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Abstract

We enrich an evolutionary model with common and idiosyncratic uncertainty as in
Robson (1996) by allowing for hidden actions (or phenotypic flexibility). In contexts
where common uncertainty is ambiguous and idiosyncratic uncertainty is risky, the
model generates both ambiguity aversion and non-expected-utility preferences for risk,
thereby providing a link between the two types of behavior. While the general evolu-
tionarily optimal objective function does not have an obvious similarity to functional
forms studied in the literature, our main results show that it can be recast as a com-
bination of familiar models of ambiguity aversion and non-expected utility. We show
that particular classes of hidden actions generate the special cases of rank-dependent
or divergence risk preferences embedded within a model of ambiguity aversion.
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1 Introduction

This paper provides an evolutionary perspective on choice under uncertainty, based on the
notion that natural selection not only molds physical traits but also shapes choice behavior.
Using this approach, we develop a foundation for a non-expected-utility and ambiguity-averse
model of choice. While systematic deviations from expected utility are common, they appear
to be at odds with evolutionary optimality, especially in scenarios involving objective risk.
A central contribution of this paper is to expand the scope of the evolutionary approach by
allowing individuals to simultaneously make multiple decisions, some of which are observable
and others which are hidden from the modeler. When chosen optimally, as evolution will
require, the presence of such hidden actions will generate preferences that appear to violate
expected utility from the perspective of the analyst. We show that the resulting class of
evolutionarily optimal preferences, which we call adaptive preferences, can be recast as a
representation that combines familiar functional forms from the literatures on non-expected
utility and ambiguity aversion. We show that this representation nests rank-dependent
expected utility and divergence preferences in the context of risk, and variants of the smooth
model, variational preferences, and multiple prior preferences in the contexts of both risk and
ambiguity. The exact form of the equivalent representation depends on the set of available
hidden actions in our model, and we explore this mapping for several parametric classes of
hidden actions.

Importantly, our results demonstrate not only the scope of evolutionarily optimal prefer-
ences but also their limits, which can aid in model selection. In particular, while ambiguity-
averse preferences are typically assumed to reduce to expected utility when facing objective
risk, our model excludes this benchmark version of many of the ambiguity models it nests
and instead links different uncertainty attitudes to violations of expected utility. Thus, our
evolutionary approach generates a link between Allais- and Ellsberg-type behaviors, which
we illustrate using an example based on recent experimental evidence.

The starting point of our analysis is an observation which dates back to a seminal paper by
Robson (1996): Evolutionary optimality generates a preference for idiosyncratic uncertainty
over common uncertainty, and ambiguity is closely associated with common uncertainty in
many instances. Hence, natural selection favors ambiguity aversion. The intuition for why
evolution can generate aversion to common uncertainty is actually quite simple. To illustrate,
suppose there are two actions between which all individuals must choose in every period. For
both actions, individual growth (meaning net expected number of offspring) will be either 2 or
4, each with probability % The only difference is that one action bears common uncertainty,
where realized per-period growth is perfectly correlated across individuals, while the other
bears idiosyncratic uncertainty, where realized growth is independent across individuals. By
the law of large numbers, the per-period growth of a (large subpopulation with a common)
genotype who consistently chooses the idiosyncratic uncertainty will be approximately %(2 +
4) = 3. In contrast, a genotype who chooses the common uncertainty will grow by either



2 or 4, each in approximately half of the periods. Heuristically, this leads to a long-run
average growth over two periods of 2 x 4 = 8, which is less than 3 x 3 = 9. This example
illustrates the detrimental effect of correlation on growth: The genotype who chooses the
idiosyncratic uncertainty will have a higher long-run growth rate, which implies it will almost
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surely dominate in the long run (Lemma 1).! We discuss and justify the close connection

between ambiguity and correlated uncertainty in detail in Section 1.1.

The main innovation of our paper is the incorporation of adaptation via hidden actions.
The incorporation of hidden actions is motivated not only by economic settings—where data
sets often capture only a subset of the many decision being make by individuals—but also
by biological settings—where hidden actions might take the form of unobservable aspects of
physical adaptation of organisms. In an economic context, data sets could contain informa-
tion such as occupation choice, investments, or even vaccination decisions, while omitting
information about other complementary decisions such as housing choice, other investments
or insurance, or social distancing measures, respectively. In a biological context, hidden
actions could take the form of rapid and reversible physical adaptation, known as phenotypic
flexibility, which has recently gained increased attention in evolutionary biology. Following
the revealed preference approach of economics, our model predictions concern only observable
choices between outcome-relevant actions, treating the phenotype as unobservable.

It is well known that hidden actions can lead to revealed preferences over observed choices
that violate expected utility, even if the individual’s actual joint preferences over all choices
satisfy expected utility.? In particular, since different hidden actions may be optimal for dif-
ferent observable actions, individuals may be averse to probabilistic mixtures over observable
outcomes (see Sarver (2018)).

1.1 Ambiguity as Common Uncertainty

In many examples and applications of ambiguity, the unknown probabilities concern com-
mon factors that affect all individuals in the population. For example, in one of the earliest
applications of ambiguity to economics, Dow and Werlang (1992) and Epstein and Wang
(1994) examined the implications of ambiguity about asset returns. Returns to financial
assets are obviously common to all individuals who invest in them. Similarly, in applications
to macroeconomics, ambiguity typically concerns aggregate variables, such as factor produc-
tivity (Ilut and Schneider (2014), Bianchi, Ilut, and Schneider (2018)). Other examples of

!The existence and exact form of this aversion to common uncertainty depend on both the frequency of
reproduction (Robatto and Szentes (2017)) and timing of reproduction within the life cycle of organisms
(Robson and Samuelson (2019)). We discuss these considerations further in Section 7.

2This observation dates back to Markowitz (1959, Chapters 10-11), Mossin (1969), and Spence and
Zeckhauser (1972) and has been relevant in a large subsequent literature that includes Grossman and Laroque
(1990), Gabaix and Laibson (2001), and Chetty and Szeidl (2007, 2016). Kreps and Porteus (1979), Machina
(1984), and Ergin and Sarver (2015) provide characterization results for risk preferences in the presence of
unobservable commitments.



uncertainty about aggregate variables that can affect individual outcomes and where proba-
bilities are poorly understood could include the timing of new technological breakthroughs,
natural disasters such as earthquakes or tsunamis, or climate change and its implications.

One reason common uncertainty in the examples mentioned so far may be subject to
greater ambiguity than idiosyncratic uncertainty is that idiosyncratic random variables can
be studied using cross-sectional data, whereas aggregate variables by definition cannot.
Greater abundance of data may lead to a better understanding. Nonetheless, there could be
common uncertainty for which the probabilities are well understood by individuals, and our
results would be equally relevant in those settings.

Model uncertainty can also be a source of common uncertainty. Even if the risks faced
by each individual are well understood and idiosyncratic conditional on some common un-
derlying model parameter, if that parameter is unknown and ambiguous then all individuals
share in the resulting common uncertainty.® For a simple illustration, consider a medical
treatment. If the efficacy (success rate) of the treatment for a population with a given set
of characteristics is known, then whether it is successful for one individual is independent of
whether it succeeds for another. However, if the treatment has undergone limited testing,
then its success rate may be unknown and would itself be a source of common uncertainty
for all individuals. In fact, most instances of ambiguity can be cast as common uncertainty
about idiosyncratic probabilities.

Of course, we should be careful to point out that the correlation mechanism at play in
this paper may not be the only driver of ambiguity aversion. We would not go so far as to
claim that every instance of ambiguity corresponds to common uncertainty; nor would we
suggest that every instance of common uncertainty involves ambiguous beliefs. Nonetheless,
the main thrust of the preceding discussion is that there are indeed many situations in
which ambiguity is tightly linked to common uncertainty, and our results speak specifically
to these instances of ambiguity. In other cases where ambiguity is not connected to common
uncertainty, we remain agnostic about whether ambiguity aversion is driven by heuristics
developed by genotypes from the case of common uncertainty or whether some other source
of ambiguity aversion is at play.

1.2 Outline

The remainder of the paper is structured as follows. Section 2 formally sets up our model.
Section 3 establishes that adaptive preferences are evolutionarily optimal.

Section 4 sets the stage by illustrating via an example how the model in Robson (1996),
which is a version of the smooth model of ambiguity aversion and a special case of our model
without hidden actions, predicts Ellsberg behavior. In Section 5, we explore an alternative

3This interpretation is closely connected to the macroeconomic literature on robustness to model uncer-
tainty (Hansen and Sargent (2001, 2008)), and is discussed in the evolutionary context in Robson (1996).



special case involving hidden actions but with no common uncertainty, and we show that
the evolutionarily optimal preferences in this case correspond to the optimal risk attitude
preferences studied by Sarver (2018). In particular, we show that our model nests rank-
dependent expected utility (RDU) and divergence preferences as special cases.

Section 6 analyzes the general case of our model when hidden actions and common uncer-
tainty are simultaneously at play. Our main result is a dual formulation of our representation
that greatly simplifies the comparison to existing models. We use this result to show that
versions of several prominent representations, including variational preferences, multiple pri-
ors expected utility, and rank-dependent utility, can be embedded in our general model.
Importantly, these special cases provide a link between Ellsberg- and Allais-type behaviors,
as we illustrate with an example.

In Section 7, we discuss some of the simplifying assumptions that are commonly made
in economic applications of the evolutionary approach and the robustness of our results
to relaxing them. Most proofs are contained in the Appendix, with the proofs of some
supporting results relegated to a Supplementary Appendix.

2 Evolutionary Setting

The basic idea behind the evolutionary approach is that a large population of individuals is
initially made up of subpopulations with different genotypes, where a genotype specifies the
physical traits as well as the programmed behavior (choices) of an organism. These choices
lead to a possibly uncertain outcome, and this outcome together with the physical traits of
the organism determine its evolutionary fitness, that is, its number of offspring and its own
survival. The offspring inherit the parent’s genotype. In the next period the offspring and
the parent (if still alive) will face a choice of their own, and so on. In this way, the number
of individuals who share a particular genotype may shrink or grow over time, relative to the
whole population. A genotype is evolutionarily optimal among those initially present if the

relative size of its subpopulation does not vanish over time.*

4For expositional clarity, we consistently interpret fitness as the number of offspring plus possible survival
of the organism, so that evolutionary selection happens over many generations. We note that our model
and results do not rely on the naturalistic interpretation of the evolutionary process. In particular, evolu-
tionary selection can be faster if it is not based on procreation, but rather on imitation or reallocation. For
example, the reallocation of resources based on fitness is the idea behind selection-based theories following
Friedman (1953) that are central in the evolutionary economics literature (see Nelson and Winter (1982)),
and versions of the replicator dynamics have been established based on reinforcement learning (Borgers and
Sarin (1997)) or imitation (Schlag (1998)) at the individual level. While correlation was not emphasized in
these studies, we suspect that similar non-biological interpretations can be developed for the setting with
correlated uncertainty studied here.



2.1 Uncertainty

Common components of uncertainty are modeled via a state space 2. The realization of
w € € is common to all individuals in the population. In addition, given w, idiosyncratic
uncertainty is captured via a state space S, where each individual in the population receives
an independent draw of the state s € S. The entire payoff-relevant state space is then 2 x S.
We assume that €2 and S are Polish spaces, that is, complete and separable metrizable spaces.
We endow the spaces €2 and S with their Borel o-algebras B, and Bg, respectively, and we
endow the product of these spaces with the product o-algebra Bg ® Bg.

Given any measurable space (Y,)), let A(Y') denote the set of countably additive prob-
ability measures on Y, and let A4(Y') denote the set of all simple probability measures on Y’
(i.e., measures with finite support). The state is drawn each period according to a measure
w e A(Qx S). The marginal distribution of u on 2 assigns probability p(FE) to any measur-
able event E € Bg. As noted, there is a common draw of the w dimension of the state for all
individuals in the population according to this marginal distribution. However, conditional
on w, the s dimension of the state is drawn independently for each individual according to
the conditional probability distribution p(s|w) on S.

2.2 Consumption and Fitness

Let Z denote a nonempty set of outcomes. Both the w and s dimensions of the state space
are potentially relevant for the outcome of an action. Formally, let F denote the set of
simple acts, that is, the set of all measurable and finite-valued functions f : Q2 xS — Z. An
evolutionary fitness function 1 : Z — R specifies the (net expected) individual reproductive
growth associated with each outcome.® Given an act f € F, the individual growth in state
(w, s) is then ¥(f(w,s)). For example, for a population of individuals, aggregate fitness of
zero indicates extinction, fitness of one indicates that the birth rate is equal to the death
rate and hence there is no change in the size of the population, and fitness of 1.5 indicates a
50% growth in the population. Aggregate fitness can obviously never be negative. Whether
or not individual fitness functions take negative values is not important for the evolutionary
optimality of adaptive preferences. However, in order to derive exact dual characterizations
of some special cases of our model, it will be technically useful to allow some outcomes
to generate negative individual fitness, which could be interpreted as an externality that

5More precisely, since S may be an infinite set, the conditional probability distribution given w assigns
probability u(E|w) to an event E € Bg. Note that since S is a Polish space, the existence of a regular
conditional probability distribution is ensured by Proposition 10.2.8 in Dudley (2002).

6Realized net individual growth, which includes survival and offspring, must be an integer, but since
reproduction and survival may be uncertain given the outcome z € Z, expected individual growth may take
non-integer values. As the main results of Section 3 show, evolutionary fitness of a genotype with a large
population depends only on the expected reproductive growth v(z) its individuals attain from each outcome
z.



eliminates other individuals.

Individuals face the task of choosing acts in each period before learning the realization
of the state (w,s). Each genotype determines preferences that are used for this choice. In
addition to the observable choice of act f, we assume that individuals might simultaneously
take hidden actions, that is, actions that are unobservable to the modeler. Incomplete data
of this sort is pervasive in economic analysis, as data sets often contain only a snapshot of
one dimension of the full spectrum of decisions being made by individuals. We model hidden
actions in a simple and tractable reduced form by allowing individuals to select a fitness
function ¢ from some feasible set ¥ in each period.” As mentioned in the Introduction, our
use of multiple fitness functions can also be interpreted in terms of phenotypic flexibility in
the context of evolutionary biology.

We aim to uncover various preferences that can be nested within our evolutionary model,
thereby illustrating the structure imposed by our model on choice under uncertainty. At
the outset, we therefore impose only minimal technical restrictions on the set of fitness
functions: We assume W is nonempty and that sup,y 9(2) is finite for every z € Z. Of
course, additional structure and restrictions on the set ¥ may be appropriate depending on
the application, as the availability of various hidden actions and their impact on fitness will
naturally depend on the choice context, and such restrictions will serve to refine the exact
preferences under uncertainty generated by our model. In the context of idiosyncratic risk
in Section 5, we provide examples of easy to interpret sets ¥ that give rise to some estab-
lished functional forms from the literature on non-expected-utility. Utilizing our main result
(Theorem 2), those examples are extended to the general setup with common uncertainty
(ambiguity) in Section 6.

2.3 Growth Rates

In a given time period, the aggregate growth rate of a genotype will be determined by the
common preferences each individual in its subpopulation is programmed to use when choosing
(deterministically or possibly randomly) an act f and a fitness function ¥. We assume each
decision problem is faced repeatedly, leading to a stochastic sequence of aggregate growth
rates for each genotype. Our analysis of natural selection and evolutionary optimality will
center around the comparison of long-run growth rates of different genotypes (with different
programmed preferences), which we state in log terms.

Definition 1. Suppose the aggregate growth rate of a genotype is given by (\;)ien, where
¢ is the random variable that describes the aggregate growth rate in period ¢ of the entire

"This reduced form derives immediately from a more explicit model of hidden actions, where individuals
take a hidden action y € Y and have a single fixed fitness function (z,y) for outcome/action pairs. The
resulting set of fitness functions in our model would then be ¥ = {¢(-,y) : y € Y}.



subpopulation of individuals with that genotype. We say that « is the (log) long-run growth
rate of the genotype if % Zthl In(\;) — a almost surely as T' — oo.

