Users Guide for ExP to Perform EPIG

Extracting Patterns and Identifying co-expressed Genes

Version 1.2 (April 15th, 2011)

Analysis of Gene Expression Data using EPIG (Extracting Patterns and Identifying co-expressed Genes)

Launching ExP

Double click on the EPIG.bat file (dated 10/30/2009). The Expression Predictor dialog box will launch. See below.

Data Format

The gene expression data must be relative change in a fixed/standard tab-delimited text format:

First row: unique array name Second row: names for replicate groups First col: probe ID or gene accession

See below:

Probe	betweenG_1_1	betweenG_1_2	betweenG_2_1	betweenG_2_2	betweenG_3_1	betweenG_3_2
replicate	betweenG_1	betweenG_1	betweenG_2	betweenG_2	betweenG_3	betweenG_3
A_42_P534203	4.18	3.14	1.91	2.39	1.24	1.02
A_43_P22195	2.47	2.56	2.54	1.84	1.17	0.61

Convert Intensity Data to Relative Change

If the data is single channel intensity data (Affymetrix or Agilent for example), the data must be converted to relative change using intensity measurements from a baseline

experiment, control sample or sham group. Otherwise, skip to the **Load Relative Change Data** section.

ile Analysis	Data Help				
	Sample Name	Row (size):	0 Da	ta Start Colun	nn:
Bio Replicat	e Row(n above	e threshold):	.1	Data Start Ro	w:
Cv3/C	/5 Label Row()	threshold):	1 Cell	Line Name Ro	w:
		nn number):		ine Profile Ro	
Tech Replica	ite Row (colui		Cent	Ine Prome No	¥¥.
Click on Colum	n and Select C	olumn Name-			
column 0	column 1	column 2	column 3	column 4	CC
Label	9265_456	9266_456	9267_456	9262_456	. 92
Replicates	07-09 hrs	07-09 hrs	07-09 hrs	09-11 hrs	09
1616608_a_at	12.0785	11.2104	10.8738	12.0149	11
1622892_s_at	9.48809	9.23664	8.83401	8.07517	8.
1622893_at	3.5569	2.2929	2.30735	2.31343	2.
1622894_at	2.76462	2.58953	2.85363	3.41289	3.
1622895_at	10.1411	10.1684	10.0474	9.63875	9.
1622896_at	3.54008	3.10347	3.54018	4.13696	5.
1622897_at	4.48348	4.48726	4.50297	4.50707	4.
1622898 a at	11.3855	11.6643	12.1449	11.9137	11

Click the Load Compiled Expression button. The data set will appear in a table. See below.

Highlight by clicking the first cell under "column 1", right click and choose the "Select Data Start Column" option. The "Data Start Column" box value should switch from -1 to 1. Next, highlight by clicking the very first cell (upper most left) with a data value, right click and choose the "Select Data Start Row" option. The "Data Start Row" box value should switch from -1 to 2. Finally, highlight by clicking a cell in the row with the name of one of the replicate samples (i.e. 07-09 hrs in the figure above), right click and choose the "Replicate Row" option. The "Bio Replicate Row" box value should switch from -1 to 1.

From the menu option select Data \rightarrow Row Data Processing \rightarrow Numerical Processing \rightarrow Subtract First Replicate Average.

