxC than for EcLpxC (Figure 2B),

confirming that the bulky distal phenyl group, but not the mor-

pholine group, is responsible for its decreased activity against

RlLpxC. Replacing the phenyl-acetylene group with a (N,N-di-

methylamino)methyl-diacetylene group generated a weaker

inhibitor (LPC-007) for E. coli, but the ratio of the MIC values

for W3110 and W3110RL started to diminish (160-fold). Finally,

addition of a phenyl ring to the diacetylene group (LPC-009)

further reduced the difference of the MIC values between the

two bacterial strains to �126-fold (Figure 2B), suggesting that

the narrow diacetylene group can effectively reduce the intrinsic

resistance of RlLpxC to CHIR-090. Excitingly, LPC-009 also

appears to be 4-fold more potent than CHIR-090 for inhibiting

the growth of E. coli in MIC assays (Figure 2B). To establish

that the diacetylene-based compound LPC-009 indeed displays

a superior antibiotic profile over CHIR-090, we measured

the MICs of LPC-009 and CHIR-090 against a panel of gram-

negative human pathogens, including P. aeruginosa, S. typhimu-

rium, K. pneumonia, V. cholera, B. bronchiseptica, B. cepacia,

B. cenocepacia, and B. dolosa. Invariably, LPC-009 was deter-

mined to be a more potent compound than CHIR-090, showing

a 2–64-fold enhancement of antibiotic activity (Table 1).

To further evaluate the inhibition of EcLpxC by LPC-009,

we performed detailed enzymatic assays. A KI
app of 0.55 ±

0.09 nM and a corresponding KI value of 0.18 ± 0.03 nM were

calculated according to the assumption of competitive inhibition
40 Chemistry & Biology 18, 38–47, January 28, 2011 ª2011 Elsevier
and a measured KM of 2.5 ± 0.2 mM for EcLpxC (see Experi-

mental Procedures for details). Interestingly, we observed a

similar fractional inhibition of product accumulation with or

without inhibitor preincubation (1 hr) with enzyme prior to initi-

ating the reaction, suggesting that unlike the slow tight-binding

inhibitor CHIR-090, LPC-009 does not appear to inhibit EcLpxC

in a time-dependent fashion.

Overall Structure of EcLpxC in Complex with LPC-009
To probe the molecular details of the LpxC/LPC-009 interaction,

we determined the structure of EcLpxC in complexwith LPC-009

at 1.65 Å resolution (crystallographic statistics shown in Table 2).

EcLpxC is the most divergent ortholog to structurally character-

ized LpxC orthologs, such as AaLpxC (34% sequence identity)

and P. aeruginosa LpxC (PaLpxC, 57% sequence identity).
Ltd All rights reserved



Table 2. Data Collection and Refinement Statistics

EcLpxC/LPC-009 AaLpxC/LPC-009 PaLpxC/LPC-009

Space group P 61 P 61 P 212121

Cell dimensions

a, b, c (Å) 90.0, 90.0, 120.0 90.0, 90.0, 120.0 90.0, 90.0, 90.0

a, b, g (�) 106.7, 106.7, 52.7 65.6, 65.6, 132.3 52.6, 73.6, 88.3

Reflections (unique/total) 41,012/348,669 88,659/662,791 88,611/521,390

Resolution range (Å) 26.60–1.65 (1.71–1.65)a 23.88–1.25 (1.30–1.25) 22.99–1.28 (1.33–1.28)

Completeness (%) 99.6 (96.6) 100 (100) 99.7 (98.0)

I/s 33.0 (3.3) 23.0 (3.7) 20.8 (2.25)

R-merge (%) 7.4 (49.7) 12.1 (47.1) 11.5 (45.6)

No. of atomsb

Protein 2378 2230 2432

LPC-009 27 27 27

Water 310 455 413

Other molecules 48 12 103

R-factor (%) 17.2 15.4 18.1

R-free (%) 20.2 16.1 19.2

Av. B-factor (Å2)c

Protein 35.87 14.52 18.00

LPC-009 26.53 19.31 16.68

Catalytic zinc 19.15 11.55 8.75

Water 45.57 31.79 34.19

Rmsd from ideal geometry

Bond lengths (Å) 0.008 0.004 0.009

Bond angles (�) 0.924 0.929 0.880

Ramachandran plot

Favored (%) 97.32 97.04 98.25

Allowed (%) 100.00 100.00 100.00

MolProbity

All-atom clashscore 2.51 1.57 1.69

Clashscore percentiled 99th 99th 98th
a Values in parentheses are for highest-resolution shell.
bNonhydrogen atoms. The deposited structures include riding hydrogen atoms used in refinement.
cHydrogen atoms are excluded.
d 100th percentile is the best among structures of comparable resolution; 0th percentile is the worst.
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It is identical to Shigella sonnei LpxC and highly similar to

