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ANTICIPATING REGRET:
WHY FEWER OPTIONS MAY BE BETTER

BY TODD SARVER1

We study preferences over menus which can be represented as if the agent selects
an alternative from a menu and experiences regret if her choice is ex post inferior.
Since regret arises from comparisons between the alternative selected and the other
available alternatives, our axioms reflect the agent’s desire to limit her options. We
prove that our representation is essentially unique. We also introduce two measures of
comparative regret attitudes and relate them to our representation. Finally, we explore
the formal connection between the present work and the literature on temptation.
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I see it all perfectly; there are two possible situations—one can either do this or that. My
honest opinion and my friendly advice is this: do it or do not do it—you will regret both.

Soren Kierkegaard

1. INTRODUCTION

1.1. Brief Overview

PEOPLE OFTEN FACE DECISIONS in which they are not certain of the bet-
ter course of action. These decisions could be of great consequence, such as
whether to marry, take a new job, or move to a new city, and they could also be
as simple as what to order for dinner at a restaurant. Even if an agent makes
the best decision given the information available at the time, she may still feel a
sense of loss or regret if she comes to find that another alternative would have
been better. Such an agent may prefer to have fewer options so as to reduce
the chance that her choice will be “wrong” ex post.

Following Dekel, Lipman, and Rustichini (2001), we investigate preferences
over menus of lotteries. We consider an agent who chooses a menu in period 0
and subsequently selects an alternative (lottery) from that menu in period 1.
Our interpretation is that the agent makes both of these decisions prior to the
resolution of some subjective uncertainty and then experiences regret if her
chosen alternative is ex post inferior to another alternative on the menu. We
show that by simply observing the agent’s preference over menus, we can de-
termine whether her choices can be modeled as if she anticipates regret. Our
main result is a representation theorem for what we refer to as regret prefer-
ences.

1I wish to thank Haluk Ergin, Peter Klibanoff, Marco LiCalzi, Massimo Marinacci, Jawwad
Noor, Marciano Siniscalchi, numerous seminar participants, a co-editor, and three anonymous
referees for helpful comments. I am particularly grateful to Bart Lipman for detailed comments
and for his encouragement when this project was in its formative stages.
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Since regret arises in our model from ex post comparisons between the alter-
native selected and the other available alternatives, a regret preference will re-
flect the agent’s desire to limit her options. Our main axiom identifies precisely
when restricting options is beneficial to the agent. Formally, suppose there are
two lotteries, p and q, such that the agent prefers the menu containing only
p to the menu containing only q. That is, {p} � {q}. We refer to the agent’s
preference over singleton menus as her commitment preference since {p} � {q}
implies the agent would choose p over q if she could commit in period 0. The
commitment preference reflects the agent’s ex ante expectation of the value of
each alternative. We assume that in period 1 the agent will continue to rank
alternatives according to her commitment preference and hence will choose p
over q when choosing from any menu containing both lotteries.2 Therefore, if
{p} � {q}, then p “dominates” q in the sense that q cannot add value to any
menu that already contains p. This property leads to our main axiom, which
we refer to as dominance: If {p} � {q} and p ∈ A, then A �A∪ {q}.

One can further understand the dominance axiom by contrasting our regret
model with the standard model. In the standard model, the agent does not
experience regret and therefore values a menu based on its best element. For
such an agent, if {p} � {q} for some p ∈ A, then q is no better than the best
element in A and, therefore, A ∼ A ∪ {q}. The dominance axiom relaxes this
condition to allow for A � A ∪ {q}. Intuitively, even if there is a p ∈ A that is
expected to be better than q ex ante (that is, {p} � {q}), there may be some
state in which q gives a higher ex post utility than p (or any other element
of A). Therefore, for an agent who experiences regret, adding q to the menu
A will strictly increase her regret in this state. Thus an agent who anticipates
regret may strictly prefer A to A∪ {q}.

We identify a regret preference with the dominance axiom and three addi-
tional axioms. These axioms are variations of the standard expected-utility ax-
ioms: weak order (the preference is complete and transitive), continuity, and
independence.

1.2. Preview of Results

We now describe the functional form identified by our representation theo-
rem. The agent faces some subjective uncertainty that affects her future tastes.
We model this uncertainty using a probability measure μ over a set of pos-
sible ex post utility functions U . We refer to the utility functions u ∈ U as
states and we impose the restriction that each u ∈ U be a von Neumann–
Morgenstern expected-utility function. Note that both U and μ arise as part

2This assumption is important for isolating regret from other factors that may lead the agent
to want to limit her alternatives, such as temptation. Intuitively, temptation may cause the agent
to knowingly pick a suboptimal alternative from a menu. To distinguish from temptation, we focus
on regret where the agent’s choices from menus in period 1 are precisely the alternatives that she
would want to commit to in period 0, that is, those that she expects will be optimal ex ante.
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of the representation—they are not directly observable, but instead must be
elicited from the agent’s preferences. For any realized state u ∈ U and any lot-
tery p, the agent’s ex post utility is denoted by u(p).

In our representation, ex post regret for a realization of the agent’s tastes u
is proportional to the difference between the maximum ex post utility attain-
able from the menu A under u and the actual utility attained from the agent’s
choice. That is, if the agent chooses p from the menu A, then her ex post regret
in state u is

R(p�A�u)= K
[
max
q∈A

u(q)− u(p)
]
�

where K ≥ 0. The constant K can be thought of as representing the strength of
regret. The agent’s preference over menus is represented as if she chooses p
from the menu A to maximize the ex ante expectation of utility minus regret3:

V (A)= max
p∈A

∫
U
[u(p)−R(p�A�u)]μ(du)�

Note that the agent experiences no regret when A is a singleton menu. That
is, R(p�A�u)= 0 if A= {p}. This property of the representation may give the
impression that the agent does not regret her choice of menu in our model.
However, as we discuss in detail in Section 4.3, our model can be thought of
as describing the additional regret (on top of the regret associated with menu
choice) that the agent experiences because of her choice from a menu and the
effect it has on her preference over menus.

We now give a numerical example to illustrate the role of regret in this rep-
resentation.

EXAMPLE 1: Suppose an agent is going to make a reservation at one of sev-
eral restaurants. Restaurant 1 serves a beef dish (b) and a chicken dish (c).
Restaurant 2 serves only the beef dish, and restaurant 3 serves only the
chicken dish. Therefore, the set of alternatives is Z = {b� c}, and the menus
are A1 = {b� c}, A2 = {b}, and A3 = {c}.

