
1. Bloch-Lectures on Algebraic Cycles

Remark. For a given divisor D, l(D) is the dimension of space of functions f such that
(f) +D is effective..

Remark. For Riemann surface X, given a cycle D =
∑
nipi, when does D = (f). First we

observe that a necessary condition is D =
∑
ni(pi−p0). A necessary and sufficient condition

is that ∑
ni

∫ pi

p0

ω =

∫
γ

ω

for some γ ∈ H1(X,Z) and all ω ∈ Γ(X,Ω1
X) where ω can be written as f(z)dz locally. We

may also consider
∫
γ
∈ Γ(X,Ω1

X)∗. Abel-Jacobi theorem says that we have map

A0(X)→ Γ(X,Ω1
X)∗/H1(X,Z) := J(X)

is an isomorphism where A0(X) := divisiors of degree 0
divisors of functions

. (I have no idea about the surjectivity
of this map).

Definition 1.1 (Chow group).

CHr(X) = zr(X)/zrrat(X)

Ar(X) = zralg(X)/zrrat(X)

Proposition 1.2. CH0(X)/A0(X) ∼= Z given by the degree map. CH1(X) ∼= Pic(X) and if
X has a rational point then A1(X) ∼= k-points of the Picard variety of X.

We will consider A0(X) of algebraic surface X with Pg 6= 0. Let X be a projective variety
of dimension 2 over C.

Definition 1.3. q = dim Γ(X,Ω1
X) and Pg = dim Γ(X,Ω2

X). Albanese of X, Alb(X) :=
Γ(X,Ω1

X)∗/H1(X,Z) which is a complex torus. Fixing a point p0, we have a map φ : X →
Alb(X) given by φ(p) =

∫ p
p0

Proposition 1.4. With above hypothesis, we have

(1) φn : Symn(X)→ Alb(X) is surjective when n� 0.
(2) Albanese variety satisfies the universal property.
(3) z0(X) → Alb(X) factors through CH0(X) → Alb(X). The induced map A0(X) →

Alb(X) is surjective and independent of choice of p0.

Lemma 1.5. Let Y be a smooth projective variety, and then T (Y ) = ker(A0(Y )→ Alb(Y ))
is a divisible group.

Example. Let E,F be elliptic curves. Fix a point η ∈ E of order 2. Let X = (F ×E)/{1, σ}
where σ is a involution given by σ(e, f) = (−f, e + η). Let E ′ = E/{1, η}. We have a
natural projection ρ : X → E ′ with fiber F . We have Γ(X,Ω1

X) = Γ(F × E,Ω1
F×E){1,σ} ∼=

[Γ(F,Ω1) ⊕ Γ(E,Ω1)]{1,σ} = C. Therefore Alb(X) is a Riemann surface. We conclude that
Alb(X) ∼= E ′. Now we want to show A0(X) ∼= E ′ and T (X) = 0. Note that 4T (X) = 0 and
T (X) is divisible group and thus T (X) = 0. This surface is called hyperelliptic with Pg = 0.

Theorem 1.6 (Mumford, Bloch). When Pg > 0, T (X) is enormous and A0(X) is not finite
dimensional. We say A0(X) is finite dimensional if there exists a complete smooth curve C
mapping to X such that J(C)→ A0(X) is surjective.
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Definition 1.7. We define Neron-Severi group of projective variety X by NS(S) = im(c1 :
H1(X,O∗X) → H2(X,Z2πi)). An alternative definition is NS(X) = CH1(X)/A1(X) =
Pic(X)/Pic0(X)

Proposition 1.8. X is a smooth variety over k and Y is a variety over k. Then, writing
K = k(Y ),

CHn(XK) ∼= lim−→
U⊂Y open

CHn(X ×k U).

Let X be a smooth projective surface over an algebraically closed field k. Let A0(X) ⊂
CH0(X) be the subgroup of cycles of degree 0. We say A0(X) is finite dimensinal if there
exists a complete smooth curve C mapping to X such that the map J(C) → A0(X) is
surjective.

Lemma 1.9. Let k ⊂ K ⊂ K ′ be extensions of fields. Then the kernel of CH2(XK) →
CH2(XK′) is torsion.