S. typhimurium LpxC and Yersinia pestis LpxC (>92% sequence

identity). Therefore, E. coli LpxC is an excellent model enzyme

for understanding the behavior of LpxC enzymes from these

clinically important gram-negative pathogens.

EcLpxC consists of two domains with a b-a-a-b sandwich fold

similar to that of AaLpxC or PaLpxC (Figure 3A) (Barb et al.,

2007a; Buetow et al., 2006; Coggins,et al., 2003, 2005; Genna-

dios and Christianson, 2006; Gennadios et al., 2006; Hernick

et al., 2005; Mochalkin et al., 2008; Shin et al., 2007; Whittington

et al., 2003). Each domain contains a layer of helices packing

against a layer of five-stranded b sheet with the helices ‘‘sand-

wiched’’ between the two main b sheets. Additionally, each

domain contains a unique insert region (Insert I of Domain I

and Insert II of Domain II) that adopts a distinct structure. Insert

I forms a small three-stranded b sheet that partially defines the

boundary of the active site, whereas Insert II adopts a b�a�b
Chemistry & Biology 18,
structure that forms a topologically closed hydrophobic passage

to harbor substrate or inhibitors.

Consistent with our structure-based prediction, the overall

binding mode of LPC-009 is similar to that of CHIR-090, with

its threonyl-hydroxamate group occupying the active site and

its diacetylene group penetrating through the hydrophobic

substrate-binding passage (Figure 3A). In the active site, the hy-

droxamate group chelates the catalytic zinc ion with a square-

pyramidal geometry (Figure 3B) defined by its two oxygen atoms

and three LpxC residues, H79, H238, and D242. The hydroxa-

mate group is oriented perpendicular to the b strands of Insert

II, and its position is held by hydrogen bonds with the T191

hydroxyl group of Insert II on one side of the active site and the

side chains of the catalytically important residues E78 and

H265 on the opposite side. In addition to these hydroxamate-

mediated interactions, the threonyl moiety of LPC-009 forms

extensive interactions with highly conserved residues in the
38–47, January 28, 2011 ª2011 Elsevier Ltd All rights reserved 41



Figure 3. Structure of the EcLpxC/LPC-009 Complex

(A) Overall structure of the complex. EcLpxC is shown in the ribbon diagram and LPC-009 in the space-filling model.

(B) Interactions between LPC-009 and LpxC in the active site.

(C) External view of the hydrophobic substrate-binding passage.

Insert I and Insert II are highlighted in orange and blue, respectively. LPC-009 and selected active site residues are shown in the stickmodel. The active site zinc ion

is shown in the space-filling model. Purple mesh represents 2Fo-Fc map density (contoured at 1.6s) surrounding the LPC-009. The surface plot in panel (C) is

generated by PYMOL (DeLano Scientific LLC).
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active site, including (1) van der Waals contacts between its

methyl group and the aromatic ring of F192, which lies at the

base of the active site, and (2) hydrogen bonds between its

amide and hydroxyl groups and the side chains of T191 and

K239, respectively. In addition to these highly conserved interac-

tions, a unique hydrogen bond is observed between the carbonyl

of the carboxyl-amide group of LPC-009 and the backbone

amide of C63 of EcLpxC.

At the entrance of the hydrophobic substrate-binding

passage, the proximal phenyl ring of LPC-009 faces the methyl

groups of L18, and the narrow diacetylene group of LPC-009

penetrates through and emerges from the hydrophobic passage.

Although LPC-009 also contains a distal phenyl ring similar to

CHIR-090, it is located further away from the exit and is less likely

to lead to the possible emergence of antibiotic resistance

through mutation of residues at the exit of the hydrophobic

passage that would clash with the inhibitor. Instead, this distal

phenyl ring of LPC-009 is held by favorable van der Waals

contacts with a hydrophobic ‘‘clamp’’ consisting of residues

outside the substrate-binding passage, including I198, M195,

F212, and V217 (Figure 3C).