Suppose the agent has two possible ex post utility functions, so that U =
{u1�u2}. Also, suppose μ({u1})= μ({u2}) = 0�5, K ≥ 0, and the expected-utility
functions u1 and u2 take values on Z given by

u1 u2

b 4 2
c 1 4

3Since only the agent’s preference over menus is observed, her choice from a menu is part of
the interpretation of the model.
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In words, the agent is uncertain whether she will like beef or chicken best,
but she likes beef better on average. As illustrated above, the agent experiences
no regret from a singleton menu. Therefore, V ({b}) = 3 and V ({c})= 2�5. The
ex post regret for the menu A1 = {b� c} and each selection from this menu is
summarized by

u1 u2

b 0 2K
c 3K 0

Choosing beef from the menu A1 leads to an ex ante expectation of utility
minus regret of 3 −K, whereas choosing chicken yields 2�5 − 1�5K. The agent
will therefore choose beef from the menu A1, and hence V ({b� c})= 3 −K.4

If � is the preference induced by this representation, then we have {b} � {c}
and, as required by the dominance axiom, {b} � {b� c}. However, note that
V ({b� c}) may be larger or smaller than V ({c}), depending on the value of K.
Intuitively, adding beef to a menu of just chicken gives the agent a better alter-
native, but also introduces regret. Which of these effects is stronger depends
on the parameters of the model. We return to this issue when we discuss com-
parative regret attitudes in Section 3.3.

The remainder of the paper is organized as follows. We discuss our model in
detail in Section 2, presenting our representation in Section 2.1 and our axioms
in Section 2.2. Our main results are contained in Section 3. We present our
representation theorem and sketch its proof in Section 3.1, and we present our
uniqueness results in Section 3.2. In Section 3.3, we introduce two measures
of comparative regret attitudes and discuss implications for our representa-
tion. Section 4 contains a discussion of related models and extensions of our
model. In Section 4.1, we relate our model to the existing literature on regret,
including the “regret theory” introduced by Bell (1982) and Loomes and Sug-
den (1982). We explain how our model differs from this literature in terms of
both primitives and the type of behavior used to identify regret. In Section 4.2,
we give a detailed discussion of the relationship between regret and tempta-
tion. Since temptation is similar to anticipated regret in that both may cause
an agent to benefit from commitment, we make the relationship between the
two more precise by comparing a generalization of our representation with
the temptation representations of Gul and Pesendorfer (2001) and Dekel, Lip-
man, and Rustichini (2007). Finally, in Section 4.3, we discuss an important
extension our model in which the agent is allowed to regret both her choice
of alternative and her choice of menu, and we find that our current model of
regret is consistent with this more general model.

4Note that beef being the optimal choice from A1 is consistent with our earlier claim that the
agent will choose from a menu according to her commitment preference. In Section 2.1, we verify
that this is a general property of our representation.
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2. THE MODEL

Let Z be a finite set of prizes, and let Δ(Z) denote the set of all probability
distributions on Z, endowed with the Euclidean metric d.5 Let A denote the
collection of all closed subsets of Δ(Z). We refer to the sets A ∈ A as menus
and we endow A with the Hausdorff metric, defined by

dh(A�B)= max
{

max
p∈A

min
q∈B

d(p�q)�max
p∈B

min
q∈A

d(p�q)
}
�

For any A�B ∈ A and α ∈ [0�1], define the convex combination of these two
menus by αA + (1 − α)B = {αp + (1 − α)q :p ∈ A and q ∈ B}. The primitive
of our model is a binary relation � on A, representing the agent’s preference
over menus.

We have in mind an agent facing a two-period decision problem. The agent
chooses a menu in period 0 and subsequently selects a lottery from that menu
in period 1. However, we do not explicitly model the agent’s period 1 choice,
leaving it as part of the interpretation of the agent’s period 0 preference.

2.1. Representation

We model the agent’s uncertainty about her future tastes using a probability
measure over a set of possible ex post utility functions, which we refer to as
states. We impose the restriction that each ex post utility function in our rep-
resentation be a von Neumann–Morgenstern expected-utility function. Since
expected-utility functions on Δ(Z) are equivalent to vectors in R

Z , we will use
the notation u(p) and p · u interchangeably. Moreover, since expected-utility
functions are only unique up to an affine transformation, it is possible to im-
pose a normalization on the set of ex post utility functions in our represen-
tation. Define the set of normalized (nonconstant) expected-utility functions on
Δ(Z) to be

U =
{
u ∈ R

Z :
∑
z∈Z

uz = 0�
∑
z∈Z

u2
z = 1

}
�(1)

For any û ∈ R
Z (i.e., any expected-utility function), there exist α ≥ 0, β ∈ R,

and u ∈ U such that û = αu+β. Therefore, modulo an affine transformation,
U contains all possible ex post expected-utility functions.

Using this canonical state space, we define a regret representation as follows:

5Since Z is finite, the topology generated by d is equivalent to the topology of weak conver-
gence on Δ(Z).
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DEFINITION 1: A regret representation is a pair (μ�K) that consists of a finite
(and countably additive) Borel probability measure μ on U and a constant
K ≥ 0 such that � is represented by the function V :A→ R defined by

V (A)= max
p∈A

∫
U
[u(p)−R(p�A�u)]μ(du)�(2)

where

R(p�A�u)= K
[
max
q∈A

u(q)− u(p)
]
�(3)

The interpretation of this representation is just as in the Introduction. The
agent has subjective uncertainty about her future tastes, and when evaluating
a menu, the agent anticipates the following: She will select an item from the
menu ex ante (before the subjective state is realized) and she will experience
regret after the state is realized if her choice is ex post inferior. Her value for
the menu is therefore based on her expectation of utility minus regret.

Note that the normalization placed on U in Equation (1) imposes no real re-
strictions on the representation. Any representation of the form given in Equa-
tions (2) and (3), where U is allowed to be a (nonnormalized) set of ex post
expected-utility functions (as in Example 1), can, after appropriate rescaling
of the measure, be written as a regret representation with U defined by Equa-
tion (1). Thus our representation theorem would continue to hold without the
normalization of U . We impose this normalization for the simple reason that it
makes the statement of our uniqueness results more straightforward.

When we discussed our axioms in the Introduction, we made the assumption
that the agent chooses out of a menu according to her commitment preference.
For the (interpreted) choice of lottery in our representation to be consistent
with this assumption, it must be that a lottery is a maximizer in Equation (2) if
and only if it solves maxp∈A V ({p}). It is easily seen that a regret representation
indeed satisfies this property when Equations (2) and (3) are combined and
rewritten as6

V (A)= max
p∈A

[
(1 +K)

∫
U
u(p)μ(du)

]
−K

∫
U

max
q∈A

u(q)μ(du)�(4)

Intuitively, the agent in our model chooses a lottery to maximize the expec-
tation of her utility minus regret. However, the lottery that maximizes her

6Although the agent’s period 1 choice of lottery is part of the interpretation of the representa-
tion, it is a fairly straightforward exercise to add a choice correspondence to the primitives of the
model, thus formally capturing the agent’s choice from each menu. The choice from menus given
by this correspondence will be consistent with our interpretation of the representation if and only
if the alternatives chosen from each menu are those that maximize the commitment preference.
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expected utility also minimizes the expectation of her regret. Therefore, al-
though regret may cause the agent in our model to sometimes prefer commit-
ting to smaller menus, it does not “distort” the agent’s choice from a menu.
This observation touches upon an issue that we will discuss in more detail in
Section 4.1: While existing models of regret (see Bell (1982), Loomes and Sug-
den (1982, 1987), Sugden (1993), Hayashi (2007)) only identify regret through
its distorting effect on an agent’s choice of alternative from a menu, by instead
examining preferences over menus, we are able to identify regret even when it
does not distort choice from menus.