Proof. Need clarification. �

Proposition 1.10. Let Ω ⊃ k be a universal domain. Assume A0(XΩ) is finite dimensional.
Then there exist one-dimensional subschemes C ′, C ′′ ⊂ X and a 2-cycle Gamma supported
on C ′ ×X) ∪ (X × C ′′) such that some non-zero multiple of the diagonal ∆ on X ×k X is
rationally equivalent to Γ. ( Ω is the algebraic closure of k(x1, . . . , xn, . . . ).)

Proof. �

2. Abelian Varieties

Remark. Give n a curve C over field k, Pic0(C) is one to one corresponding to k-rational
points of J(C).

Lemma 2.1 (Rigidity Lemma). Let X, Y and Z be algebraic variety and suppose that X is
complete. If f : X × Y → Z is a morphism such that for some y ∈ Y (k), X × y is mapped
to a point z ∈ Z(k) then f is completely determined by Y .

Proof. An important ingredient of the proof is realizing that X → V is constant if X is
complete and V is affine. �

Corollary 2.2. When we fix identity e ∈ X(k), there is at most one structure of an abelian
variety on X. All abelian varieties are commutative.

Now we want to show that Abelian varieties are projective.

Theorem 2.3. Let X and Y be varieties. Suppose X is complete. Let L and M be two line
bundles on X ×Y . If for all closed points y ∈ Y we have Ly ∼= My there exists a line bundle
N on Y such that L ∼= M ⊗ p∗N where p is the projection X × Y → Y .

Proof. Ly ⊗M−1
y is trivial and Xy is complete, so we have H0(Xy, Ly ⊗M−1

y ) ∼= k(y). By

Chapter III Theorem 12.11 on Hartshorne, p∗(L⊗M−1) is a line bundle. We can show that
p∗p∗(L⊗M−1) ∼= L⊗M−1. �

Lemma 2.4. Let X, Y be varieties, with X complete. For a line bundle L on X × Y , the
set {y ∈ Y |Ly is trivial} is closed in Y .
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Proof. We have

{y ∈ Y |Ly is trivial} = {y ∈ Y |h0(Ly) > 0} ∩ {y ∈ Y |h0(L−1
y ) > 0}

since X is complete. By semi-continuous property, we know the two sets on right hand side
are closed in Y . �

Theorem 2.5 (Important!). Let X and Y be complete varieties and let Z be a connected,
locally noetherian scheme. Let x ∈ X(k), y ∈ Y (k) and let z be a point of Z. If L is a line
bundle on X ×Y ×Z whose restriction to {x}×Y ×Z, to X ×{y}×Z and to X ×Y ×{z}
is trivial then L is trivial.

Several corollaries follow from this theorem. We write I = {i1, . . . , ir} ⊂ [n] and we define

pI : Xn → X

sending (x1, x2, . . . , xn) 7→ xi1 + · · ·+ xir .

Corollary 2.6 (Theorem of Cube). Θ :=
⊗

p∗IL
⊗(−1)1+#I

on X3 is trivial.

Corollary 2.7 (Theorem of the Square). Let X be an abelian variety and let L be a line
bundle on X. Then for all x, y ∈ X(k),

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL
More generally, let T be a k-scheme and write LT for the pull-back of L to XT . Then

t∗x+yLT ⊗ LT ∼= t∗xLT ⊗ t∗yLT ⊗ p∗T ((x+ y)L ⊗ x∗L−1 ⊗ y∗L−1)

for all x, y ∈ X(T ).

Corollary 2.8. We get a homomorphism φL : X(k)→ Pic(X) given by x 7→ [t∗xL⊗ L−1].

Proof. This follows from previous corollary. �

We define [n] : X → X by multiplication by n. We get the following corollary,

Corollary 2.9.
n∗L ∼= Ln(n+1)/2 ⊗ (−1)∗Ln(n−1)/2

Proof. Applying Theorem of the square, we get (n+1)∗L ∼= n∗L∗⊗ (n−1)∗L⊗L⊗ (−1)∗L−1

and apply induction. �

Remark. We note that for any line bundle M = (M⊗(−1)∗M)⊗(M⊗(−1)∗M−1) = L+⊗L−
and L+ is symmetric and L− is antisymmetric, i.e. (−1)∗L+

∼= L+, (−1)∗L− ∼= L−1
− . By

previous corollary, we get n∗L+
∼= Ln

2

+ and n∗L− ∼= Ln−.