Inherent Conformational Differences of LpxC Orthologs
A number of AaLpxC structures in complex with different small

molecules have been reported, revealing an essentially identical

enzyme conformation regardless of the bound inhibitor (Barb

et al., 2007a; Buetow et al., 2006; Coggins, et al. 2003, 2005;

Gennadios and Christianson, 2006; Gennadios et al., 2006; Her-

nick et al., 2005; Shin et al., 2007; Whittington et al., 2003).

However, a distinct orientation of the Insert II helix has been

observed in PaLpxC in complex with BB-78485 (Mochalkin

et al., 2008). Compared to AaLpxC, the PaLpxC Insert II helix

is rotated �16� around a pivot point near the N terminus of the

helix, generating a movement of �7 Å at the C-terminal end. It

was proposed that binding to the bulky naphthalene ring of

BB-78485 is responsible for this large conformational difference

(Mochalkin et al., 2008). However, the comparison used different
42 Chemistry & Biology 18, 38–47, January 28, 2011 ª2011 Elsevier
LpxC orthologs bound to distinct inhibitors, and thus it is not

clear whether the observed structural variation reflects confor-

mational plasticity in response to inhibitor binding or species-

specific differences in the structures of LpxC orthologs, or a

combination of both. The discovery of LPC-009 as a potent

broad-spectrum inhibitor has allowed us to resolve this ambi-

guity by determining and comparing high-resolution structures

of two additional LpxC orthologs, AaLpxC and PaLpxC, in com-

plex with LPC-009 (crystallographic statistics shown in Table 2).

To avoid masking local conformational changes, we superim-

posed the AaLpxC/LPC-009 and PaLpxC/LPC-009 complexes

onto the EcLpxC/LPC-009 complex using only the backbone

Ca atoms of the two main b sheets and four helices that are

highly conserved in sequence and structure across LpxC

orthologs (Figure 4A).

Insert I and Active Site

There are sizeable structural differences in the Insert I region that

partially defines the active site boundary (Figure 4B). All three

LpxC orthologs have Insert I regions with similar lengths and

topologies; however, the three-stranded b sheets contain

b-bulges at different locations. In EcLpxC, the b-bulge is located

after the b-turn connecting the second and third b strands

(bb-bc), whereas in PaLpxC and AaLpxC, the b-bulge is part of

the first strand (ba). Consequently, the ba-strand in EcLpxC forms

the typical interstrandhydrogenbondsofaflatantiparallelbsheet,

whereas the ba-strand in PaLpxC and AaLpxC contains an extra

residue that loopsoutof theplaneof theb sheetand isnot involved

in the main-chain hydrogen bonding network. The EcLpxC loop

connecting ba-bb is one residue longer, pushing it away from

the active site �4.3 Å compared to the loop positions of AaLpxC

and PaLpxC (Figures 4A and 4B) and creating a more spacious

active site,with a cavity volumeof 330 Å3, whereas theactive sites

in PaLpxC and AaLpxC are significantly smaller, with cavity

volumes of 272 Å3 and 255 Å3, respectively (Figures 4D–4F).

Insert II Substrate-Binding Passage

Much to our surprise, there are large differences in the orienta-

tion of the Insert II helix in all three LpxC enzymes (EcLpxC,
Ltd All rights reserved



Figure 4. Species-Specific Conformational Differences of LpxC Orthologs

(A) Superimposition of EcLpxC/LPC-009 (orange), PaLpxC/LPC-009 (blue) and AaLpxC/LPC-009 (green). The bound LPC-009 is shown in the stick model, and

the catalytic zinc ion in the sphere model.

(B and C) Close-up views around the Insert I and Insert II regions are shown in panels (B) and (C), respectively.

(D–F) The effects of the inherent conformational differences on the size of the active site cavity and the shape and orientation of the hydrophobic substrate-

binding passage, and the bound compound are shown for LpxC enzymes from E. coli, P. aeruginosa, and A. aeolicus in panels (D), (E), and (F), respectively.

