Overview of tax incidence and Harberger 1962

Xu Jiang

Overview of tax incidence (based on Fullerton and Metcalf 2002)

Simple examples of tax incidence in a partial equilibrium model

Static models of tax incidence - Harberger (1962)

What is tax incidence

- Fundamental question: which party bears the tax burden of a particular tax (income tax, corporate tax, sales tax, etc.)? In other words, how does a particular tax policy affect the welfare of everybody in the society?
- Where can the burden lie:
 - Higher product prices (burden goes to the consumers)
 - Lower wages (burden goes to the employees)
 - lower rates to other production factors (capital, land, etc., burden goes to the owners of those factors)

What is tax incidence

- Types of models:
 - Partial equilibrium models (a tax is imposed but agnostic about how the tax revenue will be used; only consider the choice of a firm without considering the choice of consumers)
 - General equilibrium models (usually not tractable and have to rely on numerical solutions)

General insights

- In partial equilibrium models, tax buden depends on the factor supply elasticity relative to factor demand elasticity.
 - The higher supply elasticity relative to demand elasticity, the less the burden falls on the supplier of factor and the more the burden falls on the demander of the factor.
- A most commonly used general equilibrium model consists of two products, two sectors (a corporate sector and a non-corporate sector) and two production factors (capital and labor)
 - Economists usually model corporate income taxes as a tax on capital factor in the corporate sector.
 - The main question is whether burden falls only on capital or labor shares some burden (Harberger 1962 is the first attempt).

Overview of tax incidence (based on Fullerton and Metcalf 2002)

Simple examples of tax incidence in a partial equilibrium model

Static models of tax incidence - Harberger (1962)

Incidence of a wage tax

- Consider a firm that hires labor to produce goods that are sold at constant unit price p. The competitive wage w is determined by equating labor supply and labor demand, that is, equilibrium wage w* is determined by L^S(w*) = L^D(w*).
- Now considering a wage tax, that is, companies bear a wage cost of w(1 + τ), where τ is the wage tax rate.
- Of course, labor becomes more expensive for the firm, resulting in firm demanding less labor, which reduces the wage rate, that is, worker will bear some of the tax burden.
- How much burden worker bears depends on the supply and demand elasticity.

incidence of a wage tax- continued

▶ Recall the definition of demand and supply elasticity:

$$\begin{split} \eta^{S} &= \frac{d \ln L^{S}}{d \ln w} = \frac{\frac{d L^{S}}{L^{S}}}{\frac{d w}{w}} = \frac{\hat{L}^{S}}{\hat{w}} \geq 0 \text{ and} \\ \eta^{D} &= \frac{d \ln L^{D}}{d \ln [w(1+\tau)]} = \frac{\frac{d L^{D}}{L^{D}}}{\frac{d w}{w} + \frac{d \tau}{1+\tau}} = \frac{\hat{L}^{D}}{\hat{w} + \hat{\tau}} \leq 0. \text{ Therefore} \\ \hat{L}^{S} &= \eta^{S} \hat{w} \text{ and } \hat{L}^{D} = \eta^{D} (\hat{w} + \hat{\tau}). \end{split}$$

- $\widehat{\mathcal{L}}^{S} = \widehat{\mathcal{L}}^{D}$ results in $\frac{\widehat{w}}{\widehat{\tau}} = \frac{\eta^{D}}{\eta^{S} \eta^{D}} \in (-1, 0)$. Therefore some but not all of the burden is shifted to the labor.
- The higher η^S is and/or the lower |η^D| is, the less the burden is shifted to the labor.
- When η^S → +∞ (perfect elastic supply) or η^D → 0 (perfect inelastic demand), labor bears no burden.
- When η^S → 0 (perfect elastic supply) or η^D → −∞ (perfect inelastic demand), labor bears complete burden.

Incidence of a corporate income tax modelled in the usual way

- Consider a firm that hires labor to produce goods that are sold at constant unit price p. The competitive wage w is determined by equating labor supply and labor demand, that is, equilibrium wage w* is determined by L^S(w*) = L^D(w*). The production function is F(L).
- Now considering a corporate income tax, that is, companies obtain an after-tax profit of (1 − τ)[F(L) − wL]. This formulation will also endogenizes the labor demand function.
- ► First order condition results in F_L(L^{*}) = w, which implicitly defines the labor demand function L^D(w)
- ► Labor supply is still $L^{S}(w)$, and market clearing condition $L^{D}(w^{*}) = L^{S}(w^{*})$ determines the equilibrium wage.
- In this case both L^D and L^S is independent of τ. Therefore w^{*} is also independent of τ, that is, the firm bears all the burden.

Incidence of a corporate income tax modelled in the usual way, continued

- Intuition: pure profit tax reduces the marginal benefit of hiring labor and the marginal cost of hiring labor proportionally, resulting in no distortion to labor choice and thus equilibrium wage.
- Similar logic will apply if the firm uses both capital and labor to produce and tries to maximize an after-tax profit of (1 − τ)[F(K, L) − rK − wL], implying that both wage expense and capital rental expense are fully deductible.
- The insight that pure profit tax results in zero incidence on production factors first illustrated in Stiglitz 1973 Journal of Public Economics.