For an arbitrary sequence (\;)en of random variables, the long-run growth rate may not
exist, since the series above may not converge. However, we will see in the next section that
in our model, the long-run growth rate exists for any act f and fitness function .

To establish that the long-run growth rate is the appropriate statistic for comparison in
our evolutionary model, the next lemma demonstrates how it relates to long-run dominance
of a particular genotype over others. First, note that throughout the paper, we follow the
standard convention of assuming that the number of agents of each genotype is (infinitely)
large, which we formally model by treating the set of individuals of each genotype i as a
continuum with measure N'(t) at time period ¢.® Thus, if the sequence of aggregate growth
rates of genotype i is (A!)iey and the initial measure of this genotype is N*(0), then the
measure of its subpopulation at time 7" € N is

T
NY(T) = N*(0) T M-
t=1
Lemma 1. Consider two genotypes 1 = A, B, where genotype © has a sequence of stochastic
aggregate growth rates (X)ien yielding long-run growth rate of, that is, ;‘le In(\i) &2 o,
If o > aPf, then regardless of the initial measures N4(0) > 0 and NP(0) > 0 of their
respective subpopulations at time t = 0, we have N4(t)/NB(t) — oo almost surely ast — oo.

Note that Lemma 1 does not imply that a higher long-run growth rate yields higher
expected population size as t grows large, as indeed it is possible to have the expected value
of NB(t) exceed that of N4(t) for all . Nonetheless, the lemma implies that the event where
NB(t) exceeds N4(t) vanishes (has probability zero) in the limit as t — oo.

Evolutionary theory aims to explain which genotypes can be observed in the long run.
Lemma 1 clarifies why maximizing long-run growth, rather than the expected population size,
is evolutionarily optimal. If in the present moment organisms have already been evolving for
t periods, then the relative population sizes of different genotypes that we observe today are
a snapshot of the evolutionary process in period ¢. Assuming this process has been underway
for some time (¢ is large), the probability is very high that the dominant genotype observed
today is precisely the one with the highest long-run growth rate.

8Using results from the theory of branching processes, it can be shown that our results involving continuum
populations are the correct limiting approximations for large but finite populations.



3 Evolutionarily Optimal Choice

We begin our analysis by deriving the long-run growth rates associated with (possibly ran-
dom) choices of action and fitness function. Since evolutionary optimality requires maximiz-
ing long-run growth, the optimal value function over random choice follows immediately.

Definition 2. A random choice 1 € R(F,¥) = A4 (F x V) is a simple probability measure
over the space of acts and feasible fitness functions.

The random choice 7 assigns probability 7(f, ) to a pair (f,1). Therefore, for a given
state realization (w, s), the random choice 7 achieves an expected fitness of

Er [U(f(w,5))] = (f (w, s)) dm(f, ¥).
FXxW¥
We adopt the convention that the domain of the natural logarithm includes nonpositive
numbers and its range is the extended reals by setting In(x) = —oo for all z < 0.

Theorem 1 (Long-Run Growth). Suppose ¥ and p are fized, and consider a genotype with
an (infinitely) large subpopulation of individuals. The long-run growth rate of the genotype
from choosing the random choice T € R(F,¥) in every period is

A = [ [ Efots )] dusle) ). 1)

The concavity of the logarithm implies that A is more adversely affected by common
uncertainty about w than by idiosyncratic uncertainty about s. Also, since A expresses
the long-run average growth rate in log terms, A(7) = —oo corresponds to extinction and
A(m) = 0 corresponds to constant population size. At the heart of the proof of Theorem 1
is the same logic that is behind the seminal result of Robson (1996), who considered the
special case of no adaptation (U = {¢'}) and deterministic choice.

Proof. Recall that, conditional on w, the s dimension of the state is independently distributed
for each individual in the population. Randomization in choice is also idiosyncratic. There-
fore, by the law of large numbers, conditional on the realized w, at time ¢, the aggregate
growth rate of a large population of individuals with random choice 7 is approximately

MWZA&WW%WNWM)

Since we consider infinite subpopulations in our model, we can treat this approximation as
exact.” Taking the product over a sequence of realized common components w, . ..,wr and

9Note that an approximate (limiting) version of Theorem 1 also holds for finite populations, provided



raising to the power 1/T gives the realized annualized growth rate over this sequence of

periods:
T

H( /S E.[(f(wr, )] du(sw)w.

t=1

Taking the logarithm of this expression and then the limit as T — oo, we have

%éln </S Ex [¢(f(we:9))] du(3|wt))
—>/an(/SEw [U(f(w,5))] du(s!w))du(w) as.,

by the law of large numbers. [

The long-run growth rate of the population is optimized if individuals choose 7 to maxi-
mize Equation (1). However, since only the random choice of act is observed while the choice
of fitness function corresponds to some unobservable action, it will be useful to decompose
7 into its (observable) marginal distribution over acts and (unobservable) conditional distri-
bution over fitness functions given the act.

Definition 3. A (random) action p € R(F) = A4(F) is a simple probability measure over
acts, where p(f) denotes the probability assigned to f. A (random) adaptation plan is a
function 7 € R(¥|F) = (A4(¥))” mapping from the space of acts to the set of simple prob-
ability measures over the feasible fitness functions, where 7(1|f) is the probability assigned
to fitness function v following the observable choice of act f.

The random choice 7 can equivalently be expressed as a pair p and 7. Formally, let 7 ® p
denote the measure with marginal distribution p on F and conditional distribution 7(-|f)
on V. Then, the expectation of (f(w, s)) with respect to this measure is

Erop [0(f(w,9))] = /f L B(f(w, ) dr(0]f) dp(f).

Given a random action p and random adaptation plan 7, the corresponding joint choice of
both action and adaptation is given by m = 7 ® p. Therefore, the highest possible long-run
growth rate associated with an action p (and subsequent optimal choice of adaptation plan)

the initial population size is sufficiently large. Using the theory of branching processes (Athreya and Ney
(1972, Chapter 5)), it can be shown that the average growth rate of a finite population converges to A(r)
conditional on non-extinction. Moreover, it can be shown that when A(7) > 0, the probability of extinction
converges to zero as the initial population becomes large.
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V(p)= sup A(T®p)
TER(VI|F)

= s [ ([ By [0t )] dutslo) ) )

TER(¥Y|F)

(2)

Robson (1996) considered the special case with a single fitness function ¢, without random
choice, in which case the long-run growth rate associated with the deterministic choice of
act f reduces to'°

vir) = [ [ vt ) autst) Jdnco) 3)

By Lemma 1, the evolutionarily optimal genotype is the one that maximizes the long-run
growth rate; that is; it chooses among actions to maximize Equation (2). We refer to the
preferences over random actions represented by this function V' as adaptive preferences. As
is usual in random choice contexts, we do not directly observe these preferences, only the
implied random choice rule. Formally, a decision problem A specifies a nonempty and finite
set of available acts. The resulting set of feasible action choices is

R(A) = {p € R(F) : supp(p) C A}.

Corollary 1 (Evolutionarily Optimal Choice). Suppose ¥ and u are fived. Then, for ev-
ery infinitely repeated decision problem A, the genotype that chooses a random action in
argmax ,cg (4 V(p) achieves a weakly higher long-run growth rate than all others.

The adaptive preferences represented by Equation (2) specify the optimal response to
correlated and uncorrelated uncertainty, but do not concern ambiguity per se. However,
as laid out in Section 1.1, in many examples and applications of ambiguity, the unknown
probability concerns a common factor that affects all individuals in the population. Thus,
the evolutionary mechanism described in Theorem 1 may capture one important source of
ambiguity aversion. In particular, the Robson (1996) representation in Equation (3) is a
special case of the issue-preference model studied by Nau (2006) and Ergin and Gul (2009),
and it is a special case of the smooth model of Klibanoff, Marinacci, and Mukerji (2005)
when restricted to acts f that depend only on s. We discuss this special case in detail in
Section 4.

0The survey by Robson and Samuelson (2011) summarizes these results, as well as some recent develop-
ments in the literature on the evolution of preferences.

10



4 Ambiguity Aversion

To set the stage, this section illustrates via an example the special case of our model pre-
viously analyzed by Robson (1996): a single fitness function (¥ = {#}), which allows the
supremum over ¥ to be dropped from the representation in Equation (2).

Example 1 (Ellsberg). Consider an Ellsberg urn with one black ball and two balls that
could each be either red or yellow. Each individual independently draws one ball from the
urn, which we model using the state space S = {b,r,y} for independent risk. The individual
may be offered the following bets on colors of the ball drawn:

b r gy
B 1 0 0
R 0o 1 0
BY 1 0 1
RY 0 1 1

In this table, B denotes the act that pays $1 if the ball drawn is black and $0 otherwise, BY
indicates the act that pays $1 if the ball is either black or yellow, and so on. The typical
preference pattern documented by Ellsberg (1961) is B = R and BY < RY, in violation of
Savage’s sure-thing principle.

To understand such preferences within the evolutionary model described above, note
that although the draw of the ball is independent across individuals, the composition of
the urn itself may be common for all individuals. In this case, we can model the possible
urn compositions using the set Q = {wy,ws, w3}, where wy = (b,r,7), wy = (b,r,y), and
w3 = (b,y,y). Even if individuals form subjective probability assessments on the possible urn
compositions, this correlated uncertainty is treated differently than uncorrelated uncertainty.
For ease of illustration, suppose that p assigns equal weight to each urn composition and
that there is a single fitness function v that takes values ¢(0) = 0 and (1) = 1. When
acts only depend on s, the long run growth rate for deterministic choice in Equation (3)
is a special case of the smooth model (Klibanoff, Marinacci, and Mukerji (2005)) with a
concave transformation function, so these evolutionarily optimal preferences exhibit Ellsberg
behavior:

V(B) = In [%] > %m E] 3 h{%} + %mm — V(R),

and V(BY) = %m H - %ln {;} + % In[1] <In E} = V(RY).

This example is also useful for illustrating the role of random choice within our model, and
why restricting to deterministic choice of acts is not without loss of generality. When choosing
between B and R (or between BY and RY), it is easy to see that strict randomization in

11



choice is not optimal. However, for other decision problems, randomization can have a strict
benefit within our evolutionary model. Consider an act Y that bets on yellow, paying $1 if
the ball is yellow and $0 otherwise. Suppose the individual is asked to choose between R
and Y. Notice that V/(R) = V(Y) (both of which are strictly less than V(B)). However, if
the random action p sets p(R) = a and p(Y) = 1 — a, then it is easy to verify that V(p) is
maximized at o = 1/2, giving a value of V(p) = In(1/3) = V(B). In this case, the individual
strictly prefers randomization to the deterministic choice of either ¥ or R. A

In Example 1, the crucial assumption for generating ambiguity aversion is that the com-
position of the urn is common across all individuals. In contrast, if a different urn is composed
for each individual and if there is no correlation in how these urns are constructed, then cor-
relation aversion alone would not produce ambiguity aversion—a different mechanism would
be required to generate Ellsberg behavior. This example is therefore useful for illustrating
both the scope and the limitations of the evolutionary model: Adaptive preferences generate
ambiguity aversion anytime there is uncertainty about the model itself or some other factor
that is common to all individuals in the population, which we contend is the case in the vast
majority of examples and applications of ambiguity.!! As noted earlier, in cases involving
idiosyncratic ambiguity, we do not take a stand on whether ambiguity aversion is driven by
heuristics developed by the genotypes from the case of common uncertainty or if it arises
from some other source.'?

In line with the interpretation of ambiguity as model uncertainty, we favor a statistical
interpretation of the smooth model used in this section, where each w € ) is a candidate
for the true model (the law of nature governing the distribution of s € S) and the marginal
distribution of ;& on € is a prior over the candidate models.!®> For simplicity, we treat p
as constant over time. In that case, evolutionary optimality requires that individuals’ pref-
erences (eventually) assign the correct weights, so that p becomes objective—it accurately
reflects the data generating process. However, our evolutionary approach can easily be ex-
tended to allow p; to change with time ¢. For a simple example, suppose there is an index set
K and a set of possible distributions pf € A(Q x S), where k € K is redrawn periodically
after finitely many periods. Then, in each period ¢, it is again evolutionarily optimal for
individuals to maximize the growth rate in Equation (2), this time using their “best guess”

HHalevy and Feltkamp (2005) suggested another mechanism by which correlation can generate ambiguity
aversion: Risk aversion alone implies that an individual who makes repeated bets on an urn would rather
draw from a risky than an ambiguous urn. In our evolutionary context, instead, the maximization of long-run
growth generates an aversion to correlation in the contemporaneous draws of different individuals.

12Tf one is not convinced that the Ellsberg urn is a perfect fit for our model, the objects in the example
can be recast in terms of other examples discussed in the introduction. For instance, the acts B, R,Y could
represent different medical treatments for a condition and the idiosyncratic states b, r, y could represent the
events in which each treatment is successful for an individual, with B being a better understood treatment
than R and with the efficacy of the combined treatment RY being better understood than that of BY.

13See Klibanoff, Marinacci, and Mukerji (2005) or Marinacci (2015) for a discussion of this interpretation.
An alternative interpretation is that the marginal of p on € is a preference parameter that captures subjective
plausibility of different first-order probabilistic beliefs p(-|w) on S.
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of the distribution pu; given all information available at time ¢. This information evolves as
follows: One w € 2 is commonly drawn each period, so that in between draws of k£ the
marginal of ;¥ on  is gradually revealed. At the same time, with a large number of indi-
viduals who each independently draw a state s € S each period, the conditional *(:|w) on
S can be fully revealed in one period. In other words, in this situation ambiguity will only
linger in the case of common uncertainty, in line with the discussion in Section 1.1.

5 Non-Expected Utility

The adaptive model also accommodates violations of expected utility in the context of pure
(uncorrelated) risk. In this section, we consider two such special cases of our model: rank-
dependent utility in Section 5.1 and a class of divergence preferences involving pessimistic
distortions of an objective probability distribution in Section 5.2.

In contrast to Section 4, we now permit non-degenerate adaptation (non-singleton W);
however, to focus solely on risk preferences for the moment, we will restrict attention in this
section to the special case of our model without common uncertainty (2 = {w}). Since a
central contribution of this paper is to illustrate the joint restrictions on ambiguity attitudes
and non-expected-utility preferences imposed by our evolutionary environment, Section 6 will
characterize a set of equivalent representations for the general model with both non-trivial
common uncertainty and non-trivial adaptation. The main result of this paper, Theorem 2
in Section 6, will enable us to embed the examples from this section within a model that
incorporates ambiguity aversion.

Since this section focuses on the special case without common uncertainty, we will sup-
press the €2 dimension from the state space and focus on acts defined on the state space S.
In this case, there is no strict benefit to randomization, so it is without loss of generality to
restrict attention to deterministic action choices f and adaptation choices 1.'* Therefore,

V() = supin( f vtstonants)
=in(sup [ 0D )

Note that in this case the logarithm can also be dropped by taking a monotone transforma-

Equation (2) becomes

(4)

“Formally, after dropping the expectation over ) from Equation (2), we have

V()= swp )m( [ Erealvtro) du(S))

TER(Y|F

Since the expression inside the logarithm is linear in both 7 and p, it is maximized by a deterministic action
choice and adaptation plan.
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tion, but we will retain it for consistency in expressing growth rates in log terms and for ease
of comparing the formulas in this section to later results.