Fo-Fc omit map density contoured at 3.4s (blue mesh) is shown around LPC-009 in the bottom panels, illustrating different curvatures of the diacetylene group

of LPC-009 bound to distinct LpxC orthologs. Two conformations of the threonyl group of LPC-009 were used to fit the electron density in the PaLpxC complex,

panel (E).
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AaLpxC, and PaLpxC) despite being bound to the same

LPC-009 inhibitor (Figures 4A and 4C). In AaLpxC, the Insert II

helix is positioned closest to the active site, which generates

the widest hydrophobic passage of all three LpxC orthologs

with a diameter of �7.5 Å. In contrast, the Insert II helix in both

EcLpxC and PaLpxC is rotated �20� around the N-terminal

end of the helix (Figure 4C), moving away from the active site

and resulting in a narrower substrate passage with a diameter

of 4.4 Å for EcLpxC and 5.8 Å for PaLpxC (Figures 4D and 4E).

The largest difference in the Insert II helix orientation occurs

between EcLpxC and AaLpxC, with the position of the

C-terminal end of the helix deviating by nearly 7.9 Å. This is
Chemistry & Biology 18,
followed by �5.7 Å difference between PaLpxC and AaLpxC,

and �2 Å between EcLpxC and PaLpxC (Figure 4A).

In response to the movement of the Insert II helix, LPC-009

also rotates around the threonyl-hydroxamate head group in a

counter clockwise fashion at an angle of �11� in AaLpxC and

�3� in PaLpxC compared to its position in EcLpxC (Figures

4D–4F). Interestingly, in contrast to its apparently ‘‘rigid’’

chemical structure, the diacetylene group is slightly curved, a

distortion that has only been previously reported in chemically

constrained diacetylene compounds (Baldwin et al., 1998). The

curvature of the diphenyl-diacetylene group is most prominent

in the AaLpxC complex, followed by the EcLpxC and PaLpxC
38–47, January 28, 2011 ª2011 Elsevier Ltd All rights reserved 43



Figure 5. Inhibitor-Induced Structural Plasticity

(A) Superimposition of PaLpxC/LPC-009 (sky blue) and PaLpxC/BB-78485 (pale blue). Binding of LPC-009 and BB-78485 to PaLpxC causes noticeable confor-

mational changes in the Insert I and Insert II regions that generate an open substrate-binding passage accommodating LPC-009 (B), but a closed conformation for

BB-78485 (C). Surfaces of the hydrophobic substrate-binding passage are colored in yellow. Two conformations of the threonyl group of LPC-009 were observed

in the PaLpxC complex.
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complexes. This unexpected observation suggests that there is

not a huge energetic penalty for distorting the diacetylene group

to allow for adaptation to the different curvatures of the hydro-

phobic passage in individual LpxC orthologs.

It is important to note that the conformational difference

between AaLpxC/LPC-009 and PaLpxC/LPC-009 is on a similar

scale as the previously reported structural discrepancy between

AaLpxC/TU-514 and PaLpxC/BB-78485 (Mochalkin et al., 2008),

suggesting that the structural divergence in these latter com-

plexes is largely driven by an inherent, species-specific confor-

mational variation, rather than by ligand binding.

Ligand-induced Conformations of LpxC
Our observation of LpxC conformational differences across

orthologs does not rule out the possibility that the enzyme is

able to respond structurally to the binding of distinct inhibitors.

To evaluate the contribution of conformational plasticity to inhib-

itor binding, we compared structures of the same LpxC ortholog

in complex with different inhibitors. Interestingly, superimposi-

tion of AaLpxC/LPC-009 with existing AaLpxC structures shows

very limited conformational variation. On the other hand,

comparison of the PaLpxC/LPC-009 and PaLpxC/BB-78485

(PDB entry: 2VES) structures reveals noticeable conformational

changes in the active site and hydrophobic substrate-binding

passage (Figure 5). These differences are particularly pro-

nounced in the hydrophobic passage: to accommodate the

two bulky and rigid naphthalene groups of BB-78485, the Insert

II helix and its supporting loop (b1-b2 loop) are pushed �2.0–

2.4 Å away from the active site compared to the corresponding

structural elements in the PaLpxC/LPC-009 complex. This posi-

tions the Insert II helix closer to the loop immediately following it,

which expands the active site and closes off the hydrophobic

passage in the PaLpxC/BB-78485 complex (Figure 5).