ile Analysis	Data Help				Туре		
	Data Operatio	ns 🕨	Da	ata Start Colur	nn 1		") • (" • 🧶 🗾 10
	Row Data Pro	cessing 🕨	Highlight Ro	w Containing	Zero	Ë.	
Bio Replica	Column Data	Operations →	Highlight all	values less		μ.	
Cy3/0							
-		nn Diagrams 🕨				Ë.	
Tech Replic	Utility	•	Highlight Mi	ssing Value R	ow		
Click on Colum	n and Calaat C	alumin Manua	Profile Simi	larity in Patter	ns		860 396
			Profile Stati	istical Analysi	\$		
column 0	column 1	column 2		-			
Label		9266_456	Factor Anal	ysis	•		
Replicates	07-09 hrs	07-09 hrs	Dye Label		•		
1616608_a_at	12.0785	11.2104	Cell Line				
1622892_s_at	9.48809	9.23664					
1622893 at	3.5569	2.2929	Statistical F	Processing	- ×		
1622894_at	2.76462	2.58953	Numerical F	Processing	Þ	D	erivative
1622895_at	10.1411	10.1684	10.0474	9.63875	9.6	S	ubtrac first repplicate average
1622896_at	3.54008	3.10347	3.54018	4.13696	5.7		
1622897_at	4.48348	4.48726	4.50297	4.50707	4.4	S	ubtract repAverage
1622898_a_at	11.3855	11.6643	12.1449	11.9137	11.	-	

From the Menu option select File -> Save Data to save the converted data.

Load Relative Change Data

With the data already saved and it is relative change measurements, it can be loaded directly into ExP for EPIG analysis by clicking the EPIG button option on the ExP splash screen. Or, if the converted relative change data is in memory as above, from the Menu option select Analysis -> EPIG. The EPIG analysis dialog box will launch. See below.

Extraction of Patterns	s AND Identification of Gen	es 🔲 🗖 🔀
File Action Option		
-Pattern List		
profile1_1 🔫	Pattern Plot	Over Plot
Pattern Save	SNR plot	Spectrum
Correlations	Remove Selected	First RepAverage Zero
Pattern Extraction Ger	ne Categorization	
🔾 First Cont	rol Average Zero	
	z-score filtering: 5.0	
Clu	Ister Resolution: 0.8	Pattern Extraction
Minim	um Cluster Size: 6	
	SNR Threshold: 2.5	

Cell lines, multiple controls/references/shams adjustment or alignment

You ha	ve a case	as below	•	
T1	ctl1	trt11	trt12	trt13
T2	ctl2	trt21	trt22	trt23
T3	ctl3	trt31	trt32	trt33

At each time point, there is a time matched control. Your input file can be like this -

sampleid	S 1	S2	S 3	S4	S5	S6	 S 7	S 8	S 9	S10	S11	S12	
time	T1	T1	T1	T1	T1	T1	 T2	T2	T2	T2	T2	T2	
trt	Ctl1	Ctl1	Ctl1	Trt11	Trt11	Trt11	 Ctl2	Ctl2	Ctl2	Trt21	Trt21	Trt21	
Gene1	Data start												
Gene1													

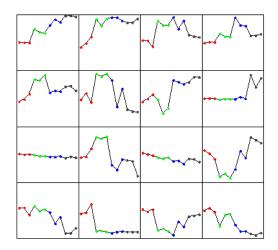
You can select (right mouse button click) time row as cell line name row, and trt row as cell line profile row. Also you select trt row as replicate row.

(1)

Then you go to menu Data>Row data processing>cell line>cell line alignment to sham zero. – this will use the ctl as a baseline (average to be zero and all others adjusted accordingly)within its own time point. Then you can save the data if you want and run EPIG. (2)

Another approach is you go to menu Data>Row data processing>Numerical processing>subtract first replicate average – in this case the first control group used as a baseline, then run EPIG.

These 2 different approaches will give you different results. Both are interesting. Depending on your focus, you may use one or both results.