In order to accommodate certain special cases, it will be technically convenient to permit
the fitness functions 1) to take the value —oo, so we henceforth assume that ¥ is a nonempty
set of functions ¢ : Z — [—00,00).'5 We have assumed throughout that the set ¥ is pointwise
bounded above. In anticipation of our results in Section 6, we will also focus attention on
sets that are closed, as formalized in the next assumption. We will see that the special cases
of rank-dependent utility and divergence preferences considered in the following subsections
will be characterized by sets W that satisfy this assumption.

Assumption 1. Suppose ¥ is a nonempty set of functions ¢ : Z — [—00,00) that is
pointwise bounded above (that is, sup,cq ¥(2) < oo for every z € Z) and closed in the
topology of pointwise convergence (on the extended reals).

5.1 Rank-Dependent Utility

Although the connection is nontrivial, the following result shows that rank-dependent utility
with a pessimistic probability distortion function can be expressed as a special case of our
model.

Proposition 1 (Rank-Dependent Utility). Suppose Z C R. Fix any bounded nondecreasing
function u : Z — R and any function ¢ : [0,1] — [0,1] that is nondecreasing, concave, and
onto. Then, there exists a set W of functions ¢ : Z — R satisfying Assumption 1 such that
for any simple act f : S — Z and any p € A(S),'°

sup / B(F()) du(s) = / u(2) d( o Fr,.)(2)

Ppew

where

Fpo(z) = / 1[£(s) < 2] du(s)

denotes the cumulative distribution function of f given p. In particular, the value function
V' in Equation (4) can be equivalently expressed as

V(1) = [ wrdtoo Fri(a)).

Since we identify idiosyncratic uncertainty over S with pure risk, the distribution of
outcomes Iy, amounts to an unambiguous risky prospect. Thus, given the appropriate set

15Recall that we take In(z) = —oo for all z < 0.
16This dual formula is similar to several existing results in the literature. See, for example, Wakker (1994),
Chatterjee and Krishna (2011), or the Supplementary Material of Sarver (2018).
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of fitness functions ¥, adaptive preferences are equivalent to rank-dependent utility where
individuals overweight the probability assigned to worse outcomes.'” The following example
from Ben-Tal and Teboulle (2007) and Sarver (2018, supplementary material) illustrates
more concretely one instance of this duality.

Example 2 (RDU Fitness Functions). Suppose Z C R, and fix some 0 < a < 1 < f.
Consider a parametric class of fitness functions where for each v € R, we define ¢, : R — R
by

o) = T+ B(z—7) ifz<y
! Tt+a(z—7) ifz>7,
The fitness function 1, can be interpreted as a piecewise-linear gain-loss function with a

target consumption level v. It is concave (since a < 3), takes value v at z = 7, and takes

values strictly below z for z # . Figure la illustrates. A
1 / e(x)
Py (2) /
‘ ¥y (2) B
4 /’
Ly | |
v / z l-a 1
/ v i=a
(a) Gain-loss functions 1), (b) Probability distortion function ¢.

Figure 1: Illustration of Example 2 and Claim 1.

Claim 1. Define 1, as in Ezample 2. Then, for any simple act f : S — R,

wase [ 0 (79)duts) = [ zd(po Fr)(o
S Z

vER
where
Bx if v < 1:—2
p(r) = L
ar+(1—-a) ifz> 52

1"In this paper, we focus on exploring the scope of adaptive preferences by identifying special cases that
can be nested. Sarver (2018) considers a similar representation to Equation (4). He shows that his model
does not overlap with other prominent non-expected-utility models (disappointment aversion, betweenness
preferences, cautious expected utility) except in the case of expected utility. These insights are easily
extended to our model and help delineate the boundary of the set of preferences that it nests.
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Figure 1b illustrates the probability distortion function ¢ from Claim 1. Sarver (2018,
supplementary material) proves this result for the special case of « =1—6 and § = 1+6 for
0 € [0,1]. The general proof follows from similar arguments and we therefore omit it. For
intuition, if there is a 7 € R such that Fy,(v) = é:—z, then the optimal fitness function for
the act f is ¢,.'® From this, it is easy to show that outcomes to the left of v are weighted
by [ times their probability and outcomes to the right are weighted by «, consistent with

the distortion function ¢.

5.2 Divergence Preferences

Definition 4. Fix a convex and lower semicontinuous function ¢ : Ry — [0, 0] such that
¢(1) = 0 and there exists some o < 1 < ( such that ¢ is finite on the interval [«, 5], and let
p and g be probability measures on a given state space. The ¢—divergence of p with respect

Dy(pllq) = /(b(%)dq tr<a (5)

00 otherwise.

to ¢ is given by

The notation p < ¢ indicates that p is absolutely continuous with respect to ¢, that is,
for any measurable set A, ¢(A) = 0 implies p(A) = 0. The term Z—g denotes the Radon—
Nikodym derivative (density) of p with respect to ¢, which exists if and only if p is absolutely
continuous with respect to ¢.! It is immediate from the definition of the ¢-divergence that
Dy(p|l q) > 0, with equality if p = ¢q. Moreover, if ¢ is strictly convex, then Dy(p|| ¢) = 0 if
and only if p = q. Relative entropy (or Kullback—Leibler divergence) is the special case of a

¢—divergence where ¢(t) = tIn(t) — ¢t + 1. In this case, Equation (5) simplifies to

rora- ] (G )# tr<a 0

00 otherwise.

Ben-Tal and Teboulle (1987, 2007) provided an explicit dual characterization of varia-
tional preferences (Maccheroni, Marinacci, and Rustichini (2006)) with a divergence cost
function as the supremum of a set of expected utilities under the reference measure, where
the supremum is taken over a set of possible Bernoulli utility indices. The following proposi-
tion extends their result to permit a nondecreasing convex transformation k& of the divergence
term.

Proposition 2 (Divergence Duality). Fiz any ¢-divergence Dy(- || -), any function v : Z —
R, and any nondecreasing, convex, and lower semicontinuous function k : R, — [0, 00] such

18Gince f is a simple act and F 'r,u is therefore not continuous, there may be no such 7. In general, any
(07

that satisfies Fr ,(v—) < é% < Fy ,(v) will be optimal, where Fy ,(v—) is the left limit of F , at ~.

[0

Y Formally, ’;—Z is the integrable function that satisfies p(4) = [, Z—ZI; dq for any measurable set A.
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that k(0) = 0 and k is finite on some interval [0,€).2° Then, there exists a set W satisfying
Assumption 1 such that for any simple act f : S — Z and any p € A(S),

sup [ 6(7(5)) duts) =it [ [t ants) + 1Duta )|

pew neA(S)

The next corollary illustrates the flexibility of the transformation k£ in Proposition 2 by
highlighting two special cases. The first is where k(xz) = 0z for some scalar § > 0. The
second is where we fix a scalar x > 0 and take k(z) = 0 if z < k, and k(z) = +o0 if > k.

Corollary 2. Fiz any p € A(S), any ¢-divergence Dy(- || -), and any function u : Z — R.
Given a set VU, define V' by Equation (4).

1. Fix any scalar § > 0. There exists a set VW such that

Vi) =w( it [ utse)ane) +o0.001 )

neN(S)

2. Fiz a scalar k > 0, and define D(p, k) = {n € A(S) : Dy(n|| 1) < k}. There exists a
set W such that

V(f)=In{ inf [ u(f(s))dn(s) ).
(s ftrn )

nED(u,x)

Divergence preferences have typically been considered in the context of ambiguity rather
than risk. For example, the formula inside the logarithm in part 1 of Corollary 2 was analyzed
by Maccheroni, Marinacci, and Rustichini (2006) as a special case of their model of variational
preferences. The formula inside the logarithm in part 2 of the corollary is a multiple prior
representation (Gilboa and Schmeidler (1989)). However, while these types of functional
forms have received the most attention in the ambiguity literature, they also have a natural
interpretation in the context of objective risk.?! The pessimistic distortion of the (objective
and idiosyncratic) probability measure p to some other measure 71 in these formulas allows
over-weighting of bad outcomes, similar to the interpretation of rank-dependent utility in the
previous section. In fact, this similarity between the two models is not merely conceptual:
Although the classes of divergence and RDU preferences are distinct, we provide an example
in Appendix B showing there is actually some overlap between the two classes of preferences.

In the proof of Proposition 2, we provide an explicit formula for the set of fitness functions
U using the Fenchel conjugate from convex analysis (see Proposition 3 in Appendix A.3).
The following example is based on these explicit formulas.

20We adopt the convention that k(cc) = oo. Thus, for any function & as in the statement of the proposition,
if Dy(r || p) = oo then k(Dy(r | p)) = 0.

2IMoreover, this class of divergence preferences is propabilistically sophisticated by Proposition 2. Mac-
cheroni, Marinacci, and Rustichini (2006) previously observed this for the case where k is linear.
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Figure 2: Illustration of gain-loss function v+ o — « exp(%) in Example 3.

Example 3 (Divergence Fitness Functions). Suppose Z C R, and consider the following
parametric class of fitness functions involving two parameters, where the first (7 € R) is a
target level of consumption and the second (a > 0) determines the sensitivity to gains and
losses: Define )., , : R — [—00, 00) by

brale) =7+ aep(125) el

if « > 0. For a =0, let ¢, o(2) =7 for z > v and v, o(2) = —oo for z < 7. The components

of ¥, q(2) have a simple interpretation: vy + a — aexp(=2) is a gain-loss function that is
strictly concave, takes the value v at z = v, and takes values strictly below z for z # ~.
The parameter a determines the sensitivity to gains and losses, with larger « leading to
decreased sensitivity. See Figure 2 for an illustration. Finally, ¢ : R; — [0, 00] is a function
that determines the “cost” of increasing « (decreasing sensitivity to gains and losses). Assume

that ¢ is nondecreasing and convex, with ¢(0) = 0. A

Claim 2. Define 1, as in Exzample 3. Then, for any simple act f : S — R,

max max /S Uyl f(s))du(s) = inf [ /S f(s)dn(s) + k(R(n | 1)) |,

YeER a>0 neA(S)

where R(n|| p) is the relative entropy defined in Equation (6) and special cases of the func-
tions ¢ and k are related as follows, where k,0 > 0:

1. If c(a) = ko, then k(x) =0 for x < k and k(xz) = 0o otherwise.

2. If c(a) =0 for a <0 and c(a) = oo otherwise, then k(z) = x.

Claim 2 relates the class of fitness functions in Example 3 to divergence preferences and,
moreover, illustrates two instances of the duality between the cost function ¢ in the fitness
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functions and the transformation k that is applied to the divergence.?

6 Ambiguity Aversion and Non-Expected Utility

We observed in Sections 4 and 5 that our model of adaptive preferences nests as special
cases rank-dependent utility and divergence preferences in the context of risk and a version
of the smooth model in the context of ambiguity. In this section, we expand our analysis to
special cases of our representation that simultaneously incorporate both ambiguity aversion
and non-expected utility for risk.?> One motivation for simultaneously considering both
is the empirically observed correlation between ambiguity aversion and violations of the
independence axiom (Dean and Ortoleva (2019)). Another motivation for this generality is
that within our model of adaptive preferences, there are some attitudes toward ambiguity
that are incompatible with a single fitness function v, but can be accommodated with
non-trivial adaptation, in which case violations of expected utility are implied. Section 6.4
provides an example of such a pattern based on the experimental findings of Abdellaoui et al.
(2011).

An impediment to the analysis of special cases of our general representation in Equa-
tion (2) is that it has a logarithm between the two layers of integration. For example, our
results for rank-dependent utility and divergence preferences in the previous section assumed
that there was no common uncertainty, and it is not immediately obvious how those results
might be extended to the general case of both common and idiosyncratic uncertainty. The
main result of this section, Theorem 2, is a duality result that recasts our representation in
a form that facilitates the analysis of these and other special cases. We then study several
special cases in detail in Sections 6.1 and 6.2, and we briefly discuss comparative statics that
link risk and uncertainty aversion across some of those special cases in Section 6.3.

Our results will involve the relative entropy of one probability measure with respect to
another, as defined in Equation (6). In what follows, for any probability measure p € A(Q),
let

M(p) ={q€ A(Q): g <pand R(p| q) < oc}.

In particular, since R(p || ¢) < oo requires that p < ¢, if ¢ € M(p) then the measures p and
q are mutually absolutely continuous, that is, both p < ¢ and ¢ < p.2* When necessary to
avoid confusion, we will denote the marginal distribution of p on €2 by pg.

22More generally, the function c is the Fenchel conjugate of k (by Proposition 3 in the appendix).

23There are relatively few models in the axiomatic decision theory literature that combine ambiguity
aversion and non-expected utility for risk; see, for example, Segal (1987), Dean and Ortoleva (2017) and
Izhakian (2017).

24Note that it is possible to have R(p|| q) = oo even if p < ¢, so M (p) may be a strict subset of the set of
all measures that are mutually absolutely continuous with respect to p.
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Theorem 2. Suppose V satisfies Assumption 1, and fiz p € AN(Q x S). For any random
action plan p € R(F), the function V defined by Equation (2) can be equivalently expressed
as

Vi = it (e[ swp [ [ snasiaane]) + R o] @

For intuition, we highlight the key steps in the proof: First, using duality techniques
related to those employed in the literature on large deviations in statistics (cf. Dupuis and
Ellis (1997)), we show that Equation (2) can be equivalently expressed as

Vi = s it ([ [ B [0 9] duloko) ) ) + Rign 0)|

rER(V|F) 9€M (o)

This expression is not yet amenable to analysis, as we would like to reverse the order of the
supremum and infimum in order to further simplify it and connect with existing functional
forms. The next step in the proof is to do just that by leveraging a particular version of the
von Neumann—Sion minimax theorem (von Neumann (1928), Sion (1958)) that is due to Tuy
(2004). Then, after we switch the order of the supremum and infimum, the supremum over 7
applies to the expression inside the logarithm, which is linear in 7. Therefore, optimization
over adaptation plans 7 can be reduced to the deterministic selection of a fitness function
following every act f that realizes under p, giving Equation (7). This final observation will
greatly simplify the analysis of the model since it eliminates randomization over ¢ from the
formula for long-run growth rates.

Despite the resemblance, the functional in Equation (7) with a single fitness function ¥ =
{¢} is not a variational representation (Maccheroni, Marinacci, and Rustichini (2006)). The
distinction is the logarithm around the integral in the first term. In fact, in the case of a single
fitness function, taking the exponential transformation of the representation in Equation (7)
establishes it as a special case of the confidence preferences studied by Chateauneuf and
Faro (2009), where confidence in a prior ¢ is measured by exp(R(uq || ¢)). More generally,
this no-adaptation case is also nested by the general representation for uncertainty-averse
preferences proposed by Cerreia-Vioglio et al. (2011).

Turning to the specifics of our functional form, relative entropy has appeared in a number
of representations for ambiguity-averse preferences, perhaps most notably in the multiplier
preferences introduced by Hansen and Sargent (2001) and studied axiomatically by Strzalecki
(2011),%® and also within a version of confidence preferences in Chateauneuf and Faro (2012).
However, in these models, the entropy term used is R(q || 1q) rather than R(uq || ¢). While
relative entropy is often interpreted as a “distance” between the two distributions involved, it

Z>Hansen and Sargent (2001) interpret their representation in terms of a concern about robustness to
model misspecification. Our approach provides a related perspective on concern for robustness in contexts
where uncertainty about w can be interpreted as model uncertainty.
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is not a distance function in the metric sense, because it is not symmetric. To interpret the
subtle difference in the context of the representation in Equation (7), suppose the decision-
maker takes as the reference measure pg the empirical frequencies in a large sample of
independently realized states w € 2, but worries that the data is actually generated by
the measure ¢ on . Of course, the larger the sample, the closer to zero the probability
that it would be generated by ¢ # uq. The theory of large deviations establishes that the
rate at which this probability vanishes increases in R(ugq || ¢) (see, e.g., Cover and Thomas
(2006, Section 11.4)). The representation suggests, therefore, that the decision-maker is less
confident in a measure ¢ the faster it becomes implausible with growing sample size.