DISCUSSION

The rise of multidrug-resistant microbes and their dire impact on

human health highlight the pressing need for novel antibiotics

with a distinct mode of action to combat gram-negative infec-

tions. Although LpxC is an attractive and validated novel drug

target for these efforts, development of lead compounds has

been hampered by a lack of broad-spectrum antibiotic activity
44 Chemistry & Biology 18, 38–47, January 28, 2011 ª2011 Elsevier
against a wide range of gram-negative bacteria. Here, we detail

a successful strategy for designing a broad-spectrum LpxC

inhibitor: identifying key residues that confer inhibitor resistance

in representative LpxC orthologs and searching for compounds

to circumvent these stumbling blocks. The diacetylene-based

LPC-009 inhibitor presents an important first step in this

process, as our combined kinetic and structural studies show

that LPC-009 inhibits a wide range of orthologs with promising

efficacy. Furthermore, LPC-009 has made it possible to solve

the structure of three LpxC orthologs in complex with a common

inhibitor, including the first structure of the EcLpxC enzyme,

which provides an excellentmodel for several clinically important

pathogens.

In addition to providing the basis for further inhibitor optimiza-

tion, the crystal structures of EcLpxC, AaLpxC, and PaLpxC in

complex with LPC-009 allow us to probe the intrinsic conforma-

tional variability across LpxC orthologs, while avoiding the

contributions from inhibitor-specific conformational changes.

Contrary to the prevailing hypothesis, our study shows that

distinct LpxC orthologs naturally possess large conformational

differences in the Insert II region, which generate distinct shapes

and angles of the hydrophobic substrate-binding passage. It is

important to note that the natural substrate of LpxC is not always

the same; although EcLpxC and PaLpxC utilize acylated UDP-

GlcNAc as a substrate, AaLpxC uses acylated UDP-GlcNAc3N.

The difference of ester versus amide bonds in these substrates

may lead to unique geometrical constraints that may affect their

binding to LpxC (see Figure S1 available online); indeed, different

angles between the acyl chain and UDP moiety have been

observed for R-3-hydroxylauroyl UDP-GlcNAc3N and R-3-hy-

droxymyrisoyl UDP-GlcNAc in the product complexes of LpxA

enzymes from Leptospira species and E. coli, respectively

(Robins et al., 2009; Williams and Raetz, 2007). It seems likely

that the hydrophobic passages of LpxC orthologs are optimized

for processing these distinct substrates, which would partially

explain the inherent conformational differences in the LPC-009

complexes.

The unexpected observation of large, intrinsic structural varia-

tion among LpxC orthologs helps explain the inadequacies of

some of the earlier inhibitors. For example, the unique Insert I

conformation of EcLpxC, wherein the ba-bb loop is pushed

away form the active site to generate an enlarged cavity,
Ltd All rights reserved
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provides a molecular explanation for the potent inhibition of

EcLpxC by BB-78485: the bulky naphthalene groups of this

compound require a more spacious active site cavity to effec-

tively compete with substrate for binding to the enzyme (Fig-

ure 4D). Consistently, BB-78485 does not bind AaLpxC even at

mM concentrations, and its antibiotic activity toward an E. coli

strain with the native lpxC gene replaced by PaLpxC is at least

20-fold higher than the wild-type E. coli strain (data not shown).

To accommodate the inherent conformational discrepancy of

LpxC orthologs and to achieve a better inhibition profile, an

attractive strategy of inhibitor design is to engineer flexibility

into the chemical scaffold so that the compound can adapt

to the distinct shapes and orientations of the active site and

hydrophobic passage in various LpxC enzymes. A prime

example of this approach is the substrate analog inhibitor

TU-514, which contains a flexible acyl chain occupying the

hydrophobic passage and inhibits a wide range of LpxC

enzymes (Jackman et al., 2000). Interestingly, the diacetylene

group has been observed to adopt ‘‘warped’’ conformations in

chemically constrained compounds (Baldwin et al., 1998), sug-

gesting that the diacetylene group may have a greater intrinsic

flexibility than expected. Given our structural observation of a

distorted diacetylene group in different LpxC enzymes, the

success of LPC-009 may indeed benefit from the ability of the

diacetylene group to adapt to the different trajectories of

the substrate-binding passage in distinct LpxC orthologs.

Despite the similarity between CHIR-090 and LPC-009,

LPC-009 does not appear to display time-dependent inhibition,

whereas CHIR-090 has been shown as a slow, tight-binding

inhibitor for a number of LpxC orthologs. Although the molecular

basis for such difference needs further investigation, it is likely

that the elasticity of the diacetylene bond significantly lowers

the energetic barrier and results in a much faster transition rate

from the initial LpxC/LPC-009 encounter complex to the final

complex, rendering such transition undetectable on the time

scale (seconds to minutes) of enzyme kinetic assays.