Definition 2.10 (Mumford line bundle). Let L be a line bundle on an ableian variety X.
On X ×X we define Λ(L) by

Λ(L) := m∗L⊗ p∗1L−1 ⊗ p∗2L−1.

The restriction of Λ(L) to {x} ×X and X × {x} are both t∗xL⊗ L−1. In particular, Λ(L) is
trivial on {0} ×X and on X × {0}. We define K(L) ⊂ X as the maximal closed subscheme
such that Λ|X×K(L) is trivial over K(L), i.e. Λ|X×K(L)

∼= p∗M for some line bundle on K(L).

Lemma 2.11. We have M = OK(L) and Λ|X×K(L)
∼= OX×K(L).

Proposition 2.12. The scheme K(L) is a subgroup scheme of X.
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Lemma 2.13. If L is ample then K(L) is finite group scheme.

Proof. K(L)0
red has a trivial ample line bundle. Then dim(Y ) = 0. Thus K(L) is finite. �

Proposition 2.14 (Very important!). X is an abelian variety over algebraically closed field
k. Let f : X → Y be a morphism of k-varieties. For x ∈ X, let Cx denote the connected
component of the fiber over f(x) such that x ∈ Cx, and write Fx for the reduced scheme
underlying Cx. Then F0 is an abelian subvariety of X and Fx = tx(F0) = x + F0 for all
x ∈ X(k).

Now I plan to talk about the Picard schemes and dual varieties. I start with an analytic
approach. I suppose that X is a smooth projective variety over C. We have the first Chern
map c1 : Pic(X) → H2(X,Z). Note that im(c1) = H2(X,Z) ∩H1,1(X,C) := NS(X). Now
we consider the short exact sequence of sheaves:

0→ Z ×2πi−−−→ O exp−−→ O∗ → 1

which induces an exact of cohomologies

0→ H1(X,O)/H1(X,Z)→ Pic(X)→ NS(X)→ 0

We call Pic0(X) := H1(X,O)/H1(X,Z) which picks out the topoligically trivial holomorphic
line bundles on X. As a complex manifold, we have dim(Pic0(X)) = 1

2
b1 and dimH1(X,O) =

dimH0(X,ΩX).
Now we define the relative Picard functor.

Definition 2.15. We define contravariant Picard functor as PicX/S : Sch/S → Ab by
PicX(Y ) = {line bundles on X × Y trivialized on ∗ ×Y }

Theorem 2.16 (Grothendieck). PicX is representable by the countable union of quasi-
projective schemes.

I also denote the scheme representing the Picard functor also as PicX . I want to show
this is a group scheme which means I want to impose group structure on PicX . Denote
hPicX := hom(−,PicX). We have multiplication structure m : hPicX×PicX = hPicX × hPicX →
hPicX induced by the multiplication of PicX since it is group valued. By Yoneda lemma, this
multiplication structure is induced by a unique morphism m : PicX × PicX → PicX . We
denote Pic0

X as the component of containing 0.

Definition 2.17. An alternative definition for Picard functor is PicX is the sheafification
of the functor Y 7→ Pic(X ×k Y )/Pic(Y )

Our goal is to understand the tangent space of Pic0
X at 0 ∈ Pic0

X .

Proposition 2.18. T0PicX ∼= H1(X,OX)

3. Kodaira Dimension

We denote ωX as the canonical bundle of a projective variety.

Definition 3.1. The plurigenera of X is Pm(X) = dimkH
0(X,ω⊗mX ).

Example. (1) X = Pn, ωX = OPn(−n− 1), and so Pm(X) = 0 for all m ≥ 0.
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(2) X = C, a smooth curve of genus g. We have P1(X) = g. If g = 1 then ωC ∼= Oc
and in particular Pm(C) = 1 for all m. If g ≥ 2, degω⊗mC = m(2g − 2) > 2g − 1
for m ≥ 2. We have l(K − mK) = 0 where K is the canoncial divisor. Thus,
Pm(C) = (2m− 1)(g − 1) for m ≥ 2.