In order to describe the special cases of the next two subsections, it will be convenient to
define a measure p ® ¢ on Q x S with marginal ¢ on © and conditional distribution p(+|w)
on S. That is, for any event E in the product o-algebra B ® Bg, let

no D) = [ [ 10.5) € Bldu(sto) do(e).

With this definition in hand, Equation (7) can be written as

Vi = it fw(e, s [ sGedee o))+ mualo].®

qeEM (pq) »el Jaxs

6.1 Nesting Rank-Dependent Utility

Proposition 1 linked our adaptive model to RDU preferences in the special case of no common
uncertainty (2 = {w}), in which case the state space was effectively S. The next corollary
follows directly from that result by taking the state space to be 8" = € x S and the measure
to be i/ = p®q e A(2 x S). Note that this application is only possible because we first
apply Theorem 2 to remove the logarithm from between the two layers of integration.

Corollary 3. Suppose Z C R. Fix any bounded nondecreasing function u : Z — R and any
function ¢ : [0,1] — [0, 1] that is nondecreasing, concave, and onto. Then, there exists a set
U of functions 1 : Z — R satisfying Assumption 1 such that for any p € A(Q2 x S), the
function V' defined by Equation (2) can be equivalently expressed as

Vi = int (5] [u@dee Fre)] ) + Rnlla).

a€EM (@)

where
Fppo(2) = / (w9 < L dlp e )

1s the cumulative distribution function of f given pu ® q.

This representation illustrates the simplicity of analyzing the combination of ambiguity
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aversion, non-expected-utility risk preferences, and random choice when working with the
dual formula in Equation (8) and its special cases. In this application, the RDU represen-
tation inside the logarithm generates aversion to any kind of uncertainty, while ambiguity
aversion (roughly speaking, the additional aversion to uncertainty from ) is captured by the
outer part of the representation—the confidence preferences within which the RDU repre-
sentation is embedded. The outer part is fixed across genotypes, even if those differ in terms
of ¥ and hence in terms of their attitudes towards risk.? Random choice of acts is also easy
to analyze in this representation, since the expectation with respect to p appears inside the
confidence preferences (reflecting the hedging benefits of randomization) but outside of the
RDU formula.

6.2 Nesting Divergence Preferences

Proposition 2 linked our adaptive model to a general class of divergence preferences in the
special case of no common uncertainty (2 = {w}), in which case the state space was effec-
tively S. In parallel our analysis of rank-dependent utility in the previous section, the next
corollary follows directly from Proposition 2 by taking the state space to be S’ = Q x S and
the measure to be y/ = p® g € A(2 x S). Again, this application is only possible because
of Theorem 2.

Corollary 4. Fiz any ¢-divergence Dy(- || -), any function v : Z — R, and any nondecreas-
ing, convez, and lower semicontinuous function k : Ry — [0, 00| such that k(0) =0 and k is
finite on some interval [0,¢). Then, there exists a set ¥ satisfying Assumption 1 such that
for any p € A(2 x 5), the function V' in Equation (2) can be equivalently expressed as

Vi = ot [m(E,] nt [ (s i) D0l i 0)] )+ Rlunll )]

qEM (o nEA(Q2xS)

The representation in Corollary 4 can be further specialized by considering specific func-
tional forms for k, just as in Corollary 2 from Section 5.2. This value function embeds a
general divergence representation inside confidence preferences. To see how it captures am-
biguity aversion, note that the measure n ultimately used to evaluate an act may be more
pessimistic than g ® ¢ on 2 x S, which in turn may be more pessimistic than x4 only on
). Hence, compared to u, there is more “opportunity” for n to be pessimistic about 2 than
about S.

26There is some empirical evidence that risk aversion and additional aversion to ambiguity indeed have
little correlation in the population (Chapman et al. (2019)).
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6.3 Comparative Statics

We briefly mention comparative statics that compare the behavior of individuals with dif-
ferent sets of fitness functions W:*” Suppose that all conceivable genotypes perform equally
well when facing deterministic outcomes (no uncertainty). In terms of the model of adaptive
preferences, this means that the upper envelope of ¥ is the same for all those genotypes.
In this case, one can show that individual A with adaptive preferences for ¥, is more risk
averse than an individual B with Up if and only if individual A is also more uncertainty
averse than B. For example, in the representations of Corollaries 3 and 4 the upper envelope
of W is u, and hence holding fixed u, individuals with either of these two types of preferences
who can be ranked in terms of risk aversion will be ranked the same way in terms of overall
uncertainty aversion.

6.4 Source Preferences

Adaptive preferences imply that any ambiguity attitude that cannot be captured by the
smooth model of ambiguity aversion in Equation (3) must go hand in hand with violations
of expected utility. We illustrate this connection via the example of source preferences.

Abdellaoui et al. (2011) compare behavior under known (risky) and unknown (ambiguous)
sources of uncertainty. In their experiment, the known uncertainty comes from betting on
the color of a ball drawn from an urn with eight balls of eight different colors. The unknown
uncertainty comes from betting on the color of a ball drawn from an urn with eight balls
with the same colors, but unknown composition in the sense that some colors might appear
several times and others might be absent. Based on symmetry it is clear that each color
should be considered equally likely even for the unknown urn (just as the two colors are
usually revealed to be considered equally likely in the ambiguous two color Ellsberg urn),
but nonetheless an ambiguity adverse decision maker would prefer to bet on the known urn.

Abdellaoui et al. (2011) interpret their data through the lens of source functions wg
and wy, which are probability weighting functions for the known and unknown sources,
respectively. That is, fixing outcomes =z > y, the gamble that yields x with probability p
and y otherwise is evaluated as if the probability assigned to x is w(p) instead of p. For a

t,2% they find that for p > 0.5 the source function wy is systematically

representative subjec
lower than wy, while for small p there is no significant difference. To be more specific,
consider the function a(p) := wx(w;'(p)). While the experiment determines preferences

via certainty equivalents, transitivity of preferences implies that the representative subject

2"We have taken the set ¥ as given throughout. To compare individuals with different U, it is important
to understand how W is determined. One possibility is that different choice situations involve different sets
of hidden actions. Another possibility is that ¥ itself is subject to constrained evolutionary optimization.

28They use a parametric family of functions to approximate individual source functions, and report the
median parameter values.
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Figure 3: ayy, 4.y for ¥1(z) = 1.2, ¥1(y) = 0.7, o(x) = 2, ¢2(y) = 0.3

is indifferent between the gamble with unknown probability p and the one with known
probability a(p), which we therefore call the risk equivalent of p, given z and y. Their
findings then imply that «(0) = 0 and a(l) = 1 and that a(p) is continuous, strictly
increasing but not convex everywhere, close to the identity function for small p, and below
identity for larger p.

Here, we will not attempt to calibrate our model of adaptive preferences to match their
data.?? Our modest aim in this section is merely to demonstrate via the following two claims
that (i) it cannot match the qualitative pattern of a(p) just described if ¥ is a singleton (no
adaptation), but that (ii) it can match this pattern if ¥ has two or more elements. To that
end, let agy(p) be the risk equivalent implied by our model for a particular W.

Claim 3. For any strictly increasing fitness function v, the risk equivalent agy(p) is contin-
uous, strictly increasing and strictly convex in p, and satisfies o) (0) = 0 and agyp (1) = 1.

Furthermore, if 1o(x) > 1 (x) > 1 (y) > 2(y), then agpy(p) > oy, (p) for all p € (0,1).

Claim 4. If ¥o(z) > tY1(x) > ¥1(y) > ¥a(y), then there are p. < p* € (0,1) such that

o} (P) = gy (p) for all p < p, gy, 0y (p) = ya} (p) for all p = p*, and oy, 43 (p) is
convex for all p > py.

Figure 3 illustrates via an example how our model generates the pattern in Claim 4. Ob-
viously, the fact that U contains two elements that do not dominate each other immediately
implies that preferences over gambles with known probabilities (risk) must violate expected
utility. To continue the example in Figure 3, suppose ¥ = {11, ¢} where 1 (2) = 0.5z + 2
and 95(z) = vz +0.1. Then it is easy to verify that for z = 4 and y = 0 the two fitness
functions generate the values in the figure (rounded to the first decimal) and that for risky

29Tn particular, some individuals in their data are ambiguity loving for small p, while our model always
implies ambiguity aversion.
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gambles the common ratio violation of expected utility proposed in Allais (1953) ensues:
Getting w = 3 for sure is better than getting x = 4 with probability p = 0.8 and y = 0
otherwise, but getting x = 4 with probability p = 0.2 and y = 0 otherwise is better than
getting w = 3 with probability p = 0.25 and y = 0 otherwise.

7 Realism of the Evolutionary Model

To conclude, we discuss two assumptions that are implicit in our formulation of the evolu-
tionary model and that are commonly made in economic contexts. Corollary 1 shows that
the long-run growth rate is optimized by choosing the action plan p € R(A) that maximizes
V', assuming the decision problem A is faced by the genotype repeatedly in every period. In
fact, this assumption is unnecessarily strong and is made solely for ease of exposition. As
can be seen in the proof of Theorem 1, aggregate fitness in each period affects the popula-
tion size multiplicatively, which provides a degree of separability for choice problems that
appear at different times. For example, if the genotype faces an infinite sequence of deci-
sion problems (A;)sen, then attaining the highest possible long-run growth rate requires that
individuals maximize adaptive preferences from any decision problem A that repeats with

fixed frequency within this sequence.?”

Another assumption in our model is that time is divided into discrete time periods.
Robatto and Szentes (2017) made the surprising observation that correlation aversion dis-
appears in the continuous-time limit of this basic model. Further extending this line of
research, Robson and Samuelson (2019) allowed fertility and mortality rates to vary with
age in order to separate the assumption of continuous time from the assumption that new
organisms can reproduce immediately after birth, and they found that correlation aversion
can be recovered even in continuous time. Investigating the implications of different timing
and age structures in our context of hidden actions and updating could be an interesting
avenue for future research. In this paper, we stick to discrete time with age-independent
fertility and mortality rates as is common in evolutionary models in economics.

30The assumption that all individuals of the genotype face the same decision problem at the same time is
also implicit in our model, and this assumption can be relaxed as well. If, instead, there is a distribution of
decision problems within the population, then this uncertainty can be encoded into the state spaces in our
model.
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A  Proofs

A.1 Proof of Lemma 1

Note that .
In(NV(T)) = In(N(0)) + 3 In(X),
t=1

and therefore

NAT NA®0 d a
ln<NBET§> = ln<NBEo§> —{—;ln()\f) - ;m(AtB).

Since o and of are the long-run growth rates of these two genotypes, we have

T T
%[Zln()\f) - Zln(AtB)} —at—aP as.
t=1 t=1

A

Since a — a® > 0, this implies

(20

VY s

Therefore, N4(T)/NB(T) — oo almost surely as T'— co. This completes the proof.

A.2 Proof of Proposition 1

Since u is bounded, there exist a,b € R such that u(Z) C [a,b]. The following two lemmas provide

key steps in our construction.

Lemma 2. Suppose ¢ : [0,1] — [0,1] is nondecreasing, concave, and onto. Define a function
W : A([a,b]) = R by

b
W) = / rd(po Fy)(a),

where Fy(x) = n([a,z]) is the cumulative distribution function for the measure 1. Then, there exists

a set ® of nondecreasing and concave continuous functions ¢ : [a,b] — R such that

W () = sup /Z 6(2) dn(2).

pcd

Proof. 1t can be shown that W is convex using similar arguments to those in Section S.2.1 of
the Supplementary Material of Sarver (2018) (alternatively, see Wakker (1994) or Chatterjee and
Krishna (2011)). It is also not difficult to show that W is continuous in the topology of weak
convergence. Finally, since ¢ is concave, the function W respects second-order stochastic dominance
by Theorem 2 in Yaari (1987).3! In light of these conditions, we can apply Proposition 1 from Sarver
(2018) to obtain a set ® with the claimed properties. |

31This was also proved by Chew, Karni, and Safra (1987) in the special case where ¢ is Lipschitz continuous.
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Lemma 3. Fiz a set ¥ of functions ¢ : Z — [—00,00) that is pointwise bounded above. Then, for
any p € A(S) and any simple act f : S — Z,

22§[q¢(f(3))d“ :1/)2313 /w

where the closure is taken with respect to the product topology (i.e., the topology of pointwise con-
z

vergence) on [—00, 00]”.
Proof. Fix any p € A(S) and any simple act f : S — Z. Since f is a simple act, there exists a finite
partition £ C Bg such that f is measurable with respect to €. For each E € &, let zp = f(s) for
some s € E. Since f is £-measurable, the value zg does not depend on the exact choice of s € F.
Define a function G : [~00,00)? — R by

:LMWWM@=ZW@W@

Eeg

and let v = sup,cy G(¥0). Note that v is finite since the functions in ¥ are pointwise bounded
above. Now, fix any ¢ € cl(¥). By the definition of the closure, there exists a net (1q)achD
in ¥ that converges to 1.3> Note that since ¢, € ¥ for each o, we must have G(¢) < . Since
convergence is preserved under scalar multiples and finite sums, ¥, — 1 implies that G(¢) — G(¢)
and hence G(1)) < ~. Since this is true for all ¥ € cl(¥), we have

sup /¢ (s) = sup G(v) =1,

Ppecl(W Ppecl(P)
as desired. |
Proof of Proposition 1. Take ® as in Lemma 2 for the function ¢, and let ¥ = {¢pou : ¢ € ®}. Fix

any u € A(S) and any simple act f : S — Z, and let n be the distribution of utility values induced
by w, f, and u. Formally,

n=po f_l ou"le A(la, b]).

Then, we have

sup [ 0(£(5) du —mm/¢ dp(s)

Ppev J S PeD
= sup / o(x) dn(z (change of variables)
Pped
= / zd(po Fy)(x) (Lemma 2)

= / u(z) d(po Fr ) (2).
z

32Tt is well known that the product topology on an uncountable product space cannot be completely
described by sequential convergence, as such spaces are not metrizable. Hence, we must use nets.
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The last equality is essentially another application of the change of variables formula, but there are
a few subtleties. One needs to show that if v* is the probability measure over utility values with
cumulative distribution function ¢ o F;, and if v is the probability measure over outcomes in Z with
cumulative distribution function ¢ o F ,, then v* =v* o uw~!. This is not true for arbitrary u, but
it can be shown to hold whenever u is nondecreasing.

Note that since W(n) = « when n({z}) = 1, we must have ¢(z) < z for all z € [a,b] and ¢ € P.
Now, for any ¢ € U there exists ¢ € ® such that ¢ = powu. Thus, ¥(2) = ¢(u(z)) < bforall z € Z,
so the set W is bounded above. Moreover, taking the closure of ¥ does not alter the values in the
equality above by Lemma 3, so we can assume that ¥ is closed without loss of generality. |

A.3 Proof of Proposition 2

Some basic definitions and results from functional analysis will be used frequently in this proof. If
X is a Banach space, we use X* to denote the space of all continuous linear functionals on X (the
norm dual of X). For z € X and z* € X*, we use (z*, x) to denote the duality pairing z*(x).

Given a function F': X — (—o0, 00|, the effective domain of F' is the set
dom(F) ={zx € X : F(z) < o0}.