2.2. Axioms

We impose four axioms on preferences. The first three are standard axioms
in the setting of preferences over menus:

AXIOM 1—Weak Order: � is complete and transitive.

AXIOM 2—Strong Continuity:
1. von Neumann–Morgenstern (vNM) Continuity: If A � B � C, then there

exist α� ᾱ ∈ (0�1) such that

αA+ (1 − α)C � B � ᾱA+ (1 − ᾱ)C�

2. Lipschitz (L) Continuity: There exist menus A∗�A∗ ∈ A and M > 0 such
that for every A�B ∈A and α ∈ (0�1) with dh(A�B) ≤ α/M ,

(1 − α)A+ αA∗ � (1 − α)B + αA∗�

AXIOM 3—Independence: If A � B, then for all C and all α ∈ (0�1],
αA+ (1 − α)C � αB + (1 − α)C�

We refer the reader to Dekel, Lipman, and Rustichini (2001) and Dekel, Lip-
man, Rustichini, and Sarver (2007, henceforth DLRS) for a discussion of these
axioms. The independence axiom was also discussed by Gul and Pesendorfer
(2001) in their model of temptation.

The following axiom allows for the possibility of regret:

AXIOM 4—Dominance: If {p} � {q} and p ∈ A, then A �A∪ {q}.
As we discussed in the Introduction, in a standard model, the agent values a

menu based on its best element. For such an agent, if {p} � {q} for some p ∈ A,
then A ∼ A ∪ {q}. The dominance axiom relaxes this condition to allow for
A �A∪ {q}. Intuitively, adding an alternative to a menu that is not ultimately
chosen in period 1 cannot increase the utility of the agent. Moreover, since we
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assume that the agent’s period 1 choice is made according to her commitment
preference, {p} � {q} implies the agent does at least as well by choosing p from
the menu A ∪ {q} as she does by choosing q. Therefore, the addition of q to
the menu A cannot benefit the agent. However, it can hurt the agent if there
is a state in which q is better than every element of A, as the agent would
experience increased regret in this state.

3. MAIN RESULTS

3.1. Representation Theorem

The following is our main representation theorem:

THEOREM 1: A preference � has a regret representation if and only if it satisfies
weak order, strong continuity, independence, and dominance.

Given this result, we refer to a preference that satisfies weak order, strong
continuity, independence, and dominance as a regret preference. In the remain-
der of this section, we prove the necessity of the axioms in Theorem 1 and
sketch the intuition behind the sufficiency of the axioms. The formal proof of
sufficiency is contained in Appendix C.1.

The first step in establishing Theorem 1 is to note that the regret representa-
tion is a special case of what Dekel, Lipman, and Rustichini (2001) refer to as
an additive expected-utility (EU) representation. Taking U as defined in Equa-
tion (1), we define the following (normalized) version of their representation:

DEFINITION 2: An additive EU representation is a finite (and countably addi-
tive) signed Borel measure μ on U such that � is represented by the function
V :A→ R defined by

V (A)=
∫
U

max
p∈A

u(p)μ(du)�(5)

The following is the Dekel, Lipman, and Rustichini (2001) representation
theorem as presented in the Supplemental material to DLRS (2007)7:

THEOREM 2: A preference � has an additive EU representation if and only if
it satisfies weak order, strong continuity, and independence.

7Although Definition 2 differs slightly from the original definition of the additive EU repre-
sentation given in Dekel, Lipman, and Rustichini (2001), it is easily verified that the two formula-
tions are equivalent. Moreover, the proof of Theorem 2 contained in the Supplemental material
to DLRS (2007) uses precisely the normalized form of the representation defined above.
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In light of Theorem 2, the necessity of weak order, strong continuity, and
independence in Theorem 1 is established by showing that the regret repre-
sentation is a special case of the additive EU representation:

LEMMA 1: Any regret representation can be written as an additive EU represen-
tation.

PROOF: For ease of manipulation, we will work with the formulation of the
regret representation given in Equation (4). Note that (1 +K)

∫
U u(·)μ(du) is

itself an expected-utility function and therefore must equal αū + β for some
ū ∈ U , α≥ 0, and β ∈ R. By the definition of U it follows that β = 0, and hence
Equation (4) can be written as

V (A)= max
p∈A

αū(p)−K

∫
U

max
q∈A

u(q)μ(du)�

Therefore, define a new signed measure ν, for any Borel set E ⊂ U , by

ν(E)=
{−Kμ(E)� if ū /∈E,
α−Kμ(E)� if ū ∈E.

Then, the above expression simplifies to

V (A)=
∫
U

max
p∈A

u(p)ν(du)�

which completes the proof. Q.E.D.

The necessity of the dominance axiom is established by the following lemma:

LEMMA 2: A preference � with a regret representation must satisfy dominance.

PROOF: Suppose � has a regret representation, formulated as in Equa-
tion (4), and suppose A ∈ A and q ∈ Δ(Z) are such that there exists p ∈ A
with {p} � {q}. Notice that {p} � {q} if and only if V ({p})≥ V ({q}) if and only
if ∫

U
u(p)μ(du)≥

∫
U
u(q)μ(du)�

Therefore, the addition of {q} to the menu A leaves the first term of Equa-
tion (4) unchanged:

max
p̂∈A

[
(1 +K)

∫
U
u(p̂)μ(du)

]
= max

p̂∈A∪{q}

[
(1 +K)

∫
U
u(p̂)μ(du)

]
�
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Clearly, we also have maxp̂∈A u(p̂) ≤ maxp̂∈A∪{q} u(p̂) for all u ∈ U . Thus the
second term of Equation (4) becomes weakly smaller (i.e., more negative)
whenever more items are added to a menu, which implies V (A)≥ V (A∪ {q})
or, equivalently, A �A∪ {q}. Q.E.D.

We now give the intuition behind the sufficiency of the axioms in Theorem 1.
From Theorem 2, we know that if � satisfies weak order, strong continuity, and
independence, then it has an additive EU representation. We want to show
that if � also satisfies dominance, then this representation can be written as
a regret representation. For simplicity, we will assume that the support of the
measure μ in the additive EU representation is finite, but the proof in the
Appendix deals with the more general case. If the support of μ is finite, then
Equation (5) can be written as

V (A)=
∑

u∈supp(μ)

μ(u)max
p∈A

u(p)�

Note that μ is a signed measure, so some states may be given negative weight.
Thus supp(μ) can be indexed by a pair of finite sets I+ and I−, where μ(ui) >
0 for i ∈ I+ and μ(ui) < 0 for i ∈ I−. Letting αi = |μ(ui)| > 0, Equation (5)
becomes

V (A)=
∑
i∈I+

αi max
p∈A

ui(p)−
∑
i∈I−

αi max
p∈A

ui(p)�

Therefore, the sign of μ is very important, as it determines whether adding
options to a menu has a positive or negative effect on utility in a given state.
We refer to the states indexed by I+ as positive states and to the states indexed
by I− as negative states. Negative states will turn out to be key to capturing
regret.

Define v :Δ(Z) → R by v(p) = V ({p}) for p ∈ Δ(Z). Thus v represents the
agent’s preference over singletons (i.e., her commitment preference).8 We will
show that dominance implies that any positive state in this additive EU rep-
resentation can be written as an affine transformation of v. Then some simple
algebraic manipulations will yield the finite-state version of Equation (4).