(3) X ⊂ Pn is a smooth hypersurface of degree d. We have ωX ∼= OX(d−n−1). If d ≤ n,
then Pm(X) = 0 for all m ≥ 0. If d = n+ 1, ωX ∼= OX and Pm(X) = 1 for all m ≥ 0.
If d ≥ n + 2, ωX is very ample line bundle and we have Pm(X) = χ(X,ω⊗mX ) =
d(d−n−1)

(n−1)!
mn−1 +O(mn−2). Note that in general H i(X,OX) = 0 for 0 < i < n− 1.

(4) Let X be an abelian variety. ωX ∼= OX since TX is trivial. Thus, Pm(X) = 1 for
m ≥ 0 and H i(X,OX) ∼= ∧iH1(X,OX) 6= 0.

Definition 3.2 (Calabi-Yau’s). We will call a weak Calabi-Yau variety a smooth projective
variety X with ωX ∼= OX . if in addition

H i(X,OX) = 0,∀0 < i < dimX

we will say that X is Calabi-Yau.
A K3 surface is a Calabi-Yau variety X of dimension 2. In other words. ωX = OX and
H1(X,OX) = 0.

Example. A hypersurface of degree d = n + 1 in Pn is Calabi-Yau and an abelian variety is
weak Calabi-Yau. A quartic surface in P3 is a K3 surface.

Let X be a smooth projective variety, and let L be a line bundle on X. For each m ≥ 0
such that h0(X,L⊗m) 6= 0, the linear system |L⊗m| induces a rational map from X to a
projective space, and more precisely a morphism

φm : X −Bm → PNm , Nm = h0(X,L⊗m)− 1,

where Bm is the base locus of L⊗m. We write φm(X) as the closure of the image of φm in
PNm .

Definition 3.3. The Iitaka dimension of L is κ(X,L) = maxm≥1 dimφm(X) if φm(X) 6= ∅
for some m. We set κ(X,L) = −∞ otherwise. Thus, κ(X,L) ∈ {−∞, 0, 1, . . . , dimX}. A
line bundle is call big if κ(X,L) = dimX. The Kodaira dimension of X is κ(X) := κ(X,ωX).
X is call general type if κ(X) = dimX, i.e. if ωX is big.

Proposition 3.4. Let κ = κ(X,L), then there exist constants a, b ≥ 0 such that a ·mκ ≤
h0(X,L⊗m) ≤ b ·mκ for sufficiently large m with h0(X,L⊗m) 6= 0.

Example. κ(Pn) = −∞. Use above proposition, we can easily tell the Kodaira dimension of
curves, hypersurfaces and Calabi-Yau varieties.

Proposition 3.5. If X, Y are smooth varieties, then κ(X × Y ) = κ(X) + κ(Y ).

4. Murre-Lectures on Algebraic Cycles and Chow Groups

We assume our varieties are over C. Let X be a smooth irreducible projective variety
and we can consider X as a complex compact connected manifold. As a complex ana-
lytic manifold, we have Hodge decomposition, H2p(X,C) =

⊕
r+s=2pH

r,s(X). We define

Hdgp(X) := H2p(X,Z) ∩ j−1(Hp,p(X)) where j : H2p(X,Z) → H2p(X,C) is the natural
map. We want to construct a cycle map γZ : Zp(X)→ Hdgp(X) which induces a cycle map
γZ : CHp(X)→ Hdgp(X)
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Proposition 4.1 (Construction of γZ). Let Zq ⊂ Xd be a closed subvariety. p = d− q. We
have the following long exact sequence

· · · → H2p−1(U ;Z)→ H2p(X,U ;Z)
ρ−→ H2p(X;Z)→ H2p(U ;Z)→ · · ·

Note that we also have an isomorphism by Thom T : H2p(X,U ;Z)
∼=−→ H0(Z;Z) = Z. Now

we take γZ(Z) = ρ ◦ T−1(1).