The function F is proper if dom(F') # (), that is, if it is not identically equal to co. The (Fenchel)
conjugate of F' is the function F* : X* — [—00, 00| defined by

F*(z*) = sup [(w*,x> — F(ZL‘)] 9)
reX
Note that if F' is proper, then F*(z*) > —oo for all z* € X*. Finally, given a set C' C X, we define
dc by 0c(z) =01if z € C and d¢(z) = oo if z ¢ C. This is the indicator function commonly used
in functional analysis. Note that

(0c)* (z*) = sup(z™, z).
zeC

In this proof, we will work with the L' and L> spaces of functions. That is, given a probability
space (Q, B, p), the space L'(, Bq,p) is the set of all (equivalence classes of) integrable functions,
and the space L>(£2, Bq, p) is the set of all (equivalence classes of) essentially bounded functions.?3
When the reference probability space is understood, we will sometimes denote these spaces simply
as L' and L™, respectively. It is a standard result that these are Banach spaces (when endowed

with the L' and L° norms, respectively) and that (L')* = L, with the duality pairing
(Y) = [ XY (@) dple)

for Y e L', X € L.

33Note that in this proof we use  to denote an arbitrary probability space, not necessarily the space of
common states as in the main text.
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Proposition 3. Fiz any probability space (2, Bq,p). Let Dy(-|-) be a ¢p—divergence, and fix any
nondecreasing, convez, and lower semicontinuous function k : R — (—o0,00] such that k(0) = 0
and k is finite on some interval (—e,e). Then, for any random variable X € L*°(Q), Bq,p),

it | [ X(@)date) + K(Dofa 1) = max ma [ 700 dno),

geN(Q) vER a>0

where .y o 1 R — [—00,00) is defined for v € R and o > 0 byt

Ural@) =7 = (ad) (v —z) =k (a)
v —ag*(L2) — k*(a) ifa>0
=497 +sup(dom(¢)) - (x—7) —k*(0) fa=0andz <~y
v+ inf(dom(¢)) - (z —v) — k*(0) ifa=0 and x> ~.

Note that in Proposition 2, we took k to be a function from Ry to [0, 00]; however, we can
treat k as a nondecreasing, convex, and lower semicontinuous function from R into [0, co] by taking
k(z) = 0 for x < 0. Similarly, our definition of a divergence requires ¢ to be a continuous convex
function mapping from Ry to Ry, but we can treat ¢ as lower semicontinuous convex function
defined on all of R by taking ¢(y) = oo for y < 0, and hence

¢*(z) = sup [zy — d(y)].

yeRy

Proposition 2 then follows as a special case of Proposition 3 where the state space is Q=29 , the
probability measure is p = p € A(S), and X : § — R is defined by

Note that since f is a simple act and v is real-valued, X is bounded. Thus, by Proposition 3,

it | [ 60 dns) + KDl )] = s mass [ o 60 )

neA(S) vER >0

Take ¥ to be the closure of the set
{7/)7,040“3’7 € R,a >0},

where the closure is taken with respect to the topology of pointwise convergence on the extended
reals. Then, ¥ satisfies Assumption 1 and the arguments above together with Lemma 3 (which
allows us to take the closure) establish that the equality in the statement of the proposition holds.

Therefore, all that remains is to prove Proposition 3. Our proof will be based on the following

34Recall that we require the function ¢ in the definition of a divergence to be finite on some interval [« 3]
where a < 1 < 3, and hence sup(dom(¢)) > 1 and inf(dom(¢)) < 1, s0 1, o for o = 0 is a piecewise linear

and concave gain-loss function. In particular, if ¢ is finite-valued on all of R, then sup(dom(¢)) = oo and
inf(dom(¢)) = 0.
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three lemmas. The first two lemmas closely parallel the proof strategy used by Ben-Tal and Teboulle
(2007, Theorem 4.2) who provide a similar result for the case when k(x) = z, that is, when there is
no transformation of the divergence term.

Lemma 4. Fix any probability space (2, Bq,p). Let H : L' — (—00,00] be a convex and lower
semicontinuous function, and suppose there exist o < 1 < 3 such that Y € L' and a < Y(w) < B
for all w € Q implies H(Y') < co. Then, for any X € L™,

inf X (w)Y (w)dp(w) + H(Y)] =max [y — H*(y — X)]
YeLl: ~vER
JY (w) dp(w)=1

Proof. The proof of this result replicates the first steps in the proof of Theorem 4.2 in Ben-Tal and
Teboulle (2007), but we include it for completeness. Denote by v the value of the left side of the
equation in the statement of the lemma:

v= inf [ [ X(@Y (@) dp(w)%—H(Y)]

The Lagrangian dual of this convex minimization problem is given by

w = sup inf [/X w) dp(w )+H(Y)+v<1—/Y ) dp(w ))]

~ER YelLl

= [+ or, (0 + [ (X - 7))

vER YeLl Q
ok {'V A </Q(7 — X(w))Y (w) dp(w) — H(Y))}
=sup [y - H'(r - X))

It remains only to show that v = w, that is, there is no duality gap. The convex duality result in
Corollary 4.8 of Borwein and Lewis (1992) shows that there is no duality gap and there is attainment
of a solution in the dual problem if the following constraint qualification condition is satisfied:3

(CQ) There exist o < 3 such that o < Y(w) < 3 implies H(Y) < oo, and there exists some
Y € L' with a < Y (w) < f8 that satisfies the constraint [, Y (w)dp(w) = 1.

Given the assumptions in the statement of the lemma, this condition is satisfied by taking Y
identically equal to 1. This completes the proof. [

35Borwein and Lewis (1992) define the quasi relative interior of a set C to be the set of all points z € C
such that the closure of the cone generated by C — x is a subspace. In the context of our minimization
problem, their constraint qualification condition requires that there is a function Y in the quasi relative
interior of the set dom(H) ={Y € L' : H(Y) < oo} that satisfies the constraint [, Y (w)dp(w) = 1. It can
be shown that if {Y € L' : a <Y < 8} C dom(H) then any Y € L! with o < Y (w ) < B is in the quasi
relative interior of dom(H) (see Example 3.11(i) in Borwein and Lewis (1992)).
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Lemma 5. Fiz any probability space (2, Bq,p), and fix any proper convex and lower semicontinuous
function ¢ : R — (—o0,00]. Define a functional J : L' — (—o00, 0] by

J(Y) = /Q H(Y (@) dp(w).

Then, J is a proper convex and lower semicontinuous functional, and the Fenchel conjugate J* :
L>* — (—o0, 00| of J is given by

T = [ (@) dote).
Proof. See the corollary to Theorem 2 in Rockafellar (1968). |

Fix any proper convex and lower semicontinuous function ¢ : R — (—o0, oo] that is finite on an
open interval containing 1. Then, defining J as in Lemma 5 and setting H = J in Lemma 4, we
obtain the following dual formula:

wf, | [ Xy ) +I0)] =max [ - 076 - X)) dpte)

YeLl: vER
JY (w)dp(w)=1

This is precisely Theorem 4.2 in Ben-Tal and Teboulle (2007). To extend their result to H = ko J,
we need the following lemma.

Lemma 6. Fiz any probability space (2, Bq,p), and fiz any conver and lower semicontinuous func-
tion ¢ : Ry — [0,00] such that ¢(1) = 0 and there exists some o < 1 < [ such that ¢ is finite
on the interval |o, B]. Also, fix any nondecreasing, conver, and lower semicontinuous function
k:R — (—o00, 0] such that k is finite on some interval (—¢, ). Define J : L' — (—o0, 00] by

I = [ oy (@) dute).
and define H : L' — (c0,00] by H = ko J. Then, for any X € L,
H () = min [(])" (X) + (0], (10)

where

(@))*(X) = /Q(W)*(X(w))dp(w)

and where (a¢)*(z) = a¢™(%) for a >0 and

inf(dom(¢)) -z ifx <0

00)*(x) =
(0¢)"(=) {sup(dom(gb)) -z if x> 0.

Proof. To obtain the formula for the conjugate of the composition of two functions, we appeal to
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Theorem 2 of Hiriart-Urruty (2006):36 Since k and J are both lower semicontinuous and convex,
k is nondecreasing, and there exists a function Y € L! such that J(Y) € int(dom(k)) (namely,
Y identically equal to 1), his theorem implies that the Fenchel conjugate of k o J is given by
Equation (10), when one sets (0J) = dgom(s)- For a > 0, we therefore have

(@)(X) = [ faor (K@) dpte) = [ a0 (ZED )y,

where the first equality follows from Lemma 5 and the second equality follows directly from the
definition of the conjugate.

It remains only to establish the formula for (0J)*. By the definition of the conjugate,

(07)"(X) = sup [(X,Y) = ddom(n)(Y)] = sup /X(w)Y(W) dp(w).
YeLl Yedom(J) /2

Now, fix any X € L™ and let £ = {w € Q: X(w) > 0}. Note that a necessary (but not sufficient)
condition for Y € dom(J) is that 0 < inf(dom(¢)) < Y < sup(dom(¢)) < oo almost surely.
Therefore,

%gbéanmwwséxwww@w, (11)

where Y : © — [0, 00| is defined by

=0

W) = {inf(dom(qﬁ)) ifw¢gFE
sup(dom(¢)) ifw e E.

Note that the integral on the right is well-defined since X is bounded and 0 < inf(dom(¢)) < 1, but
possibly infinite since we could have sup(dom(¢)) = co. The proof is completed by showing that the
supremum attains this bound, so that Equation (11) holds equality (with both sides possibly being
+00). Since it may be that ¥ ¢ dom(.J) (e.g., if ¢(y) = oo for y = inf(dom(¢)) or y = sup(dom(¢))),
we will approximate Y using a sequence: Let (Y}, )nen be a sequence in dom(J) defined by

Y,y (w) y ifwé¢Fk
nw: =n
7, ifweE,

where (y )nen is a monotonically decreasing sequence in dom(¢) with y ~— inf(dom(¢)), and
(Un)nen is a monotonically increasing sequence in dom(¢) with 7, — sup(dom(¢)) (with the
standard convention that 7, diverges to +oo in the case of sup(dom(¢)) = oo). Notice that by
construction, the function Z,, defined by Z,(w) = X(w)Y,(w) is bounded, and Z, 1 Z where

Z(w) = X (w)?(w) Therefore, by the monotone convergence theorem (e.g., Theorem 4.3.2 in

36Hiriart-Urruty (2006) provides a concise treatment of this problem, but earlier, more general results
about conjugates of compositions of convex functions exist, e.g., Kutateladze (1979, Theorem 3.7.1) or
Combari, Laghdir, and Thibault (1996, Theorem 3.4(ii)).
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Dudley (2002)), we have

| X@¥alw) o) = [ X(@)F (@) dplw),
Q Q

as desired. m

Proof of Proposition 3. Note that Dg(q||p) = oo whenever ¢ is not absolutely continuous with
respect to p. Thus, we can restrict attention to ¢ < p, and we can therefore express the divergence
using Radon—Nikodym derivatives Y = g—g € LY(Q, Ba,p):

ot [ [ X dgeo >+k<D¢<q||p>>]

qgeEN(Q
- int | [ x5l ante >+k(/¢<dq<w>>dp<w>>}
-, [/QXW k([ orenme)|

JY (w) dp(w)=1

Note that for Y € L' to be a Radon-Nikodym derivative, we must have [, Y (w)dp(w) = 1 and
Y > 0 a.s. The first constraint is stated explicitly in the equation above, and since ¢(y) = oo for
y < 0, the second constraint becomes superfluous.

As before, define J : L' — (—oc0, 00] by

- / H(Y (@) dp(w),
Q

and define H : L' — (oc0,00] by H = ko J. Note that .J is convex and lower semicontinuous by
Lemma 5, and therefore H is convex and lower semicontinuous given our assumptions on k. We
also assumed that there is an interval (—e,e) on which & is finite. Since ¢ : Ry — [0, 00] is convex
and finite on some interval [, §] for a < 1 < f3, it is necessarily continuous on («, ). Therefore,
since ¢(1) = 0, there exists some o/ < 1 < /# such that o/ <y < ' implies 0 < ¢(y) < e. Thus,
a<Y(w)<pforall weQimplies 0 < J(Y) < ¢ and hence H(Y) < co. Therefore,

[ freremee( faem)

Y(w) dp(w) 1
= —H*(y-X
max [y — H'(y = X)]
= max max [v = (@) (v = X) — K" ()]

where the first equality follows from Lemma 4 and the second equality follows from Lemma 6. Then,
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using the formula for (aJ)* from Lemma 6, we have that for any X € L>* v € R, and o > 0,

() (v — X) — k*(a) =7 - /Q (06)" (v — X (w)) dp(w) — K*(a)
- /Q [y — (06)" (v - X (@) — k()] dp(w),
where

—ag*(LE) - ifa>0
— ()" (v —2) — k" (a) = — Sup(dom(qb)) ( x)—k*(0) ifa=0andy—2>0
fy—lnf(dom( ) (y—2)—k*(0) ifa=0andy—2z<0,

which is precisely the formula for ¢, o(x) from the statement of the proposition. This completes
the proof. |

A.4 Proof of Claim 2

Define ¢ by ¢(y) = yIn(y)—y+1 for y > 0 and ¢(0) = 1, so that the ¢—divergence is precisely relative
entropy: Dy(n|| 1) = R(n | ). It is standard that the Fenchel conjugate of ¢ (see Equation (9)) is
¢* : R — R defined by

¢ (x) =" — 1.

Therefore, Proposition 3 gives the equality stated in Claim 2 for precisely the class of parameterized
fitness functions defined in Example 3 when c¢(a) = k*(a). Note also that:

1. If k(x) =0 for < Kk and k(z) = oo otherwise, then k*(«) = ke for all a > 0.

2. If k(z) = 0z for all x > 0 (and k(z) = 0 otherwise), then k*(a) = 0if 0 < a < 6 and
E* (o) = 0 if a > 6.

A.5 Proof of Theorem 2

The following proposition will be central to our first step in the proof of Theorem 2. Given some
p € A(Q), recall that M(p) = {¢ € A(Q) : ¢ < pand R(p||q) < oo}. In particular, since
R(pl|lq) < oo requires that p < ¢, the measures ¢ and p are mutually absolutely continuous
whenever ¢ € M (p).

Proposition 4. Fiz any measurable space (2, Bq). Suppose X : ) — [—o0,00) is measurable and
bounded above, and let p € AN(Q2). Then,

[ mceenane) = it lin( [ X@datw)) + Rwla)] (12)

qeM (p)
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In addition, if X is bounded away from zero, that is, if X(w) > € > 0 for all w € Q, then the
infimum in Equation (12) is uniquely attained by the measure qy with Radon—Nikodym derivative

d(JO
dp

= (13)
X

Proposition 4 restricts to ¢ € M(p), thereby ensuring that we do not encounter terms of the
form —oo+o00. That is, while the first term inside the infimum in Equation (12) could take the value
—o0, the second term R(p|| ¢) will necessarily be finite. Proposition 4 is based on dual formulas for
relative entropy that are related to those commonly invoked in the theory of large deviations (e.g.,
Dupuis and Ellis (1997)), although the result itself is distinct from any known results of which we
are aware. The complete proof of Proposition 4 is contained in Appendix A.7.

Using Proposition 4, the following lemma provides the first step in our proof of Theorem 2.

Lemma 7. Suppose ¥ is a nonempty set of functions ¢ : Z — [—o0,00) that is pointwise bounded
above, and fix up € A2 x S). For any random action p € Ng(F), the function V defined by
Equation (2) can be equivalently expressed as

v = sw it ([ [ B (7)) datsla) e ) + Riga )]

reR(V|F) 4€M (p0)

Proof. For a given p € (As(F)) and 7 € R(¥|F), define X : Q@ — [—o0,00) by

X(@) = [ Erop [0(7(0,9)] dutsho).
To verify that X is bounded above, recall that p € Ag(F) has finite support and each f € supp(p)
is a simple act. This implies that only finitely many realizations of z occur with positive proba-
bility. Since the set ¥ is pointwise bounded above, this implies that there exists x € R such that

Y(fw,s)) < kforallwe Q, s e S, ¢ e Vand f € supp(p). Therefore, X(w) < & for all w.
Applying Proposition 4 to this function, we obtain

([ Eroplotrte o) dusle) )aute

- / In(X (@) dpg ()

:qel}/rflf/m[ (/X ) dg(w >+R(MQ||Q)]
= it ([ [ Brep (o)) dutel) do(e) ) + Runl )]
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Thus, when V' is defined by Equation (2), we have

Vi = swp [ n( [ Ealotr )] dulsto) )t

TER(Y|F)

= s nt ([ [ By w7 o) dutsle) e ) + Run | )]

T€R(V|F) 9€M (10)

This completes the proof. |

The next proposition will be central to the second step in the proof of Theorem 2.