A final consideration for inhibitor design is that some LpxC

enzymes may be inherently more flexible than others. For

example, AaLpxC displays a largely rigid structure despite

binding to different small molecules, whereas PaLpxC shows

pronounced ligand-induced conformational changes. A thor-

ough understanding of the structural plasticity of key LpxC

enzymes by probing their dynamic properties in solution may

enable us to design broad-spectrum antibiotics optimized for

the less flexible orthologs, while allowing other LpxC enzymes

to adapt dynamically.

SIGNIFICANCE

The essential LpxC enzyme in the lipid A biosynthetic

pathway is a promising antibiotic target for developing novel

therapeutics against multidrug-resistant gram-negative

pathogens. The majority of LpxC inhibitors discovered so

far display a narrow range of antibiotic activity. This study

presents a structure-based strategy for lead optimization.

We show that compounds based on the diacetylene scaffold

potently inhibit a wider range of LpxC enzymes by over-

coming the resistance mechanism caused by sequence

and conformational heterogeneity in the LpxC substrate-
Chemistry & Biology 18,
binding passage. The structural revelation of large, inherent

conformational variation of distinct LpxC enzymes and the

relatively small scaleof inhibitor-inducedstructural plasticity

provides a molecular explanation for the limited efficacy of

existing compounds and a rationale to exploit more flexible

scaffolds for further optimization of LpxC-targeting antibi-

otics to treat a wide range of gram-negative infections.

EXPERIMENTAL PROCEDURES

Chemical Synthesis

CHIR-090 and LPC-004were synthesized according to published procedures

(Anderson et al., 2004). Synthesis of LPC-007 and LPC-009 was started from

the acylation of L-threonine methyl ester with sodium 4-ethynylbenzoate.

Under modified Sonogashira coupling conditions (Nicolaou et al., 1982), the

resulting 4-ethynylbenzamide was coupled with substituted acetylene to

afford diacetylene methyl ester. Finally, the methyl ester was converted into

the corresponding hydroxamic acid (LPC-007 and LPC-009) by treatment

with hydroxylamine under basic conditions.

Protein Purification

Plasmids encoding wild-type EcLpxC, PaLpxC (residues 1–299) with a C40S

mutation, and AaLpxC lacking the eight C-terminal amino acids and containing

a C181A mutation (1–274) were prepared following established procedures

(Barb et al., 2007a; Mochalkin et al., 2008). An EcLpxC construct lacking the

C-terminal five amino acids (1–300) was prepared by using the QuikChange

site-directed mutagenesis kit (Stratagene) using a plasmid containing the

full-length EcLpxC as the template. LpxC proteins were overexpressed in

BL21(DE3)STAR cells (Invitrogen) grown in LB media and purified using

anion-exchange (Q-Sepharose Fast Flow, Amersham) and size exclusion

(Sephacryl S-200 HR, Amersham) chromatography. Purified proteins were

concentrated and buffer-exchanged into 25 mM HEPES (pH 7.0) with

100 mM KCl and 0.1 mM ZnSO4. For EcLpxC and PaLpxC proteins, 2 mM

dithiothreitol (DTT) was included in the purification buffers. All protein samples

for enzymatic assay and crystallography were stored at �80�C.

Enzymatic Inhibition Assay

UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine and [a-32P]UDP-3-

O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine were prepared and assayed

as previously described (Jackman et al., 2001). Assays of LpxC activity were

performed at 30�C in 25 mM sodium phosphate (pH 7.4), 1 mg/mL bovine

serum albumin, 25 mM KCl, and 0.5 mM DTT, in the presence of 5 mM

substrate and 0.2 nM EcLpxC, unless noted otherwise. Ten-percent DMSO

was included and held constant in assay mixtures. Initial velocities were calcu-

lated from the linear portion of reaction progress curves (<10% conversion of

substrate to product).

KM and Vmax values were determined by varying the substrate concentration

from 0.5 to 50 mM. Data were analyzed using an Eadie-Hofstee plot (Dowd and

Riggs, 1965) and by a nonlinear curve-fitting program (KaleidaGraph, Synergy

Software); the resultant values were nearly identical within experimental errors.