Overview of tax incidence (based on Fullerton and Metcalf 2002)

Simple examples of tax incidence in a partial equilibrium model

Static models of tax incidence - Harberger (1962)

Setup of Harberger 1962

- A two-sector general equilibrium model with two production factors (capital K and labor L).
- There are two goods, X and Y, produced with the two factors with constant return to scale production function:
 X = f(K_x, L_x) and Y = g(K_y, L_y).
- ► Each factor has a fixed supply but can freely move between sectors, $K_x + K_y = \overline{K}$ and $L_x + L_y = \overline{L}$.
- Harberger studies the incidence of a tax on (earnings of) capital in one sector (denoted the corporate sector), that is, how the price of capital and labor changes with the imposition of the tax.
- ► Assume without loss of generality that before the imposition of the tax, $p_x = p_y = 1$.

Key equations- equation (1)

Reduced form of demand for X: E, the definition of (relative) price elasticity of demand for X, is defined as

$$E = \frac{\frac{dX}{X}}{\frac{d\binom{p_X}{p_Y}}{\frac{p_X}{p_Y}}} = \frac{\frac{dX}{X}}{\frac{\frac{p_Y dp_X - p_X dp_Y}{p_Y}}{\frac{p_Y^2}{\frac{p_Y}{p_Y}}}} = \frac{\frac{dX}{X}}{\frac{dp_X}{p_X} - \frac{dp_Y}{p_Y}} = \frac{\frac{dX}{X}}{dp_X - dp_Y},$$

resulting in

$$\frac{dX}{X} = E(dp_X - dp_Y),$$

which is equation (1) in Harberger (1962). Note that E < 0.

Key equations- equation (2)

Assuming that f is homogenous of degree 1 (Cobb-Douglas production function K^αL^β with α + β = 1 being a special case), then differentiate X = f(K_x, L_x) results in

$$dX = \frac{\partial f}{\partial K_x} dK_x + \frac{\partial f}{\partial L_x} dL_x,$$

and

$$\frac{dX}{X} = \frac{\frac{\partial f}{\partial L_x}}{f(K_x, L_x)} dL_x + \frac{\frac{\partial f}{\partial K_x}}{f(K_x, L_x)} dK_x.$$
(1)

Since for any t,

$$f(tK_x, tL_x) = tf(K_x, L_x)$$

differentiate with respect to t and setting t = 1 results in

$$\frac{\partial f}{\partial K_x}K_x + \frac{\partial f}{\partial L_x}L_x = f(K_x, L_x)$$

Key equations- equation (2), continued

• Denote $f_K = \frac{\frac{\partial f}{\partial K_x} K_x}{f(K_x, L_x)}$ and $f_L = \frac{\frac{\partial f}{\partial L_x} L_x}{f(K_x, L_x)}$ as the share of capital and labor in the production function, respectively, then inserting into equation (1) results in

$$\frac{dX}{X} = f_L \frac{dL_x}{L_x} + f_K \frac{dK_x}{K_x},$$

which is equation (2) in Harberger (1962).

Key equations - equation (3),(4) and (3'),(4')

The elasticity of subsitution (between production factors) for producing Y is defined as

$$S_{y} = \frac{\frac{d\binom{K_{y}}{L_{y}}}{\frac{K_{y}}{L_{y}}}}{\frac{d\binom{P_{k}}{P_{l}}}{\frac{P_{k}}{P_{l}}}} = \frac{\frac{\frac{L_{y}dK_{y}-K_{y}dL_{y}}{L_{y}}}{\frac{L_{y}}{L_{y}}}}{\frac{\frac{P_{l}dP_{k}-P_{k}dP_{l}}{P_{l}}}{\frac{P_{l}}{P_{l}}}} = \frac{\frac{dK_{y}}{K_{y}} - \frac{dL_{y}}{L_{y}}}{\frac{dP_{k}}{P_{k}} - \frac{dP_{l}}{P_{l}}} = \frac{\frac{dK_{y}-dL_{y}}{K_{y}} - \frac{dL_{y}}{L_{y}}}{dp_{k} - dp_{l}},$$

which is equivalent to

$$\frac{dK_y}{K_y} - \frac{dL_y}{L_y} = S_y(dp_k - dp_l),$$

that is, equation (3') of Harberger (1962). Note that $S_y < 0$. For producing X, we similarly have

$$\frac{dK_x}{K_x} - \frac{dL_x}{L_x} = S_x(dp_k + T - dp_l),$$

where T is the amount of tax per unit of capital, that is, equation (4') of Harberger (1962). Note that $S_x < 0$.