Proposition 5. Fiz a measure p € A(2 x S), and suppose E is a nonempty set of functions
£: QxS — [—00,00) with the following properties:

1. Closedness: When the set of extend reals [—o0, 0] is endowed with its usual topology and

]QXS

[—00, 00 is endowed with the product topology (i.e., the topology of pointwise convergence),

= is a closed subset of this space.

2. Finite measurability: There exists a finite partition £ C Bg ® Bs of 2 x S such that every
& € Z is measurable with respect to £.

3. Pointwise boundedness: supgcz €(w,s) < oo for every (w,s) € Q x S.

Then,

s nt ([ [ w9 autelo)doe)) + Riunl o)

£€co(2) qEM (nq)

=t i (s [ es) dutelo)da@)) + Ria 0|

q€M (po ce=

Proposition 5 is based on an application of an extension of the von Neumann—Sion Minimax
Theorem due to Tuy (2004). Despite the reliance on these established tools and techniques, the
complete proof of this proposition is quite involved and is contained in Appendix A.8.

Proceeding with the proof of Theorem 2, fix any p € Ag(F), and let B = supp(p). Since p is a
simple lottery over acts, B is a finite set of acts. We will define = to be the set of individual expected
fitness functions that are attainable given the fixed random choice of act under the random action p
together with some deterministic adaptation plan. That is, we are focusing for now on adaptations
plans 7 that place probability one on some fitness function ¢y € ¥ following each f € B.

Formally, deterministic adaptation plans are denoted by (¢f)fep € VB or (¢f) for short.®”
Define a mapping J : U2 — [—o0, 00]¥*¥ by

Iwnsen)@9) = [ vr(sw.s) d(s)

37Note that since (1/f) is an element of U? rather than U7, the value of ¢; is unspecified for f € F\ B.
However, since acts f ¢ B are chosen with probability zero, expected individual fitness is fully determined
by the values of vy for f € B.
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for (w,s) € Q x S. Define = to be the range of J, that is,

= = {Jlwp)] € [~00, 005 : (1) € WP}, (15)

In other words, = is the set of all functions £ that take the form

£(w,s) = /g?bf(f(wvs))dp(f)

for some deterministic adaptation plan (¢¢) fep. The next two lemmas show that taking the convex
hull of = generates precisely the set of individual expected fitness functions that can be attained
through random adaptation plans and that the set = is closed. Indeed, the use of deterministic
action plans above was precisely in order to ensure that = is closed. The proofs of these two lemmas
are based on standard arguments and are relegated to Sections S2 and S3 of the Supplementary
Appendix.

Lemma 8. Define = as in Equation (15). For any random adaptation plan 7 € R(V|F), define
ET: QxS — [—o0,00) by

€W@:EWWUW$ﬂaAAwmwmmwm@m.

Then,
co(B) = {¢ : 7 € R(Y|F)}.

Lemma 9. The set = defined in Equation (15) is a closed subset of [—00, 00]?*5.

We now verify that the set = defined in Equation (15) satisfies the three conditions from Propo-
sition 5:

e Lemma 9 already showed that this set is closed, which establishes first condition.

e We now show that = satisfies the second condition (finite measurability) from Proposition 5.
Since each f € F is a simple act, and since the set of acts B in the support of p is finite,
there exists a finite partition £ C B ® Bg of {2 x S such that every act f € B is measurable
with respect to £. We claim that every function in = is measurable with respect to £. To see
this, fix any £ € Z. Then, there exists (¢¢) € UP such that

aM@=LWmemmﬁ

Fix any F € £ and (w,s), (w’,s') € E. By construction of the partition £, we must have
flw,s) = f(W',§) for any f € B = supp(p). Therefore,

£(w, ) /wf w, s)) dp(f /wf w',8'))dp(f) = &£, '),

as claimed. Thus, the second condition of Proposition 5 is satisfied.
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e To verify the third condition (pointwise boundedness) in Proposition 5, note that since B is
a finite set of simple acts, there is a finite set Z C Z such that fw,s) € Z for all f € B and
(w,s) € 2 x S. Recall that the set ¥ is pointwise bounded above, so sup,,cq ¥(z) < oo for
all z € Z. Therefore, and any (w,s) € Q x S,

Sup€(w,s) = sup / Gy (F(w,5)) do(f)

£eE ’ll)f E‘I/B

< / sup % (f(w, 5)) dp(f) < max sup 1(z) < oo,
B

pew 2€Z YeT

where the last inequality follows from the finiteness of Z. Thus, = satisfies condition 3.

We are now ready to apply Lemma 7 and Proposition 5. Define V' as in Equation (2). Then,
we have

v = sw b ([ ] e [0rs)] dutsla) e ) + Rign )

TER(T|F) €M (1a)

S M | [ ers) dutsto) ate ))+R(/m uq)}

- {m(igg//w ) dulsle) da(e) ) + Rlpa 10
= inf )[1n<sup/gxsf(w,s) d(u®q)(w,s)> + R(po Hq)},

a€M (po ¢e=

where the first equality follows from Lemma 7, the second from Lemma 8, the third from Proposi-
tion 5, and the fourth from the definition of the measure u ® ¢. Simple manipulations of the term
inside the logarithm yield

sup §(w,s)d(p® q)(w, s)
£e2 JOxsS

— sup /Q . / by(F(w,)) dp(f) d(p © ), )

(py)evB
— sup / br(f(w,s)) dp ® q)(w, s) dp(f)
(py)eUB QxS
/ sup (F(w, ) d(n @ )(w, 5) dp(f)
B yev Q><S

=5, sup [ () )0,

YeV JOxS

and hence

Vi = it [u(s]sw [ s dusaes]) + Rl

qEM (1o YeW JOxS

Since this is true for any p € (As(F)), the proof is complete.
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A.6 Proofs of Claims 3 and 4

Proof of Claim 3. Given 1, let a = ¢(z) and b = 9(y). Then ayy(p) satisfies

In (arggy (p)a + (1~ gy (0))b) = pln(a) + (1 — p) Inb)
aPblP — b

e Oz{w}(p) = b

Continuous differentiability of ayy(p) is then immediate, and with a > b it is straightforward to
check that the first and second derivatives of a{w}(p) are positive, establishing that it is increasing
and convex. Direct evaluation yields aygy)(0) = 0 and agyy (1) = 1.

Consider now v and g with 9(x) > 11(x) > 11(y) > ¥2(y) as in the claim. To establish that
gy} (p) > agy,y(p) for all p € (0,1), it suffices to verify that for any strictly increasing ¢ with a
and b as defined above and for all p € (0,1)

Oagyy () Oagyy (p)

T<O and T>O

Indeed, with some simple algebra,

da
{(;Z’a}@ <0 < a7 < (1 —p)a+pb
<= (1—p)lna+plnd < In((1 — p)a+ pb),
which is true by the concavity of the logarithm. That w > 0 follows analogously. |

Proof of Claim 4. For W = {41, ¢} with ¥(z) > ¥1(x) > 11(y) > ¥2(y) as in the claim, let ay(p)
be the risk equivalent of p from optimally choosing 1) € W. It is clear that cvy (p) must be continuous,
strictly increasing and that ag(0) =0 and ay(1) = 1.

To further analyze ag(p), consider the hypothetical where v; with i € {1,2} is the fitness
function used to evaluate the gamble xpy when p is generated from the unknown urn, and v; with
j € {1,2} is the one used to evaluate the gamble xay when « is generated from the known urn.
Replicating the derivation in the proof of Claim 3 yields that the risk equivalent of p under those
fitness functions is

Pi(2)Phi(y)' P — 5(y)
VYi(x) —i(y) 7

@ ;(p) =
which is increasing, convex, and continuous.

Since 91 (y) > ¥2(y) and Pa(z) > Y1 (z), there is py € (0, 1) such that pln;(z)+ (1 —p) In;(y)
gives a higher value for ¢ = 1 than ¢ = 2 if and only if p < py. Further, since ay(p) is
continuous, strictly increasing and satisfies agy(0) = 0 and ag(l) = 1, there is px € (0,1)
such that In(ow(p)vj(z) + (1 — aw(p));(y)) is maximized by j = 1 if and only if p < pg.
Thus p. := min{py,px} is the largest p € (0,1) such that ay(p) = a11(p) = agy,}(p), and

*

p* := max{py, px } is the smallest p € (0,1) such that ay(p) = az2(p) = gy, (p)-

To find the value of avgy(p) for p € (p«,p*), it remains to establish the order of px and py. By
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Claim 3, aygy,1(p) > agy,(p) for all p € (0,1). First, since ay(p) is continuous, it must be that
pK # pu. Second, note that

wal0) = P >0
malt) = = <1
210 = S <
) = R >

To show that py < px, suppose to the contrary that px < py. Then

agpy(p) ifp <pk
ag(p) = a21(p) ifp € (pk,pv)
gy (p) ifp>pu

and pk is the intersection of ayy,}(p) with ag1(p), while py is the intersection of ayy,)(p) with
az,1(p). But since ag1(0) < ayyy(0) and az1(1) > agyy(1) for ¢ € {11,942}, and since az1(p) is
continuous and increasing, it must intersect the smaller function ayy,}(p) before the larger function
a3 (p), and hence py < pg, a contradiction to the assumption that px < py.

Thus indeed py < px and

agy(p) ifp<pu
ay(p) = a12(p) ifp € (pu,pK)
gy (p) i p>pK

Finally, since aj2(p) is convex and intersects aygy,1(p) and agy,)(p) from above, the only non-
convexity arises at py. This established the claim for p, = py and p* = pg. |

A.7 Proof of Proposition 4

The proof proceeds in three steps. We first prove Equation (12) for random variables X that are
bounded above and satisfy X (w) > e > 0 for all w € Q. We then extend the result to all bounded
X > 0. Finally, we extend to any X that is bounded above.3

Step 1: Suppose that X that is bounded above and satisfies X (w) > ¢ > 0 for all w € 2. Then,
In(X) is a bounded function, and it is therefore integrable. Fix any measures p,q € A(Q2) with

38The first two steps in our proof employ similar techniques to the proofs of Propositions 1.4.2 and 4.5.1
in Dupuis and Ellis (1997), although the details are quite different.
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p < q and define a measure py by its Radon-Nikodym derivative

dpo - (16)
/ X(w)dg(w

Since X is strictly positive, pp and g are mutually absolutely continuous. In particular, since p < ¢,

this implies p < po. Thus, p exists and CZT]?) : dpo Note that

) (dp") :
; dp+ln</Qqu>

By Lemma 1.4.1 in Dupuis and Ellis (1997), R(p||po) > 0, with equality if and only if p = py.

Therefore,
/ In(X)dp < ln</ XdQ> + R(pllq9),
Q Q

with equality if and only if p = pg. It is not difficult to show that Equations (13) and (16) are dual
in the sense that p = pg if and only if ¢ = qy. Therefore, given p, if we set ¢ = gg then the above
holds with equality. Moreover, since X is bounded and 1/X < 1/e,

R(puqo):/Qm(ji))dp:/an(X)dp+1n</ﬂ;(dp> < o0

which implies gy € M (p). Hence the infimum in Equation (12) is attained at qq.

Step 2: Consider now any bounded X > 0. Define a sequence of random variables (X,,),en by
Xn(w) = max{X(w),1/n}. By step 1, we know that Equation (12) holds for each X,, and for any
p. Using this, together with the fact that X,, > X for all n, we have

/Q In(X,)dp = qei]r\}f(p) [In ( /Q Xn dq) + R(p|| q)]

> qei]\r}f(p) [m ( /Q X dq) +R(p|| Q)] -

Since [In(X7)dp < co and In(X,,) | In(X), the monotone convergence theorem for extended real-
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valued functions (e.g., Theorem 4.3.2 of Dudley (2002)) implies

/ In(X)dp= lim [ In(X,)dp
Q

n—oo Q

> nt ([ xaa) + mot o)

Note that these terms could take the value —oo.

To prove the opposite inequality, note that for any n and any ¢ € M (p), Equation (12) applied
to the function X,, implies

/an(Xn)dpé ln</QXn dq> + R(p @)

Since both sides of this inequality are finite for all n, we can again take the limit as n — oo and
apply the monotone convergence theorem to obtain

/an(X)dpﬁ ln</Qqu> +R(pllq).

Since this is true for all ¢ € M (p), we have

/Q n(X)dp < inf [m ( /Q qu> + RO q)].

Thus, Equation (12) holds for any bounded X > 0.

Step 3: Finally, consider any X that is bounded above. Let X (w) = max{X(w),0}. Since
we have adopted the standard convention that In(z) = —oo for any z < 0, we have In(X*(w)) =
In(X (w)) for all w. Therefore, since Equation (12) holds for X by step 2,

/an(X) dp:/an(Xﬂdp
= iur ([ 5 ad) + R )
> nt ([ x o)+ Rivla)]

To establish the opposite inequality, we consider two cases. Let A = {w € @ : X(w) < 0}. The first
case is when p(A) > 0. Then, fQ In(X)dp = —o0, so the above must hold with equality. The second
case is when p(A) = 0. Then, ¢(A) = 0 for all ¢ € M (p), since any ¢ € M(p) must be absolutely
continuous with respect to p. Therefore, [, X dg = [, X"dq for all ¢ € M(p) and hence

ap [xa) mo1a] ag o [x4) ],

Thus, the equality is established for both cases, which completes the proof.
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A.8 Proof of Proposition 5

Our proof will rely on a version of the von Neumann—Sion Minimax Theorem. von Neumann (1928)
proved that when F' : C' x D — R is a bilinear function and C' and D are finite-dimensional
simplexes,

sup inf F(z,y) = inf sup F(x,y).
sup inf (z,y) Jnf sup (z,y)

Perhaps the most important and well-known extension of von Neumann’s result is due to Sion
(1958), who showed that the same conclusion can be derived under the weaker assumptions that C'
and D are convex subsets of topological vector spaces, one of these sets is compact, F' is quasiconcave
and upper semicontinuous in z, and F' is quasiconvex and lower semicontinuous in y. Sion’s result
is not quite strong enough for our purposes, since in our application it may be that neither C nor
D is compact and since F' may not be lower semicontinuous in y. We will therefore rely on the
following generalization of the von Neumann—Sion Theorem, which is due to Tuy (2004).

Theorem 3 (von Neumann-Sion-Tuy Minimax Theorem). Let C' be a closed and convex subset
of a topological vector space, and let D be a convex subset of a topological vector space. Suppose
F:C x D — R satisfies the following conditions:

1. For every y € D, the function x — F(x,y) is quasiconcave and upper semicontinuous on C.

2. For every x € C and y,y' € D, the function X — F(z,\y + (1 — N\)y') is quasiconver and
lower semicontinuous on [0, 1].

3. There exists some n < infyep sup,ec F(x,y) and a nonempty finite set L C D such that the
set C’,’;’ = {z € C : minger, F(x,y) > n} is compact.

Then,

sup inf F(z,y) = inf sup F(z,vy).
zeCYED YeD zeC

This result is a special case of Theorem 2 in Tuy (2004). His result requires that F' be what
he calls a-connected. This condition is implied by our assumptions that C' is closed and convex,
D is convex, F' is quasiconcave and upper semicontinuous in z, and A — F(z,\y + (1 — A)y/) is
quasiconvex in A for all x,y,vy’. His result also requires the lower semicontinuity property that
we assumed in condition 2.3 The final assumption needed for his result is condition 3.4 For
completeness and ease of reference, we include a complete proof of Theorem 3 in Section S4 of the
Supplementary Appendix.