File Analysis	Data Help							
	Data Operati	ons		_			_	_
	Row Data Pr			w Containing Z	1 Column	1: 1		
		9					-	
Bio Repli	c Column Data	Operations	 Highlight all 	values less		tart Row	r: 7	
CV	Data Sets Ve	enn Diagrams	highlight one	e value less		me Row	r 3	
Cy	JUtility		Highlight Mis	sing Value Ro	ы	me row	r. 13	
Tech Rep	heate now (co			Profile Similarity in Patterns			r: 6	
				-	IS			
Click on Colu	Click on Column and Select Column Name			stical Analysis		<u> </u>		
column 0	column 1	column 2	Factor Analy	sis	•	n 5	column 6	
fname		EA10065 1	Dve Label				EA10065 1	
sample	1M1	1M2	Cell Line				e Alianment ta	
tissue	Heart	Heart	1		•			-
time	1HR	1HR	Statistical P	rocessing	•	Cell Line	e Alignment ta	Sh
d1	0x.0	ox.0	Numerical P	rocessing	•	Cell Line	e Alignment to	A١
d2	su.0	su.O	su.U	su.U	su.U	Coll Line	e Normalizatio	
group	1	1	1	1	3			
1367453_at	-0.027424812	-0.004324913	0.06407547	-0.03232479	-0.06	Load Ce	ell Cycle Comp	art
1367455_at	0.064974785	-0.006424904			-0.01	Recons	titute With Cel	II Q
1367456_at	-0.07800007	0.020400047	0.13329983	-0.075699806	-0.05	Betwee	n Sub-profiles	Cr
1367460_at	-0.06807423	-0.044075012	0.04192543	0.070225716			Alignment to	
1367461_at	-0.047367096	0.059033394	0.049383163	-0.0610466	-0.03	CeliLine	Alignment to	ru:
1367462_at				0.034524918			-0.08357429	
1367463_at	-0.052350998						0.050949097	
1367464_at			0.009960175				0.022080421	
1367465_at		-0.022924423					-0.13202477	
1367467_at	-0.13815022		0.12475014	0.094249725				
1367468_at	-0.121424675		0.029865265				-0.01087474	
1367469_at	0.00352478	-0.025875092					0.04542446	
1367470_at	-0.108849525			0.015050888			-0.09974956	
1367471_at	-0.064899445		0.01910019	0.027900696			-0.02120018	
1367472_at	-0.010424614			-0.015724182			0.018175125	
1367473_at	0.038225174			-0.078974724				
1367477_at	0.03207493			0.00127506			-0.03972530	
1367479_at				-0.045100212			0.011099815	
1367482_at	-0.031200409	0.00379943	0.033899307	-0.006500244	-0.10	390065	0.07519913	•

EPIG Analysis: Pattern Extraction

The Pattern Extract tab contains an option and fields for parameters that control the extraction of the significant patterns from the gene expression data:

- First control Average Zero click this radio button if the first array data set is a "sham" control or baseline which all the other arrays are compared to
- z-score filtering filters those probes/genes profiles which have one or more data points with z-score larger than the set value
- Cluster resolution correlation threshold to filter those patterns generated with the r-value larger than that to another pattern.
- Minimum Cluster size the number probe/gene profiles to be merged for generating the patterns
- SNR Threshold the threshold for the signal-to-noise for the profiles to be filtered out and thus not used for generating the patterns

Click the "Pattern Extraction" button to generate the patterns. A plot of the extracted patterns will be displayed (see below).

The patterns are arranged in order from the upper-left corner going right. Leave the default settings or go to the menu at the top, Action -> Reset to start over and modify the parameters according to get more or less patterns to be generated. However, from empirical analysis, the default parameters work well. Go to Action -> Rename Pattern Name to name the patterns numerically in the Pattern List drop down.

Some patterns will look very similar (i.e. 6 and 10, 9 and 11, 13 and 16). They will likely have a high correlation value. Click the "Correlation" button to see the pairwise correlation values in the Message Board dialog box. See below.