We want to show that γZ(Z) ∈ j−1(Hp,p(X)). In fact, we can find a ”de Rham represen-
tative” such that ∫

X

j ◦ γZ(Z) ∧ β =

∫
Z

i∗β

where i : Z ↪→ X. The last integration is nonzero if and only if β is of type (q, q) =
(d−p, d−p) since Z is a q-dimensional complex manifold. Thus, j ◦γZ(Z) ∈ Hp,p(X). To be
more precise, we write γpZ : Zp(X)→ Hdgp(X) and we have the following famous theorem:

Theorem 4.2 (Lefschetz (1,1)-theorem). Let X be a smooth, irreducible, projective variety
over C. Then γ1

Z is surjective, i.e. every Hodge class of type (1, 1) is algebraic.

Proof. Using the GAGA theorems, we work everything in the analytic category. We have an
exact sequence

H1(X,O∗) c1−→ H2(X,Z)
β−→ H2(X,O) ∼= H0,2(X)

We claim that c1 = γ1
Z and β = π0,2 ◦ j. Given γ ∈ H2(X,Z) ∩ j−1(H1,1(X)) = Hdg1(X),

we have β(γ) = 0 and there exist [D] ∈ Div(X) such that γ1
Z([D]) = γ. �

Now we start discussing intermediate Jacobian. Let X be a smooth, irreducible, porjective
variety over C. We have a Hodge filtration

F jH i(X,C) =
⊕
r≥j

Hr,i−r = H i,0 +H i−1,1 + · · ·Hj,i−j

Definition 4.3. The p-th intermediate Jacobian of X is

Jp(X) = H2p−1(X,C)/(F pH2p−1(X,C) +H2p−1(X,Z))

So writing V = Hp−1,p + · · ·+H0,2p−1 we have that Jp(X) = V/H2p−1(X,Z).

Lemma 4.4. Jp(X) is a complex torus of dimension half the (2p−1)-th Betti number of X:

dim Jp(X) =
1

2
b2p−1(X)

Proof. Since Hr,s(X) = Hs,r(X), we have Betti number is even and let b2p−1 = 2m. Now
we need to show image of H2p−1(X,Z) is a lattice in V . Pick α1, . . . , α2m as the R-basis
for H2p−1(X,R), we want to show that this basis is linear independent in V . Suppose
ω =

∑
riαi ∈ F pH2p−1(X,C) = V with ri ∈ R. We have ω = w and therefore ω ∈ V ∩V = 0.

Therefore ω = 0 and ri = 0 for all i. �

A complex torus T = V/L to be an abelian variety it is necessary and sufficient that there
exists a so-called Riemann form. This is a R-bilinear form E : V × V → R satisfying

(1) E(iv, iw) = E(v, w).
(2) E(v, w) ∈ Z whenever v, w ∈ L.
(3) E(v, iw) symmetric and positive definite.
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When p = 1, p = d, Jp(X) is an abelian variety. When p = 1, J1(X) = H1(X,C)/H1,0 +
H1(X,Z) which is the Picard variety. p = d, Jd(X) = H2d−1(X,C)/Hd,d−1 + H2d−1(X,Z)
which is the Albanese variety.

Theorem 4.5. There exists a homomorphism AJp : Zp
hom → Jp(X) which factors through

CHp
hom. AJ is called the Abel-Jacobi map.

Proof. First note that V is dual to F d−p+1H2d−2p+1(X,C) and Jp(X) = V/H2p−1(X,Z).
Therefore, an element v ∈ V is a functional on F d−p+1H2d−2p+1(X,C). Let Z ∈ Zp

hom(X),
and there exists a topological (2d− 2p+ 1)-chain Γ such that Z = ∂Γ. Now Γ is a functional
on F d−p+1H2d−2p+1(X,C) because ω ∈ F d−p+1H2d−2p+1(X,C) is represented by a closed
smooth differential form ϕ of degree 2d − 2p + 1. The functional is given by ω 7→

∫
Γ
ϕ.