Our first step is to show that any positive state must have the same level
curves as v and be increasing in the same direction as v. Since v and each of
the ui are expected-utility functions, their level curves are linear. Now consider
any state i such that ui and v do not have the same level curves. We can always
choose a menu A ∈A and a lottery q ∈ Δ(Z) such that adding q to A increases
the maximum value of ui, but does not increase the maximum value of v or

8Note that our notation differs from that of Gul and Pesendorfer (2001), who used v to indicate
a temptation ranking.
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FIGURE 1.—Dominance.

uj for j �= i. This is illustrated for a two-state additive EU representation in
Figure 1. The line labeled u1 indicates the level curve for u1 that is tangent to
the set A—this is the highest level curve for u1 attainable under the menu A.
Notice that q gives a higher value for u1 than is possible under A, but adding
q to A does not increase the maximum value of v or u2.

Take any p ∈ A that maximizes v over A. Since adding q to A does not
increase the maximum value of v, we have that v(p) ≥ v(q). This is also illus-
trated in Figure 1. Then the definition of v implies that {p} � {q} and, there-
fore, dominance implies that V (A) ≥ V (A ∪ {q}). Since the only state that
attains a different maximum expected utility under A and A ∪ {q} is i, it must
be that i ∈ I−. That is, i must be a negative state. Thus, as claimed, any posi-
tive state must have the same level curves as v and be increasing in the same
direction. Note that by the definition of U this implies there can be at most one
positive state. If we denote the single positive state by 0, then we have shown
that V is of the form

V (A)= α0 max
p∈A

u0(p)−
∑
i∈I−

αi max
p∈A

ui(p)�

Moreover, since v and α0u0 are affine, share the same indifference curves,
and are increasing in the same direction, it is a standard result that α0u0 =
αv +β for some α ≥ 0 and β ∈ R (see Lemma 14). For expositional purposes,
we make the simplifying assumption that α> 1 and β= 0. Therefore, we have

V (A)= max
p∈A

[αv(p)] −
∑
i∈I−

αi max
p∈A

ui(p)�

Taking any p ∈ Δ(Z), this equation implies v(p) = αv(p)−∑
i∈I− αiui(p), and

hence (α − 1)v = ∑
i∈I− αiui. Let V̂ = (α − 1)V and let K = α − 1. Then we
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have

V̂ (A) = max
p∈A

[α(α− 1)v(p)] − (α− 1)
∑
i∈I−

αi max
p∈A

ui(p)

= max
p∈A

[
(1 +K)

∑
i∈I−

αiui(p)

]
−K

∑
i∈I−

αi max
p∈A

ui(p)�

After normalizing the αi’s to be probabilities by dividing by
∑

i∈I− αi, we obtain
a finite-state version of Equation (4).

3.2. Uniqueness of the Representation

As in the previous section, let v denote the utility function for singleton
menus induced by a regret representation. That is, for a regret representation
(μ�K), define the function v :Δ(Z)→ R, for p ∈ Δ(Z), by

v(p)= V ({p})=
∫
U
u(p)μ(du)�(6)

Also define r :A→ R, for A ∈A, by

r(A) = min
p∈A

∫
U
R(p�A�u)μ(du)(7)

= min
p∈A

∫
U
K

[
max
q∈A

u(q)− u(p)
]
μ(du)�

The function r(A) represents the minimal expected regret that the agent can
experience when faced with the menu A. As we discussed in Section 2.1, in a
regret representation the lottery that maximizes the expectation of utility also
minimizes expected regret. Thus for any menu A ∈ A, the agent will choose
p ∈ A to maximize v(p), and

V (A)= max
p∈A

v(p)− r(A)�

The functions v and r will be useful for understanding the uniqueness prop-
erties of our representation (and for analyzing comparative regret attitudes in
Section 3.3). In this section, we first consider the extent to which the functions
v and r are identified. Then we turn to the uniqueness of the underlying para-
meters that determine v and r.

Our first uniqueness result is that for any regret preference, the v and r that
arise from a regret representation are unique up to a common scalar multiple.

THEOREM 3: Two regret representations (μ�K) and (μ′�K′) represent the
same preference � if and only if there exists α> 0 such that v′ = αv and r ′ = αr.
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PROOF: Only if. We have already proved that any regret representation is an
additive EU representation (see Lemma 1). The mixture space theorem can
be applied to this setting to show that the function V given by an additive EU
representation is unique up to a positive affine transformation.9 Therefore,
there exist α> 0 and β ∈ R such that V ′ = αV +β, which implies v′ = αv +β.
Treating v as a vector in R

Z and recalling the definition of U , note that

∑
z

vz =
∑
z

[∫
U
uz μ(du)

]
=

∫
U

[∑
z

uz

]
μ(du) = 0�(8)

Similarly,
∑

z v
′
z = 0. It follows that β= 0.10 Finally, for all A ∈A,

r ′(A) = max
p∈A

v′(p)− V ′(A) = α
[
max
p∈A

v(p)− V (A)
]

= αr(A)�

If. If v′ = αv and r ′ = αr, then an argument similar to that given above shows
that V ′ = αV , and hence V ′ and V represent the same preference. Q.E.D.

To obtain a uniqueness result for the parameters (μ�K) in a regret repre-
sentation, we now restrict attention to regret representations in which regret
plays a nontrivial role, that is, there is some menu A for which r(A) > 0. Be-
fore presenting our main uniqueness result, we note an interesting relationship
between this property of the representation and the following axiom:

AXIOM 5—Monotonicity: If A ⊂ B, then B �A.

Kreps (1979) interpreted this axiom in terms of an agent who is uncertain of
her tastes when she chooses a menu, but realizes her tastes before she chooses
an alternative from a menu. Thus the agent has a preference for flexibility.
However, in our representation the agent must choose from a menu before
she realizes her tastes. Therefore, flexibility is not valuable in our model, and
it can be harmful if additional options increase regret. We see that dominance
and monotonicity have a trivial intersection in the sense that an agent with a
regret preference that also satisfies monotonicity neither values flexibility nor
experiences regret:

LEMMA 3: Suppose � is a regret preference and hence has a regret representa-
tion. Then r(A)= 0 for all A ∈A if and only if � satisfies monotonicity.

9See the proof of Proposition 2 in Dekel, Lipman, and Rustichini (2001) for a detailed expla-
nation.

10To see this, let p∗ = (1/|Z|� � � � �1/|Z|). Then
∑

z vz = 0 implies v(p∗) = 0, and
∑

z v
′
z = 0

implies v′(p∗)= 0. Therefore, 0 = v′(p∗)= αv(p∗)+β= β.
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PROOF: Only if. Suppose r(A) = 0 for all A ∈A. If B ⊂ C, then

V (B) = max
p∈B

v(p) ≤ max
p∈C

v(p) = V (C)�

and hence C � B.
If. We prove by establishing the contrapositive. Suppose there exists A ∈ A

such that r(A) > 0. We want to show that monotonicity is violated. Let p̄ ∈
arg maxp∈A v(p). Then {p̄} ⊂ A and

V ({p̄})= v(p̄)= max
p∈A

v(p) > max
p∈A

v(p)− r(A) = V (A)�

violating monotonicity. Q.E.D.