0.79288954	1.0	0.6950458	0.7307569	0.67089677	0.15500996	0.41037086	0.24798886	-0.7914782
0.3403344	0.6950458	1.0	0.7653934	0.5245207	0.69786763	-0.033109333	-0.3243777	-0.34570765
0.588281	0.7307569	0.7653934	1.0	0.116767496	0.18393864	0.5294783	-0.076751314	-0.58972293
0.32274702	0.67089677	0.5245207	0.116767496	1.0	0.48075536	-0.2858558	0.0446259	-0.36152065
0.374996	0.15500996	0.69786763	0.18393864	0.48075536	1.0	-0.663471	-0.6837736	0.27259564
0.74349666	0.41037086	-0.033109333	0.5294783	-0.2858558	-0.663471	1.0	0.5735619	-0.6161712
0.65567696	0.24798886	-0.3243777	-0.076751314	0.0446259	-0.6837736	0.5735619	1.0	-0.6639985
0.89916277	-0.7914782	-0.34570765	-0.58972293	-0.36152065	0.27259564	-0.6161712	-0.6639985	1.0
0.5194785	-0.10762728	0.22067894	-0.38123578	0.5885514	0.74226606	-0.84852946	-0.5132226	0.47542062
0.7984953	-0.82875437	-0.59602004	-0.8034659	-0.28331652	0.037248634	-0.5908825	-0.26019767	0.7889088
0.42425033	-0.17937848	-0.61513513	-0.16279803	-0.50017375	-0.95260346	0.6689673	0.7401924	-0.31240857
0.8104283	-0.3974954	0.24086808	-0.16486362	-0.03869681	0.7881939	-0.76719177	-0.8393417	0.7424558
0.8178918	-0.8866073	-0.74107856	-0.6686368	-0.630424	-0.17765951	-0.31700006	-0.3004827	0.78730756
0.25138468	-0.7046596	-0.9653431	-0.68762827	-0.6462589	-0.7756052	0.14925231	0.36086887	0.32431388
0.971262	-0.7455766	-0.30232435	-0.5790937	-0.2387012	0.41646773	-0.7996987	-0.6120091	0.79442596

Click the SNR plot button to see a plot of the SRN for each pattern. See below.

The "Message Board" dialog box displays the SNR values, magnitude of change, SNR p-value, ANOVA test statistic and ANOVA p-value for each pattern. See below.

🛞 Messag	e Board				
Pattern	SNR	Mag	SNR_pValue	ANOVA	ANOVA_pValue
1	12.679711	4.143225	0.000000	0.080079	0.000001
2	5.714427	1.590073	0.000077	0.058070	0.000130
3	4.652817	1.532069	0.000340	0.081318	0.000429
4	6.740316	1.218798	0.000023	0.024522	0.000089
5	6.465257	0.893779	0.000031	0.014333	0.000117
6	4.318239	2.080281	0.000572	0.174057	0.001955
7	5.674582	0.875256	0.000082	0.017843	0.000120
8	5.098265	0.841472	0.000177	0.020431	0.000218
9	4.773723	0.068562	0.000284	0.000155	0.000736
10	4.337179	0.901183	0.000555	0.032380	0.000925
11	4.804509	0.166823	0.000271	0.000904	0.000835
12	5.753014	1.726544	0.000074	0.067550	0.000294
13	4.912333	0.889690	0.000232	0.024602	0.000423
14	7.220184	0.874827	0.000014	0.011011	0.000015
15	4.891305	1.293093	0.000239	0.052417	0.000309
16	5.207103	1.642817	0.000152	0.074653	0.000330

The pattern (of the two similar ones) with the lower SNR (of patterns 13 and 16, pattern 13 has a lower SNR) may be deleted by selecting the pattern from the drop down menu and click the "Remove Selected" button.

Once you have the number of desired patterns generated, click "Pattern Save" and enter in a name for a file to be generated which will have the patterns and associated parameter values stored in it. See below.

🕌 Save a File		
Look <u>i</u> n: 📑 E	EPIG	
Source_co	ode	
DummyDa		
mySave.tx		
readme.tx	l	
File Name:	myPatternSave.txt	
Files of Type:	Text Files (.txt)	
The of Phot		
		SAVE Cancel

EPIG Analysis: Gene Categorization

Click the Gene Categorization tab (see below).