To determine a KI value, LPC-009 concentrations were varied from 12.5 pM to

15 nM. Fractional activity (yi/y0) versus LPC-009 concentration was plotted

and fitted to calculate a KI
app value using the Morrison equation (Copeland,

2005):

vi
v0

= 1�
�½E�T + ½I�T +Kapp

I

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�½E�T + ½I�T +Kapp

I

�2�4½E�T ½I�T
q

2½E�T
(1)

where yi is the initial velocity of the reaction in the presence of the inhibitor, y0 is

the initial velocity of the reaction in the absence of the inhibitor, [E]T is the total

enzyme concentration, and [I]T is the total inhibitor concentration. A KI value

was calculated using the following equation:

KI =
Kapp

I

1+ ½S�=KM

; (2)

where [S] is the substrate concentration. All measurements were done in

triplicates.
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MIC Tests

MICs were determined according to the NCCLS protocol (Wikler et al., 2006)

adapted to 96-well plates and LB media. Briefly, 1.0 3 105 bacterial cells

in LB medium containing 5% DMSO and various concentrations of the

compound were incubated at 37�C for 22 hr. After the incubation, [4,5-dime-

thylthiazol-2-yl]-2,5-diphenyltetrazolium bromide solution (MTT) was added

(0.2 mg/mL final concentration) and incubated at 37�C for another 3 hr. The

MIC was determined as the lowest concentration of an antibiotic that pre-

vented color change (yellow to black).
Crystallization and X-ray Data Collection

Purified EcLpxC (1-300), PaLpxC (1-299, C40S), and AaLpxC (1-275, C181A)

were diluted to final concentrations of 10 mg/mL, 12 mg/mL, and 15 mg/mL,

respectively. For PaLpxC, 10 mM zinc sulfate was added. A four-fold molar

excess of LPC-009 dissolved in DMSO was added to the diluted protein

samples. The protein and inhibitor were incubated at room temperature for

1 hr to obtain a homogenous sample before setting up crystallization

screening. EcLpxC/LPC-009 complex crystals were obtained using the

hanging drop vapor diffusion method at 17�C, with the reservoir solution con-

taining 0.1MHEPES (pH 7.5), 1.5 M LiSO4, and 10mMDTT. AaLpxC/LPC-009

and PaLpxC/LPC-009 complex crystals were crystallized using the sitting

drop vapor diffusion method at 20�C, with reservoir solutions containing

0.1 M Tris (pH 8.5) and 2.5 M ammonium phosphate dibasic for AaLpxC/

LPC-009, and, 0.1 M sodium acetate trihydrate (pH 5.0) and 2.7 M ammonium

nitrate for PaLpxC/LPC-009. All protein-inhibitor complex samples were

mixed with equal amounts of reservoir solutions and equilibrated against

individual reservoir solutions. The crystals were cryoprotected with perfluoro-

polyether (PFO-X175/08) before being flash-frozen in liquid nitrogen. Diffrac-

tion data were collected at the Southeast Regional Collaborative Access

Team (SER-CAT) 22-BM beamline at the Advanced Photon Source, Argonne

National Laboratory and processed with HKL2000 (Otwinowski and Minor,

1997).
Model Building and Refinement

Molecular replacement with the program PHASER (McCoy et al., 2007) was used

to obtain the initial phases of three LpxC-inhibitor complex structures. The

structures of the AaLpxC/TU-514 complex (PDB entry: 2GO4) and the

PaLpxC/BB-78485 complex (PDB entry: 2VES) and a homology model of

EcLpxC derived from the PaLpxC/BB-78485 complex structure were used

as search models for AaLpxC/LPC-009, PaLpxC/LPC-009, and EcLpxC/

LPC-009 complexes, respectively. To avoid phase bias, molecular replace-

ment was performed iteratively, starting from partially refined structures not

containing regions of large structural variations (i.e., Insert I and Insert II).

The EcLpxC/LPC-009 crystal contains an uninterpretable electron density at

the packing interface, which is possibly an impurity from the chemical

synthesis of LPC-009. The excellent quality of the electron density of LPC-

009 allows an unambiguous interpretation of its binding mode in the active

site. Two rotameric conformations of the LPC-009 threonyl moiety were

observed in the PaLpxC complex. Water molecules were added using PHENIX

(Zwart et al., 2008) and verified with COOT (Emsley and Cowtan, 2004). The final

model was obtained after iterative cycles of manual model building with COOT

and refinement using PHENIX. MOLPROBITY (Davis et al., 2007) was used to eval-

uate the quality of the refined structure. The statistics for the three complexes

are shown in Table 1.
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