Given this relationship between r and the monotonicity axiom, we say that
a regret preference is nontrivial if it violates monotonicity. That is, � is a non-
trivial regret preference if there exist A�B ∈A such that A ⊂ B and A� B.

Our uniqueness theorem for the parameters (μ�K) will have two parts, de-
pending on whether or not the agent is indifferent between all singleton menus,
that is, whether or not the following axiom is satisfied:

AXIOM 6—Singleton Nontriviality: There exist p�q ∈ Δ(Z) with {p} � {q}.
To state our uniqueness result for the case when � satisfies singleton non-

triviality, we need to define the norm of an expected-utility function. Take any
regret representation (μ�K) and define v by Equation (6). Define the norm
of v, denoted ‖v‖, to be the Euclidean norm of v when considered as a vector
in R

Z . The following lemma provides a technical result that is needed for the
subsequent theorem.

LEMMA 4: Suppose (μ�K) represents the preference � and v is defined by
Equation (6). Then ‖v‖ �= 0 if and only if � satisfies singleton nontriviality, and
in this case v

‖v‖ ∈ U .

See Appendix C.2 for the proof.
We can now state our main uniqueness result. Let δv/‖v‖ denote the Dirac

(probability) measure concentrated at v
‖v‖ . Note that Lemma 4 is needed to

ensure that this is a measure on U .

THEOREM 4: Suppose (μ�K) represents a nontrivial regret preference �.
1. If � satisfies singleton nontriviality, then (μ′�K′) also represents � if and

only if there exists 0 <α< 1
1−‖v‖ such that

μ′ = αμ+ (1 − α)δv/‖v‖ and K′ =
[

1 + 1 − α

α‖v‖
]
K�(9)
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2. If � violates singleton nontriviality, then (μ′�K′) also represents � if and
only if μ′ = μ and K′ > 0.

See Appendix C.3 for the proof.
To interpret part 1 of Theorem 4, suppose (μ�K) is a regret representation

for a preference � that satisfies singleton nontriviality. Defining v as in Equa-
tion (6), consider the probability measure δv/‖v‖. Note that if an agent has a
regret representation with measure δv/‖v‖, then this agent has no subjective un-
certainty, as she knows with probability 1 that her ex post preference will be
given by v

‖v‖ . Therefore, regardless of the constant in the representation, this
agent will experience no regret: Given any A ∈ A, she will choose p ∈ A to
maximize p · v

‖v‖ , and this will be the ex post “wrong” choice with probability 0.
Now, consider (μ′�K′) defined as in Equation (9) for some α ∈ (0�1).11 As α
gets smaller, μ′ puts greater probability mass on a single point, v

‖v‖ . Therefore,
the probability of ex post regret becomes smaller as α decreases, so K′ must be
increased to compensate. This intuition is confirmed by Equation (9), as it is
readily seen that K′ increases as α decreases.

Part 1 of Theorem 4 highlights the difficulty of identifying the strength of
regret, K, in our model. The agent’s preference over menus indicates the com-
bined effect of her strength of regret and degree of uncertainty, but it is not
possible to completely differentiate these two factors. As the previous para-
graph illustrates, we are unable to distinguish between an agent who is fairly
certain of her future tastes but has a strong sense of regret and an agent who
is more uncertain of her tastes but has a weaker sense of regret. However,
Theorem 4 implies that these two effects are jointly identified when � satisfies
singleton nontriviality. In particular, if (μ�K) and (μ′�K′) are two regret rep-
resentations for a preference satisfying singleton nontriviality, then μ = μ′ if
and only if K = K′.

To interpret part 2 of Theorem 4, note that when an agent has a prefer-
ence � that violates singleton nontriviality, the sole objective of this agent is
to minimize expected regret. Because the agent has no utility function over
singletons against which to measure this regret, it is impossible to pin down
the constant K in the representation. However, in this case the measure in the
representation is uniquely identified.

11Note that Theorem 4 actually allows for α> 1. In other words, it is possible to shift probabil-
ity mass away from v

‖v‖ . However, the restriction that α < 1
1−‖v‖ is needed to ensure that K′ > 0.

In addition, since the measure in a regret representation is required to be a probability measure,
μ′ must be nonnegative and, hence, there is also an implicit restriction that α ≤ 1

1−μ({v/‖v‖}) .
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3.3. Comparing Regret Attitudes

In this section, we present two measures of regret attitudes of a preference.
The first is a comparative measure of the incidence of regret, and the second
is a comparative measure of the strength of regret.

For a regret preference �, we say that A dominates B with respect to � if for
all q ∈ B there exists a p ∈ A such that {p} � {q}. A relatively straightforward
consequence of our axioms is that whenever A dominates B with respect to a
regret preference �, we have A � A ∪ B (see Lemma 11 in Appendix C.1).
Thus adding a dominated set of alternatives to a menu can never be an im-
provement. When the addition of a dominated set leads to an increase in re-
gret, the original menu must be strictly preferred to the addition of this set to
the menu. Therefore, by observing how often adding dominated sets of alter-
natives to a menu leads to a strict decrease in utility, we can determine how
regret prone a preference is:

DEFINITION 3: Suppose �1 and �2 are two regret preferences. We say that
�1 is more regret prone than �2 if for all A�B ∈ A such that A dominates B
with respect to �1 and �2,

A�2 A∪B �⇒ A �1 A∪B�

The following theorem characterizes this measure of regret attitudes in
terms of our representation. As in the previous section, � is a nontrivial re-
gret preference if there exist menus A�B ∈ A such that A ⊂ B and A � B.
Singleton nontriviality and the function v are also defined as in the previous
section.12

THEOREM 5: Suppose (μ1�K1) and (μ2�K2) represent the nontrivial regret
preferences �1 and �2, respectively, and suppose these preferences satisfy singleton
nontriviality. Then �1 is more regret prone than �2 if and only if

supp(μ2)⊂ supp(μ1)∪
{

v1

‖v1‖
}

∪
{

v2

‖v2‖
}
�(10)

See Appendix C.4 for the proof.
Suppose (μ1�K1) represents a nontrivial regret preference �1. Adding a set

of alternatives B to a menu A that does not increase the maximum value of
v1 cannot increase the utility of the menu. In addition, if the alternatives in B
increase the maximum value of u for some u ∈ supp(μ1), then with positive
probability the agent will regret not choosing one of these new alternatives.

12Singleton nontriviality can be dropped from Theorem 5 if Equation (10) is replaced with the
following more general condition: If u ∈ supp(μ2) is not a positive affine transformation of v1 or
v2, then u ∈ supp(μ1).
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Therefore, a measure with a larger support leads to an increased incidence of
regret.