Thus the choice of Γ determines an element of V ; and thus also of the intermediate jacobian
Jp(X) = V/H2p−1(X,Z). Note that both choice of ϕ and Γ are well-defined. �

Our next question is what is im(AJp(Zalg)). Given T ∈ Zp(Ye×Xd), we have T : Jr(Y )→
Jp+r−e(X). So in particular if Y = C and T ∈ Zp(C × X), we get a homomorphism
T : J(C) → J(X). The tangent space at the origin of Jp(X) is V . We can see that
H0,1(C) as the tangent space of J(C) is mapped into subsspace of Hp,p−1(X) ⊂ V . Let
Jp(X)alg ⊂ Jp(X) be the largest subtorus of Jp(X) for which the tangent space is contained
in Hp,p−1(X). Note that Jp(X)alg is an abelian variety.

Lemma 4.6. AJp(Zp
alg(X)) ⊂ Jp(X)alg

Now we start discussing the difference of algebraic versus homological equivalence and this
leads to Griffiths groups. We define that Gri(X) := Zi

hom(X)/Zi
alg(X). We first note that

Gr1(X) = 0 and Grd(Xd) = 0. Griffiths showed that

Theorem 4.7 (Griffiths 1969). There exist smooth irreducible, projective varieties of dimen-
sion 3 such that Gr(X)⊗Q 6= 0.

Theorem 4.8. Let Vd+1 ⊂ PN be a smooth, irreducible variety and W = V ∩ H a smooth
hyperplane section. Then

Hj(V,Z)→ Hj(W,Z)

is an isomorphism for j < d = dimW and injective for j = d. This is also true for homology
map induced by inclusion. i.e. the induced map is isomorphic for j < d and surjective for
j = d.

Special case: Let V = Pd+1 and W ⊂ Pd+1 hypersurface. We get Hj(W,Z) = 0 when
j < d

Theorem 4.9 (Hard Lefschetz theorem). Let Vd+1 ⊂ PN and W = V ∩ H be a smooth
hyperplane section. Let h = γZ,V (W ) ∈ H2(V,Z). Then there is a Lefschetz operator

LV : Hj(V,Z)→ Hj+2(V,Z)

α 7→ h ∪ α
By repeating we get (n = d+ 1 = dimV )

Lr : Hn−r(V,Z)→ Hn+r(V,Z), (0 ≤ r ≤ n).

Lr induces an isomorphism for all r ≤ n in coefficient Q. i.e.

Lr : Hn−r(V,Q)
∼=−→ Hn+r(V,Q)
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Definition 4.10 (Lefschetz pencil). Let Vn ⊂ Pn be a smooth, irreducible. Let Hλ =
λ0H0 + λ1H1 where λ = [λ0 : λ1] ∈ P1 and H0, H1 are two hpyerplanes. We get a pencil of
hyperplane sections {Wλ = V ∩Hλ} on V . Lefschetz pencil satisfies two following properties:

(1) There is a finite set S of points t ∈ P1 such that Wt is smooth outside S. Put
U := P1 − S.

(2) For s ∈ S, Ws has only one singular point x and it is an ”ordinary double point”.

For t ∈ U , we have the Lefschetz theorem

ι∗t : Hj(V,Z)→ Hj(Wt,Z)

which is an isomorphism for j < dimWt and injective for j = dimWt. Now we can talk
about the monodromy of Lefschetz pencils. Fix t0 ∈ U and write W = Wt0 . Then π1(U)
operates on Hj(W,Q), but due to the Lefschetz theorem it acts trivially if j 6= d = dimW .
Consider the action

ρ : π1(U)→ Aut(Hd(Wd,Q)).

Γ = im(ρ) is called the monodromy group.
Let ι : W ↪→ V and ι∗ : Hj(W,Q)→ Hj+2(W,Q). By Lefschetz theorem Hj(W,Q)van :=

ker ι∗ = 0 when j 6= d. And we note that LW = ι∗ ◦ ι∗.

5. Voisin-The Griffiths Group of a General Calabi-Yau Threefold is not
Finitely Generated

This section is the collection of materials that I learned when I read Voisin’s paper. I will
follow the notation in this paper which is different from the previous section.

As stated in previous section, Abel-Jacobi map induces a morphism

Φk
X : Grk(X)→ J2k−1(X)tr

where J2k−1(X)tr is the quotient of J2k−1(X) by its maximal subtorus having its tangent
space contained in Hk−1,k(X).