39Note that the assumption of lower semicontinuity in y in every line segment (that is, lower semicontinuity
of the mapping A — F(z, Ay + (1 — \)y’) for all z,y,y’) in condition 2 is in general weaker than assuming
lower semicontinuity in y. However, the assumption of quasiconvexity in y in every line segment (that
is, quasiconvexity of the mapping A — F(z, Ay + (1 — \)y’) for all z,y,y’) in condition 2 is equivalent to
quasiconvexity in y. Also, note that we have switched the roles of C' and D compared to Tuy (2004).

40Gtrictly speaking, Theorem 2 in Tuy (2004) assumes that C# is compact for n = sup, ¢ infyep F(z,y)
and shows that n < inf,cpsup,co F(z,y) leads to a contradiction. As is evident from his proof, our
condition 3 is sufficient to obtain the same result.
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Note that the theorem of Sion (1958) follows as a corollary to this result: If F' is quasiconvex
and lower semicontinuous in y then condition 2 is implied, and if D is compact then condition 3 is

implied (given that F' is upper semicontinuous in z).

We now proceed with the proof of Proposition 5. Fix any measure u € A(£2 x S), and fix any
convex set = satisfying the properties described in the statement of the proposition. We proceed in
several steps. Using the second property of = from the statement of the proposition, we know that
there exists a finite partition £ of Q2 x S such that every £ € = is measurable with respect to £. We
can enumerate the elements of this partition as

SI{EiiiEN},

where N is a finite index set. For each i € N, fix an arbitrary element (w;, s;) € E;. Since each
¢ € = is measurable with respect £, we know that {(w, s) = &(wj, s;) for all i € N and (w, s) € E;.
Consider the mapping

£ 0° = (E(wi, 50))ien

from Z into [—o0o, 00]". It is easy to see that this mapping is a homeomorphism from Z to the set
0 ={6:¢e=} C[—o0,o00”.

In other words, the set of functions = is topologically equivalent to the set of vectors ©.

Recall that for any ¢ € M (uq), we define p ® g to be the measure on  x S with marginal ¢
on Q and conditional distribution p(-|w) on S. That is, for any event E in the product o-algebra
Bao ® Bg, let

peaB) = [ [ 1lw.5) € Flautsiw) dofe).
Define a function H : [—o0,00)Y x M (ug) — R by
H(0,q) = maX{O, d bi-n® Q(Ei)} exp(R(uq || 9))-
1EN

Lemma 10. The set © and function H satisfy the following conditions:

1. When [—o0, oo]N is endowed with the product topology (i.e., the topology of pointwise conver-
gence), © is compact.

2. There exists k € R such that 0; < Kk for all® € © and i € N.

3. Equation (14) from the statement of the proposition is equivalent to the following:

sup inf H(0,q)= inf supH(H,q). 17
fcco(©) 1€M (na) 6.9) q€EM(uq) 90 (6.9) 17)

Proof. Since = is a closed subset of [—oo,oo]QXS by the first property in the statement of the
proposition and since Z and © are homeomorphic, © is closed. In addition, since [—oo, oo]N is a
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compact space when endowed with the product topology,*' this implies that © is compact. Since Z

is pointwise bounded above by the third property in the statement of the proposition, we have

sup 0; = sup &(w;s, s;) < 00
9O ¢e=

for all ¢ € N. In particular, since N is finite, there exists x € R such that 6; < k for all § € © and
i € N. To establish the third condition, note that*?

In| sup inf H(0, q)]
6eco(©) 7€M (1a)

= s (S 0o ae) + Riallo]

0cco(®) 1€M (pa N

= sup inf ) [ln (Z&(wm 8i) - b ® q(E@')> + R(pq || Q)]

£eco(B) 1€EM (pa N

~ s i [m( §<w,s>d<u®q><w,s>)+R<muq>].
£eco(B) I€EM (ne) QxS

Similarly,
In inf  sup H(H,q)]
a€M(pq) gco
= inf In(sup ) 6;- ®qu>+R Q]
| (9@% n®a(E) ) + Riua o)
=t (s [ s dno @) + Rml o).
€M (pgq) cez Jaxs
Thus, Equation (14) is equivalent to Equation (17). [ |

Next, we show that we can remove any indices ¢ € N that correspond to probability zero events.
By definition, ¢ and puq must be mutually absolutely continuous for any ¢ € M (ug), and hence
1 ® q and p are also mutually absolutely continuous. Thus, for any ¢ € N and ¢ € M (ugq),

p®q(E;) =0 < u(k;) =0.

We can therefore remove any events E; € £ that occur with zero probability under p, since such
events must also occur with zero probability under p ® g for any ¢ € M (ugq). That is, consider the
index set M C N given by

M ={ie N :u(E;) > 0}.

41Tt is easy to see that the set of extended reals [—o0, o] is compact in its usual topology (see Example 2.75
in Aliprantis and Border (2006)), and hence [—oc, 0o]”Y endowed with the product topology is compact by
the Tychonoff Product Theorem (Theorem 2.61 in Aliprantis and Border (2006)).

42To deal with vectors 6 and functions £ that can take the value —oo, we adopt the notational convention
throughout that In(z) = —oo for any x € [—o00,0]. Hence In(max{0,z}) = In(x) for all x € [—o0, c0).
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Define the projection function Py : [—00,00]Y — [00, 00]M by Pa(0) = (0;)iens, and set
0 = Py(0) = {0 = Py(0): 0 € O}

Define a function F : [—o0,00)™ x M(ug) — Ry by

Fi6.0) = max{ 0.3 61 (5) | exp( R [ ).

ieM
Lemma 11. The set ©' and function F satisfy the following conditions:

1. When [—o0,00]M is endowed with the product topology, © is compact (hence closed).
2. There exists k € R such that 0; < k for all 0 € ©' and i € M.

3. Equation (17) is equivalent to the following:

sup inf F(0,q) = inf sup F(0,q). 18
fcco(©’) 1€M (pg) 6,9 €M (o) 9co’ 6,9 (18)

M

Proof. The projection function Py is continuous when [—o0, 00]" and [—o0, 0o]™ are endowed with

their product topologies. Therefore, the set ©' is compact, as it is the image of the compact set ©
under the continuous function Py;. Since [—o0, co]M
space are closed (Lemma 2.32 in Aliprantis and Border (2006)). Hence, ©' is closed. The second

condition follows directly from the second condition in Lemma 10. To establish the third condition,

is a Hausdorff space, compact subsets of of this

recall from above that p and p ® g are mutually absolutely continuous for any ¢ € M (ug). This
implies that for any 6 € [—o00,00)", if we take 6/ = Py(0) € [—o0,00)M, then H(0,q) = F(¢',q)
for all ¢ € M (pq). Therefore, Equations (17) and (18) are equivalent. [

We now show that we can remove any 6 € ©' such that 6; = —oo for some ¢ € M, thereby
reducing this set to a subset of the Euclidean space R™. Formally, let

0"={0ec® :0,> 00, Vie M}.
Note that it is possible to have ©” = ().

Lemma 12. The set ©” and function F satisfy the following conditions:

1. When RM s endowed with the Euclidean topology, ©" is closed.
2. There exists k € R such that 0; < k for all 6 € ©" and i€ M.

3. Equation (18) holds either if ©" =10, or if ©” £ 0 and

sup inf F(0,q) = inf sup F(0,q). 19
QGCO(@”) qu(HQ) ( ) qGM(/JQ) 9cO ( ) ( )

4. Fiz any q € M(ug). When restricted to RM (endowed with the Euclidean topology), the
mapping 0 — F(0,q) is continuous, nondecreasing, quasiconcave, and quasiconver.
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Proof. Since ©' is a closed subset of [—o0, co]™ (endowed with the product topology of the extended
reals), it is easy to verify that ©” is a closed subset of RM (endowed with the Euclidean topology).
Note, however, that ©” need not be compact. Next, the second condition follows directly from
the second condition in Lemma 11. To establish the third condition, note that if 8 € co(©’) has
0; = —oo for some i € M, then for any ¢ € M (ugq),

D 0 p@q(E) = —o,

ieM
and hence F(0,q) = 0. Thus, if ©” = (), then F(0,q) = 0 for all § € co(©’) and ¢ € M(ugq), so
Equation (18) holds trivially. In the alternative case of ©” # (), it is immediate that Equations (18)

and (19) are equivalent.

To verify the fourth condition, fix any ¢ € M (uq). Note that the mapping

0> 0;- 1@ q(E)
ieM

is continuous, nondecreasing, and linear. Therefore, the mapping 6 — F'(0, ¢) is continuous, nonde-
creasing, quasiconcave, and quasiconvex (though it is obviously no longer linear). |

To apply the minimax theorem, we need the set over which the supremum is being taking to be
closed an convex. That is, we will want to show that we can replace co(©”) with cl(co(©”)) on the
left side of Equation (19) and replace ©” with cl(co(©")) on the right side without affecting either
of these values. The next two lemmas show that this is possible for the set ©” and function F in
question.

Lemma 13. Suppose Y C RM s closed, and suppose there exists k € R such that y; < r for all
y €Y and i € M. Then, for any y € cl(co(Y)) there exists y' € co(Y) such that y' >y (that is,
Y. >y foralli e M).

Proof. Suppose y € cl(co(Y)). There there exists a sequence (y,) in co(Y) such that y, — v.
Let m be the cardinality of the set M. By Caratheodory’s Convexity Theorem (Theorem 5.32 in
Aliprantis and Border (2006)), every element of co(Y) can be written as a convex combination of
at most m + 1 vectors from Y. Therefore, each y,, can be written as

m+1
Yn = Z Odzygm
Jj=1

Loty €10, 1)™F! satisfies

al + -+ o™t =1 for all n € N. Since [0,1]™*! is compact, () has a convergent subsequence.

where yl, € Y for allm € Nand j € {1,...,m+ 1}, and o, = ()

S
With slight abuse of notation, denote this subsequence again by (ay,). That is, we can assume
without loss of generality that a,, — a for some a = (al,..., o™ ") € [0, 1]™FL

We claim that the sequence (yﬂl) in Y is bounded for all j such that o/ > 0. For suppose to
the contrary that (y7,) is unbounded. Then, since Y is bounded above by &, this would imply there
there exists some subsequence (y#,) and some dimension ¢ € M such that y; n, — —00. However,
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since o/ > 0 and yflnk < k for all j/, this implies y; ,, — —oo, contradicting the fact that this

subsequence converges to y; € R. Thus, (y%) must be bounded.

Therefore, by passing to subsequences if necessary, it is without loss of generality to assume that
(y?) converges for all j for which o/ > 0. Denote the limits of these sequences by 17, respectively,

and let
]6{177m+1}
ad>0

Since Y is closed, each of these 3’ is in Y, and hence 3’ € co(Y). Now, for every n € N and i € M,
yin= >, oyl + N dyl. < > oyl + D dk

JE{L ... m+1}: JE{L ... m+1}: JE{L,...m+1}: JE{L ... m+1}:
al >0 al=0 al >0 al=0

since yfn < k. Taking limits, the left side of this inequality converges to y; and the right side
converges to y.. Thus, y < ¢/, as claimed. [

Lemma 14. If ©” #£ (), Equation (19) is equivalent to the following:

sup inf  F(0,q) = inf sup  F(0,q). 20
9ecl(co(©)) 9€M (1g) ( ) q€EM(pa) gecl(co(©)) ( ) ( )

Proof. The function F in nondecreasing in 6 by Lemma 12. Therefore, for any 0,0’ € RM and
q € M(ugq), 0 > 0 implies F(¢',q) > F(0,q). Therefore,

>0 = inf F(0,q9)> inf F(6,q).
- qeM (o) ( q)_qu(un) (6.9)

Also, since ©" is closed and bounded above by Lemma 12, Lemma 13 implies for any 6 € cl(co(0"))
there exists 6’ € co(©”) such that § > 6. Therefore,

sup inf F(0,q) = sup inf  F(4,q).
fcco(0") 1€EM (1) 6.9) 0ecl(co(©”)) 9EM (ua) 6.9)

This establishes that the left sides of Equations (19) and (20) are the same.

To see that the right sides of these equations are also the same, first fix any 6 € co(©”). Thus,
0=>"", a7 for some m € Nand 67 € ©”, j € {1,...,m}. Since for any g € M (pgq), the mapping
0 — F(0,q) is quasiconvex by Lemma 12, this implies that F'(6) < F'(67) for some j. Therefore,

sup F(0,q) = sup F(0,q)
0o’ f9eco(0")

for every ¢ € M(ugq). By the same arguments used above, it is also true that

sup F(0,q)= sup F(0,q).
f€co(©) Oecl(co(©"))

Combining these observations, we see that the right sides of Equations (19) and (20) are the same.
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We are almost ready to apply the minimax theorem to prove that Equation (20) holds whenever
©" # (). First, the following lemma will be used to establish some of the necessary properties of the

mapping ¢ — F(0,q).

Lemma 15. Suppose X : Q — R is measurable and bounded, and fix any p € A(Q). Then, for any
q4,q4' € M(p), the mapping

A= max{O,/ X d(Ag+ (1 — )\)q’)} exp(R(p || Ag+ (1= N)q))
Q
is quasiconvezr and lower semicontinuous on the interval [0, 1].

Proof. Our proof will make use of the Donsker—Varadhan variational formula (see, for example,
Lemma 1.4.3 in Dupuis and Ellis (1997)), which states that for any p,r € A(£),

R(p||r)=y:,;11}3(9) [/Qde_ln</Qexp(Y) dr)],

where By(€2) denotes the space of all bounded Borel measurable real functions on 2. Therefore,

exp(fQde)
exp(R(p|lr)) = sup ———==—-+,
(&rlir) veBy () Joexp(Y)dr

and hence

max{O,/Xdr}exp(R(pHT)) —max{()’ sup exp( [, Y dp) fQXdr}.
Q

YEBy(Q) Joexp(Y)dr

We will show for any X, Y € By(Q2), p € A(Q), and ¢,¢' € M(p), the function h : [0,1] — R defined

b
' exp </9de) /QXd(Aq +(1=N){¢)

h(\) =
/Q exp(Y) d(Ag + (1 — \)g)

is quasiconvex and lower semicontinuous. This will establish the claim in the statement of the
lemma, since the supremum of a set of quasiconvex and lower semicontinuous functions retains

these properties.

Continuity of the function A in A is immediate. To see that h is quasiconvex, fix any v € R and
fix any A1, A2 € [0,1] such that h(A\1) < and h(A2) < . Suppose without loss of generality that
A1 < A2. We need to show that hA(\) < v for any A € (A1, A2). Note that h();) < 7 is equivalent to

exp< / de) | xdOwa+ @ =x0) <5 [ explv)dong + (1= 200
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Any X € (A1, A2) can be written as aA; + (1 — @)z for @ = (A2 — A\) /(A2 — A1). Therefore, we have

exp(/ﬁde)/QXd()\q—i-(l—)\)q')

=aexp(/Qde)/Qdeqm—A1>q’>+<1—a)exp<Ade>/QXd(Azq+<1—A2)q’>

< ow/QeXP(Y) dAig+ (1 =M)q) + (1 - OZ)V/QGXP(Y) d(A2g + (1= X9)q)

= ’Y/QGXP(Y) d(Ag+ (1= N)g'),
which implies h(\) < . This establishes that h is quasiconvex, which completes the proof. |

The following lemma applies Theorem 3 to prove that Equation (20) holds whenever ©” # ().
In light of Lemmas 10, 11, 12, and 14, this will establish Equation (14) and complete the proof of
Proposition 5.

Lemma 16. If ©” £ (), then Equation (20) is satisfied.