We now introduce a comparative measure of the strength of regret of a pref-
erence13:

DEFINITION 4: Suppose �1 and �2 are two regret preferences. We say that
�1 is more regret averse than �2 if for all A ∈A and p ∈ Δ(Z),

{p} �2 A �⇒ {p} �1 A�

Using singleton menus as benchmarks for comparison, this measure con-
siders the trade-off between adding potentially better alternatives to a menu
and the regret that could arise from having more alternatives from which to
choose. To illustrate more concretely, consider again Example 1. Recall that
Z = {b� c} and the regret representation satisfied V ({b}) = 3, V ({c}) = 2�5,
and V ({b� c}) = 3 −K. Suppose � is the preference induced by this represen-
tation. Then {b} � {c} and, as required by the dominance axiom, {b} � {b� c}.
However, dominance is silent about which of {c} or {c� s} will be preferred.
Clearly, this will depend on the value of K (i.e., the strength of regret) in the
representation: {b� c} � {c} for small K and {c} � {b� c} for large K. Hence,
adding the “better” alternative b to the menu {c} is beneficial precisely when
regret is weaker, and this intuition is generalized in Definition 4.

Our notion of comparative regret aversion is similar in spirit to the literature
on comparative ambiguity aversion. Both Epstein (1999) and Ghirardato and
Marinacci (2002) defined comparative ambiguity aversion by comparing arbi-
trary acts to unambiguous acts in the same manner that we compare arbitrary
menus to singleton menus (although each uses a different definition of what
constitutes an unambiguous act). Ahn (2007) considered ambiguity aversion
in the current preferences-over-menus framework and proposed a measure of
comparative ambiguity aversion that is almost identical to our Definition 4.

The following theorem examines the relationship between regret aversion
and the regret representation. Note that v and r are defined as in Equations (6)
and (7), respectively.14

13Note that if �1 is more regret averse than �2, then both preferences have the same com-
mitment preference: For any p�q ∈ Δ(Z), taking A = {q} in Definition 4 gives the condition
{p} �2 {q} �⇒ {p} �1 {q}, which when combined with our other axioms implies {p} �2 {q} ⇐⇒
{p} �1 {q}.

14Singleton nontriviality is needed in Theorem 6 to ensure that comparative regret aversion is
an informative measure. For example, suppose �1 and �2 are two regret preferences. Also, for
i = 1�2, suppose that {p} ∼i {q} for all p�q ∈ Δ(Z) and A ≺i {p} for any nonsingleton A ∈ A. If
|Z| ≥ 3, then there are many different regret preferences that satisfy these conditions. However,
since A ≺i {p} for all p ∈ Δ(Z) and for all nonsingleton A ∈ A, Definition 4 does not get any
traction. That is, we find both that �1 is more regret averse than �2 and that �2 is more regret
averse than �1, even though we have hardly specified any properties of these regret preferences.
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THEOREM 6: Suppose �1 and �2 are two regret preferences that satisfy single-
ton nontriviality, and suppose (μ1�K1) and (μ2�K2) are regret representations for
�1 and �2, respectively. The following statements are equivalent:

1. �1 is more regret averse than �2.
2. There exists α> 0 such that v2 = αv1 and r2 ≤ αr1.

See Appendix C.5 for the proof.
The interpretation of this result is straightforward. If �1 is more regret

averse than �2, then modulo transformation by a scalar multiple, r1 is larger
than r2. Thus an agent with preference �1 expects to experience more regret
from any menu than an agent with preference �2.15

4. DISCUSSION AND EXTENSIONS

We have presented a model of regret in which preferences over menus
are represented by an easily interpreted functional form: It is as if the agent
chooses a single alternative from a menu prior to the resolution of her sub-
jective uncertainty and experiences regret if her choice is “wrong” ex post. We
proved that our representation is essentially unique, and we introduced two
measures of comparative regret attitudes.

We conclude by discussing two related areas of research and presenting an
important extension of our model. In Section 4.1, we discuss the related litera-
ture on regret. In Section 4.2, we relate our model of regret to the literature on
temptation. Finally, in Section 4.3, we present an extension of our model that
allows the agent to regret her choice of menu.

4.1. Related Models of Regret

The present work is similar in spirit to so-called regret theory (see Bell
(1982), Loomes and Sugden (1982, 1987), Sugden (1993)). However, our em-
phasis is quite different. Like our model, classic regret theory posits that the
agent will experience regret if, after the resolution of uncertainty, her choice is
inferior to another alternative. It is then assumed that the anticipation of this
regret will affect the agent’s decisions, an assumption we also make. However,
despite these intuitive similarities, our approach has a very different founda-
tion. Sugden (1993) gave an axiomatic treatment of regret theory by consider-
ing preferences over acts that are conditional on the feasible set of alternatives.
Hence, the emphasis of his regret theory is on the effect of anticipated regret
on the agent’s choice from a menu. In contrast, the present work is set in a

15This does not necessarily imply that the first agent has a larger strength of regret, K, than
the second. Recall from Section 3.2 that an agent’s expected regret depends on the combination
of her strength of regret and degree of uncertainty, and these two factors cannot be separately
identified.
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preferences-over-menus framework, and thus our focus is on the effect of re-
gret on the agent’s choice of menu.

Recall from Section 2.1 that the agent in our model is assumed to choose
from a menu according to her commitment preference. Hence, the agent’s (in-
terpreted) choice from menus in our model is the same as that of a standard
expected-utility maximizer, and thus by only examining the agent’s choice from
menus, it is impossible to determine whether or not the agent anticipates re-
gret. In contrast, in classic regret theory, regret takes a nonlinear form which
allows it to be identified by observing choice from menus. Although models of
nonlinear regret are both interesting and plausible, we find the preferences-
over-menus framework appealing because it also allows for the identification
of simple linear forms of regret, such as the current model.

Regret was also studied by Hayashi (2007), who obtained a representation
for a choice correspondence from menus of acts in which the agent minimizes
her maximum regret.16 His representation is a generalization of the minimax
regret theory of Savage (1954). Aside from the different primitives, there are
two main distinctions between these models and the present model: First, in
models of minimax regret, the agent’s only decision criterion is the minimiza-
tion of maximum regret. In contrast, in our representation, the agent com-
promises between two objectives, minimizing regret and maximizing ex post
expected utility. Second, the agent in our model is Bayesian, whereas the pes-
simism of the agent in models of minimax regret can be interpreted in terms of
ambiguity. Specifically, the representation of Hayashi (2007) involves multiple
priors and, in the case of a single prior, reduces to a standard model of utility
maximization.

4.2. Temptation or State-Dependent Regret?

In this section, we show how the temptation representations of Gul and Pe-
sendorfer (2001) and Dekel, Lipman, and Rustichini (2007) are related to what
we refer to as a state-dependent regret representation. Each of the temptation
representations we discuss is a special case of the additive EU representation.17

In addition, each representation has a finite state space, so for ease of compar-
ison, we restrict attention to finite-state-space representations throughout this
section.