We will focus on when n = 3, k = 2. Let X be a projective Calabi-Yau threefold and it is
well know that dimH1(TX) = dimH1,2(X).

Theorem 5.1. let X be a Calabi-Yau threefold. If dimH1(TX) 6= 0, the general deformation
Xt of X satisfies that the Abel-Jacobi map

ΦXt : Z2(Xt)→ J2(Xt)

of Xt is nontrivial, even module torsion.

We are going to prove the following theorem

Theorem 5.2. Let X be a Calabi-Yau threefold. If h1(TX) 6= 0, the general deformation Xt

of X has the property that the Abel-Jacobi map

ΦXt : Z2(Xt)→ J(Xt)

is such that imΦXt ⊗Q is an infinite dimensional Q-vector space. In particular, Gr(Xt)⊗Q
is an infinite dimensional Q-vector space.

For the discussion of basic deformation theory and Koddaira-Spencer map, please refer to
next subsection.
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5.1. Kodaira-Spencer map. We define a deformation functor

F : Categroy of local Artin C-algebras→ Sets

where local Artin C-algebras are rings of the form C[x1, . . . , xn]/I with one maximal ideal
and dimC C[x1, . . . , xn]/I is finite. For example C[x]/(x4),C[x, y]/(x3, y4). GIven a smooth
projective variety W0 over C, deformation problem is to solve the following commutative
diagram

W0 Wn W

Spec(C) Spec(C[x]/xn) Spec(C[x])

with vertical maps being flat. For each Artin C-algebra A ← C, we consider the isomorphism
classes of commutative diagrams

W0 W

Spec(C) Spec(A)

F0 FA

Tangent space to deformation functor= First order deformations of W0 is given by assigning
A = C[ε]/ε2 and this is isomorphic to H1(W0, TW0). By Serre’s duality, we have H i(W0,F ) =
Hdim(W0)−i(W0,F ∗⊗ω)∗. In the case when W0 is Calabi-Yau which means canonical bundle
is trivial, we have dimH1(W0, TW0) = dimH2(W0,Ω

1) = h1,2. Now we consider the following
commutative diagram of deformation

W0 W

0 B

where 0 is the base point of the deformation. We have short exact sequences on W0

0→ IW0 → OW → OW0 → 0

and

0→ IW0/I
2
W0
→ ΩW |W0 → ΩW0 → 0

Note that IW0/I
2
W0

= OW0 ⊗ T ∗0B since conormal sheaf of fiber is trivial. We now dualize
the above sequence and we get

0→ TW0 → TW |W0 → OW0 ⊗ T0B → 0

and it induces a map KS : H0(W0,OW0 ⊗ T0B) → H1(W0, TW0). We have T0B = N0/B
∼=

H0(W0,NW0/W ) = H0(W0,OW0 ⊗ T0B) and denote KS : T0B → H1(W0, TW0).

6. Some Random Math

This section is contributed to various topics in mathematics.
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6.1. Hilbert scheme. Both Grassmannian and the Fano scheme are special cases of Hilbert
scheme. First we introduce universal property of Grassmannian. We define G = G(k +
1, V ) = G(k,PV ) and Φ = {(Λ, p) ∈ G× PV | p ∈ Λ} as the universal family of k-planes in
PV in the following sense: For any scheme B, we will say that a subscheme L ⊂ B×PV is a
flat family of k-planes in PV if the restriction π : L → B of the projection π1 : B×PV → B
is flat, and the fibers over closed points of B are linearly embedded k-planes in PV . We then
have:

Proposition 6.1. If π : L ⊂ B × PV → B is a flat family of k-planes in PV , then there is
a unique map α : B → G such that L is equal to the pullback of the family Φ via α:

L B ×G Φ Φ

B G

π π

α

6.2. Elliptic surfaces. Let k = k and C a smooth projective curve over k.

Definition 6.2. An elliptic surface S over C is a smooth porjective surface S with an elliptic
fibration over C, i.e. a surjective morphism

f : S → C,

such that

(1) generic fibers are elliptic curves;
(2) no fiber contains an exceptional curve of the first kind.

The second condition ensures that S is a smooth minimal model.

Example.
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