Further simplifying the system of equations

- ► We now have four equations and nine unknowns: dX, dp_x, dp_y, dL_x, dL_y, dK_x, dK_y, dp_l and dp_k. Need five more equations.
- ► Three are straightforward: since K_x + K_y and L_x + L_y are both constants, we have dK_y = −dK_x and dL_y = −dL_x (equations (5) and (6) in Harberger 1962).
- We can always choose a numeraire good (that is, price set equal to 1). Harberger picks labor as the numeraire good, that is, p_l is always equal to 1, so dp_l = 0, that is, equation (9) in Harberger 1962.

Further simplifying the system of equations, continued

► Two comes from constant return to scale of production function: constant returns to scale implies an economic profit of zero for both sectors, that is, we always have $p_y Y = p_l L_y + p_k K_y$. Differentiating results in

$$p_y dY + Y dp_y = p_l dL_y + L_y dp_l + p_k dK_y + K_y dp_k.$$
(2)

Note that

$$dY = \frac{\partial g}{\partial K_y} dK_y + \frac{\partial g}{\partial L_y} dL_y, \qquad (3)$$

and first order condition results in

$$p_{y}\frac{\partial g}{\partial K_{y}}=p_{k}, \qquad (4)$$

and

$$p_{y}\frac{\partial g}{\partial L_{y}}=p_{l}.$$
(5)

Further simplifying the system of equations, continued

▶ Insert equation (4) and (5) into equation (3) results in

$$p_y dY = p_k dK_y + p_l dL_y \tag{6}$$

Insert equation (6) into equation (2) results in

$$Ydp_y = L_y dp_l + K_y dp_k$$
 ,

which, when dividing by Y, results in

$$dp_y = rac{L_y}{Y}dp_l + rac{K_y}{Y}dp_k = g_L dp_l + g_K dp_k,$$

which is equation (8) in Harberger (1962). We can similarly get

$$dp_x = f_L dp_l + f_K (dp_k + T),$$

which is equation (7) in Harberger (1962).

Final results

We thus have nine equations with nine unknowns and we can solve for the answer to the incidence question, dp_k, to be (equation (12) of Harberger (1962)):

$$dp_k = \frac{Ef_K(\frac{K_x}{K_y} - \frac{L_x}{L_y}) + S_x(\frac{f_LK_x}{K_y} + \frac{f_KL_x}{L_y})}{E(g_K - f_K)(\frac{K_x}{K_y} - \frac{L_x}{L_y}) - S_y - S_x(\frac{f_LK_x}{K_y} + \frac{f_KL_x}{L_y})}T.$$

▶ The sign of the denominator is positive as the last two terms are positive and the first term is positive as E < 0 and $g_K > f_K$ if and only if $\frac{K_y}{Y} > \frac{K_x}{X}$, or, equivalently, $\frac{K_y}{K_x} > \frac{Y}{X} > \frac{L_y}{L_x}$ so $(g_K - f_K)(\frac{K_x}{K_y} - \frac{L_x}{L_y}) < 0$, as $\frac{Y}{X}$ has to lie between $\frac{K_y}{K_x}$ and $\frac{L_y}{L_x}$ due to homogenous of degree one.

Final results, continued

- Therefore $sgn(dp_k) = sgn(Ef_K(\frac{K_x}{K_y} \frac{L_x}{L_y}) + S_x(\frac{f_LK_x}{K_y} + \frac{f_KL_x}{L_y}))$. The second term is clearly negative.
- dp_k > 0 only if K_x/K_y L_x/L_y < 0, that is, labor bears more of the burden if X is more labor intensive (result 1). Intuition: A tax on K_x results in a reduced demand of sector X for both capital and labor, implying that sector Y has to absorb more capital and labor. However, since Y is less labor intensive, Y can only absorb more labor if labor prices fall relatively more, that is, labor bears more of the burden.
- dp_k → 0 when S_y → -∞, that is, labor and capital bear the same burden if sector Y is perfectly inelastic between capital and labor (result 4). Intuition: infinite elasticity makes it costless for sector Y to absorb more capital and labor without imposing undue burden on either factor.

Final results, continued

- dp_k → −T when S_x → −∞, that is, capital price reduces by the full tax amount if sector X is perfectly inelastic between capital and labor (result 5). Intuition: infinite elasticity makes it costless for sector X to switch from capital to labor, resulting in capital price reduced by the full tax amount.
- dp_k → -T K_x/K_x+K_y when S_x = S_y = E X+Y/Y, that is, capital bears the full burden if all elasticities of subsitutions are the same (result 10). Intuition: same elasticities implies that there is no way for capital of the taxed sector to shift the burden to labor, resulting in capital bearing the full burden.

Takeaways from Harberger (1962)

- First general equilibrium analysis of tax incidence: his subsequent matching to data shows that with reasonable elasticity coefficients, tax burden is more likely to be born entirely by capital.
- Kind of the Modigliani- Miller of tax incidence. Shows under what assumptions tax incidence will be born entirely by capital. Harberger (1962) assumes
 - fixed capital stock
 - closed economy
 - no financing decisions (no debt-equity choice and thus no interest tax shield)
 - no uncertainty
- See section 2 of Fullerton and Metcalf 2002 for a nice discussion of a more general model that incorporates Harberger (1962) as a special case.