16Related representations in that framework were also considered by Stoye (2007).
17Technically, the expected-utility functions in these temptation representations are not re-

quired to be in the set U . Nonetheless, it is straightforward to verify that these representations
could be normalized and written in the form of Definition 2. We should also note that Gul and
Pesendorfer (2001) allowed for a more general domain by permitting the set of prizes, Z, to be
any compact metric space.
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One of the representations considered by Gul and Pesendorfer (2001) is the
self-control representation, which they defined by

V (A)= max
p∈A

[v(p)+ t(p)] − max
q∈A

t(q)�

where v :Δ(Z)→ R and t :Δ(Z)→ R are expected-utility functions. As above,
v represents the commitment preference since V ({p}) = v(p) for any p ∈
Δ(Z). The function t represents the temptation ranking.18 This representa-
tion can easily be understood in terms of self-control costs. If we let c(p�A)=
maxq∈A t(q)− t(p), then the self-control representation can be written as

V (A)= max
p∈A

[v(p)− c(p�A)]�

Thus the temptation ranking determines the cost of self-control. Under the
interpretation that the agent chooses an item from the menu A, the presence
of self-control costs can alter this decision. In contrast, if an agent has a regret
representation as in Section 2.1, then the presence of regret may cause the
agent to select a different menu, but it will not alter her choice from a given
menu.

Gul and Pesendorfer (2001) proved that a preference � has a self-control
representation if and only if it satisfies weak order, continuity (see Axiom 10
in Appendix C.1), independence, and set betweenness, which they defined as
follows19:

AXIOM 7—Set Betweenness: If A � B, then A�A∪B � B.

Dekel, Lipman, and Rustichini (2007) proposed several generalizations of
the self-control representation. One of the representations they considered is
the no-uncertainty representation, which they defined by

V (A)= max
p∈A

[
v(p)+

∑
i∈I

ti(p)

]
−

∑
i∈I

max
q∈A

ti(q)�

where I is a finite index set, and where v :Δ(Z) → R and ti :Δ(Z) → R, i ∈ I,
are expected-utility functions. This representation is so named because, in con-
trast to some of the representations they considered, an agent with this repre-
sentation has no uncertainty about what her future temptations will be. This

18As mentioned earlier, we use different notation than Gul and Pesendorfer (2001). They used
u in the place of our v and used v in the place of our t.

19The astute reader will notice that strong continuity is not included in this list of axioms, even
though it is still a necessary condition. As explained in Dekel, Lipman, and Rustichini (2007),
the combination of weak order, continuity, independence, and any axiom that guarantees a finite
state space (such as set betweenness) implies strong continuity.
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representation can also be understood in terms of self-control costs since we
can write

V (A)= max
p∈A

[v(p)− c(p�A)]�

where c(p�A) is now defined by

c(p�A)=
∑
i∈I

[
max
q∈A

ti(q)− ti(p)
]
�

This representation generalizes the self-control representation by allowing
multiple temptations to occur simultaneously.

Dekel, Lipman, and Rustichini (2007) proved that a preference � has a no-
uncertainty representation if and only if it satisfies weak order, continuity, in-
dependence, a finiteness axiom (to guarantee that the state space is finite), and
positive set betweenness, which they defined as follows:

AXIOM 8—Positive Set Betweenness: If A � B, then A �A∪B.

Clearly, set betweenness implies positive set betweenness, which is necessary
since the no-uncertainty representation is a generalization of the self-control
representation. We now consider an alternative interpretation for preferences
that satisfy positive set betweenness, and hence this alternative interpretation
also applies to preferences that satisfy set betweenness. Recall that the inter-
pretation of our original regret representation is that the agent is not certain
about her future tastes and experiences regret when she makes an ex post infe-
rior choice. If the agent can be uncertain about her tastes, could she not also be
uncertain about the strength of her regret? Thus it seems reasonable to incor-
porate the constant K into her subjective uncertainty by allowing it to depend
on the state.

DEFINITION 5: A state-dependent regret representation is a function V :A →
R that represents � such that

V (A)= max
p∈A

∑
i∈I

αi

[
ui(p)−Ki

[
max
q∈A

ui(q)− ui(p)
]]
�(11)

where I is a finite index set, ui ∈ U , Ki ≥ 0, αi ≥ 0, and
∑

i∈I αi = 1.

Notice that Equation (11) is simply the finite-state version of the regret rep-
resentation defined in Section 2.1, except that the constant K is now replaced
by a state-dependent constant Ki. It is also worth noting that, in contrast to the
state-independent regret discussed in previous sections, the presence of state-
dependent regret may alter the agent’s choice from a menu. For example, if an
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agent has a disproportionately strong feeling of regret in the state where the
lottery q ∈A is optimal, then she may select that lottery even if another lottery
p ∈ A is better in terms of her commitment preference.

The following theorem shows that preferences that satisfy positive set be-
tweenness can be interpreted in terms of regret.

THEOREM 7: A preference � has a no-uncertainty representation if and only if
it has a state-dependent regret representation.

PROOF: If. Take v = ∑
i∈I αiui and ti = αiKiui.

Only if. Suppose � has a no-uncertainty representation with index set I.
Let Î = I ∪ {0}, where, without loss of generality, we suppose 0 /∈ I. By the
definition of U , for each i ∈ I, there exist ui ∈ U , αi ≥ 0, and βi ∈ R such
that ti = αiui + βi. Also, there exist u0 ∈ U , α0 ≥ 0, and β0 ∈ R such that
v− ∑

i∈I ti = α0u0 +β0. If we let Ki = 1 for i ∈ I and let K0 = 0, then

V (A) = max
p∈A

[
v(p)+

∑
i∈I

ti(p)

]
−

∑
i∈I

max
q∈A

ti(q)

= max
p∈A

[∑
i∈Î

(αiui(p)+βi)+
∑
i∈Î

Ki(αiui(p)+βi)

]

−
∑
i∈Î

max
q∈A

Ki(αiui(q)+βi)

= max
p∈A

∑
i∈Î

αi

[
ui(p)−Ki

[
max
q∈A

ui(q)− ui(p)
]]

+
∑
i∈Î

βi�

Dropping the constant
∑

i∈Î βi and normalizing the αi’s to be probabilities
yields a state-dependent regret representation. Q.E.D.

This result is not a statement that regret is a better interpretation than temp-
tation for preferences that satisfy positive set betweenness, and it is perfectly
plausible that both play a role in such preferences. Rather, it simply illustrates
that we are unable to perfectly disentangle these two factors in the absence of
additional information: Under the interpretation of temptation, adding more
items to a menu may be harmful to the agent if they make self-control more
costly, while under the interpretation of regret, these additional items are
harmful if they cause the agent ex post regret. Note that incorporating period 1
choice into the model will also not serve to differentiate between these two ef-
fects since the agent’s (interpreted) period 1 choice from menus is the same
under both a no-uncertainty representation and its equivalent state-dependent
regret representation.
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Given these observations, it is clear that distinguishing between regret and
temptation is a subtle issue. Moreover, the boundary between the two effects
seems highly sensitive to the precise definitions of regret and temptation that
one considers. For example, an agent whose preference satisfies positive set
betweenness (or dominance) may rank a menu as worse than every alternative
in that menu. That is, there may be a menu A such that {p} �A for all p ∈ A.
While such a ranking seems perfectly reasonable for an agent who anticipates
regret, whether this property is plausible for an agent suffering from tempta-
tion depends on how temptation is defined. If temptation is restricted to be
self-control costs that occur at the time of a decision, then an agent suffering
from temptation would arguably never exhibit such a ranking: If an agent suf-
fering from temptation decides to “give in” to temptation, then she would not
need to exert self-control, so her utility from the menu would be that of what-
ever alternative she obtains. However, if one considers a richer definition of
temptation, for instance, by allowing guilt to be a part of temptation, then the
ranking above would be possible.20

We close this section with an interesting observation. Ignoring the issue of
finite versus infinite state spaces, the regret representation is a special case of
the state-dependent regret representation. Therefore, positive set betweenness
should be implied by the axioms that characterize the regret representation.
We see that this is indeed the case.21

LEMMA 5: If � is a regret preference, then it satisfies positive set betweenness.