Extraction of Patterns	AND Identificati	on of Genes		
File Action Option				
Pattern List				
profile1_1 💌	Pattern F	Plot	Over Plot	
Pattern Save	SNR plot		Spectrum	
Correlations	Remove Sel	lected	First RepAverage	Zero
Pattern Extraction Gen	e Categorization			
	Magnitude	0.5		
AND	SNR	3		
○ Mag*(-log10 p∀alue)	SNR pValue	0.001		
C) ANOVA pValue	0.001		
	r-Value	0.8		
			Display Selected Genes	

This tab contains parameters that control the binning of probes/genes to the patterns that were generated:

• Magnitude (S) – the amount of variation in gene expression within profiles.

$$S = \begin{cases} \max\{\bar{g}_i\}, if \min\{\bar{g}_i\} > 0\\ -\min\{\bar{g}_i\}, else if \max\{\bar{g}_i\} < 0\\ \max\{\bar{g}_i\} - \min\{\bar{g}_i\} & otherwise \end{cases}$$

where \overline{g}_i is the intra-group average.

• SNR – the signal to noise ratio for the profile

where S is denoted above,

$$N = \sqrt{\frac{\sum\limits_{i}^{m} \left[(n_{i}-1)s_{i}^{2} \right]}{\sum\limits_{i}^{m} (n_{i}-1)}} \sum\limits_{i}^{m} \frac{1}{n_{i}}$$

and the sample variance is

$$s_i^2 = \frac{\sum\limits_{j=1}^{n_i} (g_{ij} - \overline{g}_i)^2}{n_i - 1}.$$

- SNR p-value the significance level for the SNR
- ANOVA p-value the significance level for an ANOVA of the profile
- r-value the correlation value for the profile to be similar to the pattern

From empirical analysis, the default parameter settings work well. To adjust the settings, enter a value for Magnitude, click "And", click the radio button and enter a value for either SNR, SNR p-value or ANOVA p-value, and then enter an r-value. Click Mag*(log10pvlaue) of you want to use the John Zheng modification for categorization of the profiles to the patterns that takes into account both the magnitude of change and the p-value.

Click "Display Selected Genes" to launch up to three dialog boxes as tables with the probe/gene profiles categorized to the patterns, the probe/gene profiles not categorized to particular patterns and the probe/gene profiles categorized to patterns but have low correlation. See below.

	ire are Inalvsis	15 genes selec Plot	ted low correla:	ted.	_ 🗆 🛛	QuickTime Player
ProbeN		PattenName	Correlation	PattenName2	Correlation2	
profile5	. 1	profile5 15	0 4626461	profile 4 2	0.07612464	
profiles	The	re are 15 not	selected gene li			
profile			sected Belle (944		iffer.
profiles	File A	nalysis Plot				
profile	ProbeN	There are	60 selected as	nes are correlated.		
profile	profile6				•	لصالك
	profile6	File Analysi	s Plot			
profile	profile6	ProbeName	PattenName	Correlation	PattenName2	Correlation
	profile6		profile4 3	0.9787351	profile3 15	0.28040528
	profile6		profile4_3	0.9643404	profile5_15	0.13587865
		profile4 12	profile4 3	0.957176	profile3 15	0.26424375
	profile6		profile4_3	0.9548844	profile3 15	0.24702895
profile	profile6	profile4 8	profile4 3	0.9545018	profile5_15	0.18436706
profiles	profile6	profile4 9	profile4 3	0.9419538	profile5 15	0.13612929
profile	profile6	profile4 15	profile4 3	0.9386821	profile5_15	0.2231946
	profile6	profile4 10	profile4 3	0.93783736	profile3 15	0.28008425
	profile6	profile4 1	profile4 3	0.9373864	profile3_15	0.21644679
	profile6	profile4 5	profile4 3	0.9303811	profile5_15	0.1854822
	profile6	profile4_2	profile4_3	0.9264649	profile5_15	0.21234453
	profile6	profile4_14	profile4_3	0.9209695	profile3_15	0.20073591
		profile4_6	profile4_3	0.9187576	profile3_15	0.11274975
		profile4_7	profile4_3	0.9147492	profile5_15	0.29177287
		profile4_4	profile4_3	0.88901716	profile3_15	0.17001256
		profile1_4	profile1_4	0.96431965	profile2_8	0.20224302
		profile1_14	profile1_4	0.9525706	profile2_8	0.1758896
		profile1_6	profile1_4	0.9517625	profile2_8	0.11423963
		profile1_2	profile1_4	0.9426026	profile2_8	0.26239842
		profile1_1	profile1_4	0.9416231	profile2_8	0.13930994
		profile1_11	profile1_4	0.93815035	profile2_8	0.10142314
•		profile1_13	profile1_4	0.935067	profile2_8	0.18379326
		profile1_10	profile1_4	0.93412393	profile2_8	0.0997311
i		profile1_15	profile1_4	0.9340803	profile2_8	0.03248248
пар б		profile1_3	profile1_4	0.93304914	profile2_8	0.16129197
		profile1_12	profile1_4	0.9289151	profile2_8	0.10512078
	•		profile1_4	0.92851657	profile2_8	0.12403726
	W	profile1_5	profile1_4	0.9070308	profile2_8	0.18210088
No.		profile1_8	profile1_4	0.905518	profile2_8	0.13832144
	Review D	•				