Proof. We only need to establish that the assumptions of Theorem 3 are satisfied for the sets
C = cl(co(0”)), D = M (uq), and for the function F' defined above.

Note that C' is a closed and convex subset of RM by definition. It is also straightforward to
show that the set D is convex. To see that condition 1 of Theorem 3 is satisfied, recall that for any
q € D, the mapping 0 — F(6,q) is continuous and quasiconcave on C' by Lemma 12.

Next, fix any 6 € C' and define X : Q — R by*?
X(w) = / S 6;1(w, 5) € B du(slw).
SieM

Then, for any g € M (uq),
wax{0, [ X dy b exp(R(un 1 0)
Q

= max{o,/Q > 01w, s) € ] d(n® q)(w, S)} exp(R(pa [ 4))

xS ieM

= maX{O, d biu® Q(Ei)} exp(R(uq | )
€M
= F(0,q).
Therefore, Lemma 15 applied to this random variable X and to p = puq implies that for any

q,q € D, the mapping A — F(0, A\¢ + (1 — \)¢’) is quasiconvex and lower semicontinuous on [0, 1].
Thus, condition 2 of Theorem 3 are satisfied.

43Note that the sets {s € S : (w,s) € E;} are measurable for each w € Q and i € M by Lemma 4.46 in
Aliprantis and Border (2006), and hence the function being integrated is indeed measurable.
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Finally, we show that either condition 3 of Theorem 3 holds for L = {uq} and some n > 0,
or Equation (20) holds trivially with both sides of the equality equal to zero. Thus, there are two
cases to consider. The first case is when

inf sup F(6,q) > 0.
q9€D gcC

In this case, fix any 7 > 0 that is strictly less than this value and take L = {uq}. The set
Che={0e€C:F(,upa)>n}

is closed since C' is closed and F' is continuous in 6. Given this, and since C' is a subset of the
finite-dimensional Euclidean space RM the set Ch® is compact if and only if it is bounded. By
Lemma 12, there exists « € R such that ; < x for all 8 € C' and ¢ € M. Let

= mi FE; .
B = min u(E;) > 0

Then, for any § € C' and ¢ € M,

> w(Ei)b < p(E); + (1 — pu(Ei))k < B6; + (1 - B)x.
i'eM

Thus, since R(uq || po) = 0 and since > 0, for any 0 € C)® and i € M, we have

0<n<FOu0) = w(Ei)by < B+ (1—p)k
i'eM
(1-B)s
pa

Therefore, the set Ch® is bounded above by x and bounded below by —(1 — 8)x/S. This implies
that C4* is bounded, hence compact. Thus, all of the conditions of Theorem 3 are satisfied, so we
can conclude that Equation (20) holds.

— 0i>—

The second case is when

inf sup F'(0,q) = 0.
inf, sup (6.9)

In this case, since F' > 0 and since

sup inf F'(0,q) < inf sup F'(0,q),
eeCp’ q€D 6:9) ~ q€D eeg 6.9)

Equation (20) must hold with both sides equal to zero. Thus, in either case, the equation is satisfied.
This completes the proof. |
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B Overlap Between Divergence and RDU Preferences

As we noted in Section 5.2, while the class of divergence preferences is generally distinct from the
class of rank-dependent utility preferences, there is some overlap, as the following claim demon-
strates.

Claim 5. Define ¢~ as in Example 2 for some 0 < o < 1 < 3, and define ¢ as in Claim 1. Fiz
any k satisfying the assumptions of Proposition 2. Then, for any simple act f : S — R,

it | [ 562 dafs) + kDo 1) | =mox [ (16 dus) = [ dtoo Fr).

neA(S)

where ¢ : Ry — [0, 00] is defined by ¢(t) =0 fort € [, B] and ¢(t) = oo otherwise.

Note that the divergence Dg(n || i) defined in Claim 5 takes only the values 0 and +o0, so
the equality in the claim holds for any admissible function %k (since we must have k(0) = 0 and

k(c0) = 00).

Proof. Define ¢ by ¢(y) =0 if y € [, 5] and ¢(y) = oo otherwise. It is standard that the Fenchel
conjugate of ¢ (see Equation (9)) is ¢* : R — R defined by

. axr ifz<0
¢*(x) = ,
Bx ifx>0

Notice also that for this function, we have (&¢)*(x) = ¢*(z) for all & > 0, so the formula for ¢, 4

in Proposition 3 reduces to

Ura(@) =7 —¢"(v —2) —k7(&)
_ Bl =) —k(a) itz <y
T+alz—v) k(@) ifr>ry
for all & > 0. Since ming>¢ k*(&) =0 (e.g., £*(0) = 0 if we take k(z) = 0 for < 0), maximization

over & eliminates this term, and this family of fitness functions reduces to the parametric class v,
from Example 2. |
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SUPPLEMENTARY APPENDIX TO:
Adaptive Preferences: An Evolutionary Model of
Non-Expected Utility and Ambiguity Aversion

Philipp Sadowski Todd Sarver

February 26, 2024

In this supplement, we provide proofs of Lemmas 8 and 9 from Appendix A.5 of the main paper.
We also provide a complete proof of the version of the von Neummann—Sion—Tuy Minimax Theorem
(Theorem 3) used in Appendix A.8 of the main paper. We restate these results below for ease of
reference.

S1 Restatement of Results
As in the Appendix of the main paper, define a mapping .J : U8 — [—oc0, 00 by

7[0p)sen] .9 = [ vt 9)don (51)
B
for (w,s) € 2 x S, and define = to be the range of J, that is,

= = {Jlwp)] € [~00, 005 : (1) € WP}, (2)

In other words, = is the set of all functions £ that take the form

£w,s) = /B by(f(w, ) dp(f)

for some deterministic adaptation plan (v¢)ep.

Lemma 8. Define Z as in Equation (S2). For any random adaptation plan 7 € R(V|F), define
ET: QxS — [—o0,00) by

€ (w,5) = Ergp [0(f (0, 5))] = /f A B(f (@, 8)) dr(b]f) dp(f).

Then,
co(B) = {¢ : 7 € R(Y|F)}.

Lemma 9. The set = defined in Equation (S2) is a closed subset of [—oo, 00]¥*5.
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Theorem 3. Let C be a closed and convex subset of a topological vector space, and let D be a convex
subset of a topological vector space. Suppose F': C x D — R satisfies the following conditions:

1. For every y € D, the function x — F(x,y) is quasiconcave and upper semicontinuous on C.

2. For every x € C and y,y' € D, the function A\ — F(x, \y + (1 — \)y') is quasiconver and
lower semicontinuous on [0, 1].

3. There exists some n < infyep sup,cc F(x,y) and a nonempty finite set L C D such that the
set C’# = {z € C : minger, F(x,y) > n} is compact.

Then,

sup inf F(xz,y) = inf sup F(z,y).
sup Inf (2,y) Jnf sup (z,y)

S2 Proof of Lemma 8

Fix any £ € co(E). By the definition of = and the definition of the convex hull, there exists n € N
and (1#}),-.-7(1#?) € ¥B and aq,...,a, >0 with a3 + -+ 4+ a,, = 1 such that

€)= 30 [ VH(Sers) o)
/ Zazd}f dp(f)

/ / B f(w,5)) dr(w]f) do(f)

where we define 7 € R(¥|F) for each f € B by*

T(Ylf) = Zaz [ = ]

Thus, £ =¢£7.

Conversely, suppose £ = £7 for some 7 € R(W¥|F). Since 7(:|f) has finite support for all f, and
since B is finite, the product measure on U5 generated by these measures also has finite support.
That is, there exists a product measure v on U5 with finite support, defined by

( (¥r) feB) T (sl ).

feB
We can enumerate the elements of the support of this measure as

supp(v) = {(¥}), -, (¥})}-

44We can define 7(-|f) arbitrarily for f € F\ B.
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Thus,

) dr(¥[f) dp(f)

- o
| sty an(()es) o)

(w;;) jen) [ i(I@ ) do(),

I

.
Il
—

and hence £ € co(Z).

S3 Proof of Lemma 9

The set [—o0, 00] is a compact Hausdorff space when endowed with its usual topology.*> By the
Tychonoff Product Theorem (Theorem 2.61 in Aliprantis and Border (2006)), the set [—oo, 00]?
endowed with the product topology (also know as the topology of pointwise convergence) is compact.
Since ¥ C [—o0, oo]Z is closed, it is also compact. Applying the Tychonoff Product Theorem again,
the set WP is compact in the product topology.

We next show that the mapping J : U8 — [—00, 00]?** defined in Equation (S1) is continuous
when [—o0, 00]**¥ is endowed with the product topology. To see this, fix any net Wf)oaeD in P

that converges to some (1¢) € ¥Z. We will show that J[(¥F)] converges to J[(¢y)]. 46 First, by the
definition of the product topology, convergence of the net (¢%) implies that /¢ (z) — ¢ ¢(z) for all
fand z. In particular, ¥ (f(w, s)) = ¢¢(f(w,s)) for all f € B and (w, s) € 2 x S. Therefore, since

convergence is preserved under scalar multiples and finite sums,

ST (Fw. o) = S wr(F(w,s))o(f)

feB feB

for all w and s. Thus, J[(¢)] = J[(¢¢)] in the topology of pointwise convergence on [—oo, 0] %S,

Therefore, the set = = J [‘I/B | is compact, since it is the image of the compact set U8 under the

]QXS

continuous function J. Moreover, since [—00, 00 is a Hausdorff space, compact subsets of this

space are closed (Lemma 2.32 in Aliprantis and Border (2006)). Thus, Z is closed.

45The topology on [—00, 0] is generated by sets of the form (a,b), [-o0,¢) and (¢, o00] for a,b,c € R. It
is easy to see that under this topology, [—00, o] is Hausdorff (meaning that for any two distinct points z,y
there exist neighborhoods U of x and V of y such that U NV = @) and compact. Indeed, [—oo, o0] is often
referred to as the two-point compactification of R (see Example 2.75 in Aliprantis and Border (2006)).

46Tt is well known that the product topology on an uncountable product space cannot be completely
described by sequential convergence, as such spaces are not metrizable. Although B is finite, Z could be
uncountable. Hence we must use nets to establish the continuity of .J.
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S4 Proof of Theorem 3

This proof directly replicates the arguments in Tuy (2004) and is included only for ease of reference.
Throughout the proof, define § and v as follows:

0 =sup inf F(z,y) and -~ = inf sup F(x,y).
zeC yED yeD zeC

Also, for any « € R and y € D define
Coly) ={x € C: F(z,y) > a}.

Lemma S1. Suppose C' is a closed and convex subset of a topological vector space, and suppose D
is a conver subset of a topological vector space. If F: C x D — R satisfies conditions 1 and 2 in
Theorem 3 and if v > —oo, then for any a <~ and any y,y' € D,

Caly) N Caly') # 0.

Proof. Fix any a < 7, and denote C,(y) simply by C(y) for ease of notation. Note that o < ~
implies that sup,co F(x,y) > a for all y € D. Thus, C(y) is nonempty for all y € D. In addition,
since C' is closed and convex and since x — F'(x,y) is quasiconcave and upper semicontinuous for
every y by condition 1, C(y) is closed and convex for every y. Finally, for any z € C and y,y' € D,
the quasiconvexity of the mapping A\ — F(z,\y + (1 — \)y’) assumed in condition 2 implies that,
for every A € [0,1],

F(z, Ay + (1= N)y') < max{F(z,y), F(z,y)}

and therefore
Cy+(1-Ny)cCCy)uCy). (S3)

Suppose, contrary to the claim in the lemma, that there exists y,7’ € D such that
Cly)NCy) =0

We will show that this leads to a contradiction. For any A € [0,1], let yx = Ay + (1 — \)y/. For any
A € [0,1], note that we cannot have both C(yx) N C(y) # 0 and C(yx) N C(y’) # (. For if this were
true, then we would have C(y\) = E, U Ey where E, = C(yx) N C(y) and E, = C(yx) N C(Y')
are two nonempty, closed, and disjoint sets, which is impossible since C(yy) is convex and hence
connected. Therefore, for every A € [0, 1], one and only one of the following alternatives holds:

Clyn) € Cy) or Cyn) € C).

Denote by M, and M, the set of all A € [0,1] such that C'(yx) C C(y) and C(yx) C C(¥),
respectively. Then, 0 € M,, 1 € M,, and M, U M, = [0,1] by the preceding arguments. In
additional, by Equation (S3),

C(yn) CCya,) UC(yny) VA € [A1, A2,
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and hence A € M, implies [0, \] C M, and A € My, implies [\, 1] C M,y. Let \* = sup My = inf My,
where the second equality holds because M, N M,y = () and M, U M,, = [0,1].

Suppose without loss of generality that A* € M, (the argument is analogous for \* € M,).
We cannot have \* = 1 since this would imply C(y) € C(y’). Therefore, 0 < \* < 1. Since
a < v < sup,ec F(2,yx+), there is some € C such that F(Z,yy«) > a. Since the mapping
A= F(Z,yy) is lower semicontinuous by condition 2, there exists € > 0 such that F(Z,yx«1c) > «,
and hence T € C(yy+ye). But since T € C(yy+) C C(y), this implies C(yx«1c) C C(y), that is,
X*+e € M, contradicting the definition of A*. Thus, C(y)NC(y’) = 0 leads to a contradiction. MW

Lemma S2. Suppose C is a closed and convex subset of a topological vector space, and suppose D
is a convez subset of a topological vector space. If F : C' x D — R satisfies conditions 1 and 2 in
Theorem & and if v > —o0, then for any a < v and any finite set L C D,

() Caly) # 0. (S4)

yeL

Proof. We prove by induction. We know from Lemma S1 that Equation (S4) holds if |L] = 2. We
now show that if this equation holds for all C, D, L as in the statement of the lemma when |L| = k
then it also holds for all such C, D, L when |L| =k + 1.

Let L= {y',...,v*,v*T1} € D. Let C' = C,(y**1), and let

/ .
= inf sup F(x,y).
7' = inf sup (z,y)

Note that C’ is nonempty since a <+, and it is closed and convex since the mapping x — F(z,vy)
is quasiconcave and upper semicontinuous for every y by condition 1. Also, since

Cor(y) N C" D Car(y) N Cor (y*1) # 0
for every y € D and o/ € («,7) by Lemma S1, we have

sup F(x,y) > o
zeC’

for all y € D. Hence 7/ > «o’. Since this is true for all &/ € («,7), it must be that v/ = v. Now,
applying the induction hypothesis to the sets ¢’ and D and to L' = {y',..., 4"}, we have

() Chly) #9,

yelL’

where C! (y) = {z € C' : F(z,y) > a}. But this implies

() Caly) # 0.

yEeL

This completes the proof. |

Using these lemmas, we now complete the proof of Theorem 3. First, it is immediate that § < ~.
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Also, this implies that § = «y if either § = co or v = —o0, S0 it remains only to consider the case of
d < ooand y > —oo. Forany o« € R and L C D, let

Ck={zcC:F(z,y)>aVyeL}= ﬂCa(y).
yeL

By condition 3, there exists some 1 < v and some finite set L C D such that the set CUL is compact.
Fix this set L and fix any « € (n,7). For any y € D, define

Chy)={zeCl:Flay)=a}= [) Calt).
y'eLU{y}

Note that CL(y) is closed for all y € D since z + F(x,y) is quasiconcave by condition 1. By
Lemma S2, C£ is nonempty and, moreover, the sets CZ(y) for y € D have the finite intersection
property. Since the sets Cofj(y) for y € D are all contained in the compact set C’,’%, this implies that

() Chw) =) Caly) #0.

yeD yeD

Therefore, taking any element & from this set, we have F(Z,y) > « for all y € D and hence
infyep F(z,y) > . Therefore 6 > «. Since this is true for a € (n,7), we must have § > , which
completes the proof.
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