Click "Spectrum" to launch a dialog box as a table with the probe/gene profiles categorized to the particular pattern in the drop down list.

For any of the tables, from the menu go to File -> Save Data or Save in Separate Files to save the probe/gene profiles categorized to patterns. See below.

🜒 There are	60 selecte	d gene	es are correlate	:d.,	
File Analysis	Plot				
Save Data		ne	Correlation	PattenName2	Correlation2
Save in Seperate Files Close			0.9787351	profile3_15	0.28040528
			0.9643404	profile5_15	0.13587865
			0.957176	profile3_15	0.26424375
profile4_13	profile4_3		0.9548844	profile3_15	0.24702895
profile4_8	profile4_3		0.9545018	profile5_15	0.18436706
profile4_9	profile4_3		0.9419538	profile5_15	0.13612929
profile4_15	profile4_3		0.9386821	profile5_15	0.2231946
profile4_10	profile4_3		0.93783736	profile3_15	0.28008425 =
profile4_1	profile4_3		0.9373864	profile3_15	0.21644679
profile4_5	profile4_3		0.9303811	profile5_15	0.1854822
profile4_2	profile4_3		0.9264649	profile5_15	0.21234453
profile4_14	profile4_3		0.9209695	profile3_15	0.20073591
profile4_6	profile4_3		0.9187576	profile3_15	0.11274975
profile4_7	profile4_3		0.9147492	profile5_15	0.29177287
profile4_4	profile4_3		0.88901716	profile3_15	0.17001256
profile1_4	profile1_4		0.96431965	profile2_8	0.20224302
profile1_14	profile1_4		0.9525706	profile2_8	0.1758896
profile1_6	profile1_4		0.9517625	profile2_8	0.11423963
profile1_2	profile1_4		0.9426026	profile2_8	0.26239842
profile1_1	profile1_4		0.9416231	profile2_8	0.13930994
profile1_11	profile1_4		0.93815035	profile2_8	0.10142314
profile1_13	profile1_4		0.935067	profile2_8	0.18379326
profile1_10	profile1_4		0.93412393	profile2_8	0.0997311
profile1_15	profile1_4		0.9340803	profile2_8	0.032482482
profile1_3	profile1_4		0.93304914	profile2_8	0.16129197
profile1_12	profile1_4		0.9289151	profile2_8	0.105120786
profile1_7	profile1_4		0.92851657	profile2_8	0.124037266
profile1_5	profile1_4		0.9070308	profile2_8	0.18210088
profile1_8	profile1_4		0.905518	profile2_8	0.13832144 🔻

If saving to separate files, the file names will be generated automatically (such as selectedGenesInPattern_2_261.txt) and saved in the working directory for EPIG. This is

file name contains the pattern number (#2) and the number of probes \genes (n=261) categorized to it.

Reference:

Chou JW, Zhou T, Kaufmann WK, Paules RS, Bushel PR. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes. BMC Bioinformatics. 2007 Nov 2;8:427