See Appendix C.6 for the proof.

4.3. Regretting the Choice of Menu

An important property of a regret representation is that there is no regret as-
sociated with a singleton menu. That is, R(p�A� s) = 0 if A = {p}. This prop-
erty may give the impression that the agent in our model cannot regret her
choice of menu, which is somewhat troubling. To illustrate, recall that in Ex-
ample 1 the agent expects to prefer beef (b) to chicken (c) and hence she will
select b when choosing from {b� c}. However, chicken is better than beef in
state u2, so in that state she will regret choosing beef from this menu. There-
fore, she prefers the menu {b} to the menu {b� c}, as there is no regret asso-
ciated with the menu {b}. It is natural to ask why choosing the restaurant that

20Guilt is qualitatively similar to regret in that it is also a negative feeling associated with not
choosing the “optimal” alternative. The difference is that ex post regret arises in our model after
making a “mistake,” whereas guilt arises after succumbing to temptation.

21This result is not immediately implied by the relationship between the representations be-
cause of the finiteness issue. The regret representation is actually not a special case of the no-
uncertainty representation since it allows for an infinite state space.
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only serves beef prevents the agent from experiencing regret ex post. For in-
stance, if she chooses the menu {b} and then finds that c is better ex post, would
she not regret choosing the menu {b} instead of either {b� c} or {c}?

Although it seems perfectly reasonable for an agent to regret her choice of
menu as well as her choice from a menu, the fundamentals of our model only
allow for the identification of regret associated with the latter choice. As we ar-
gue below, to identify the regret associated with the choice of menu, we would
need a richer primitive. Since regret from the choice of menu is unidentified in
our framework, our regret representation can be thought of as simply making
the normalization that it is zero. In this section, we illustrate these ideas by
discussing a simple extension of our model.

In our model, we use preferences over menus to identify the regret associ-
ated with a choice from a menu. To identify regret associated with the choice
of menu, we can look at an agent’s preference over menus of menus of lot-
teries. We now introduce one possible extension of our representation to this
framework. As above, let A denote the set of all closed subsets of Δ(Z). Let
A denote a generic closed subset of A. Thus we have A ∈ A ⊂ A. Suppose the
agent has a preference over closed subsets of A that is represented by22

V0(A)= max
A∈A

max
p∈A

∫
U
[u(p)−R0(p�A�A�u)]μ(du)�

where

R0(p�A�A�u)

=K0

[
max
B∈A

max
q∈B

u(q)− u(p)
]
+K1

[
max
q∈A

u(q)− u(p)
]
�

The first term of R0 represents the agent’s ex post regret for her choice of
menu, while the second term represents the agent’s regret for her choice
from that menu. Notice that if K0 = 0, then this representation simplifies to
V0(A) = maxA∈A V (A), where V is defined as in the definition of the regret
representation (see Equation (2)) with parameters (μ�K1).

Suppose C0 is a choice correspondence that describes the agent’s period 0
choice of menu, and suppose C0 is consistent with the period 0 choice suggested
by the above representation. Thus C0 is defined by

C0(A)= arg max
A∈A

{
max
p∈A

∫
U
[u(p)−R0(p�A�A�u)]μ(du)

}
�

22We are introducing this extension of our representation for comparison purposes only and,
therefore, will not present an axiomatic treatment.
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which simplifies to

C0(A) = arg max
A∈A

{
max
p∈A

[
(1 +K0 +K1)

∫
U
u(p)μ(du)

]

−K1

∫
U

max
p∈A

u(p)μ(du)

}
�

Let K = K1/(1 + K0), which implies 1 + K = (1 + K0 + K1)/(1 + K0). Since
dividing the above expression for C0 by the constant 1 +K0 does not affect the
arg max, we have

C0(A) = arg max
A∈A

{
max
p∈A

[
(1 +K)

∫
U
u(p)μ(du)

]

−K

∫
U

max
p∈A

u(p)μ(du)

}
�

Notice that if V is defined as in Equation (4), then C0(A)= arg maxA∈A V (A).
Thus the preference over menus induced by C0 has a regret representation
(μ�K), and hence our regret representation is consistent with a model in which
the agent also regrets her choice of menu. The constant K in our represen-
tation can be thought of as the additional regret associated with the agent’s
choice from a menu. However, notice that K �= K1 unless K0 = 0. Therefore, to
be more precise, we should say that our model identifies the regret associated
with choice from a menu relative to the regret associated with prior decisions.

When K0 > 0, the intuition for why K = K1/(1 +K0) < K1 is fairly straight-
forward. When choosing between two menus, one of which has a “better” al-
ternative and the other of which has “fewer” alternatives, the influences of
regret from the choice of menu and regret from the choice of alternative are
conflicting. The latter may be decreased by choosing the menu with fewer op-
tions, but choosing this menu can only increase the former. Thus the larger the
constant K0, the more the agent will prefer menus with better alternatives to
menus with fewer alternatives, giving the impression (when only the preference
over menus is observed) that her strength of regret for choice from menus is
smaller.

It is interesting to note that a parallel issue arises in the Gul and Pesendorfer
(2001) model of temptation. In their model, it is assumed that the agent is not
affected by temptations that lie in the future, and hence she does not suffer
from temptation in period 0. If the agent is, in fact, affected by future tempta-
tions in period 0, then by only observing the agent’s preference over menus, the
“strength” of her period 1 temptation will appear to be smaller than is actually
the case. The intuition for this misidentification is similar to the intuition be-
hind the misidentification in our regret model: The more the agent is affected
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by temptations that lie in the future, the more the agent’s preference in pe-
riod 0 already reflects the influence of temptation and, hence, the less she will
value commitment in period 0.

In the temptation literature, these issues have been resolved by consider-
ing dynamic models. Gul and Pesendorfer (2004) developed a dynamic model
of temptation in which it is axiomatized that the agent does not suffer from
future temptations, and Noor (2007a, 2007b) axiomatized a dynamic model
that allows for future temptations. Similar extensions of our regret model to
a dynamic framework may allow for the strength of regret at each stage to
be correctly identified. Aside from resolving the identification issue, this type
of extension of our model could have interesting implications for scenarios in
which the agent makes decisions in stages over time.

Dept. of Economics, Northwestern University, 2001 Sheridan Road, Evanston,
IL 60208, U.S.A.; tsarver@northwestern.edu.
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APPENDIX A: SUPPORT FUNCTIONS AND CONVEX SETS

In this section, we establish some preliminary results that will be used in our
subsequent proofs. First, we show that there is a natural relationship between
the sets in A and a certain class of continuous functions know as the support
functions. Dekel, Lipman, and Rustichini (2001) used this relationship in es-
tablishing their additive EU representation, and some of their intermediate
results regarding support functions will be relevant for establishing our repre-
sentation theorem. Therefore, we also discuss those results in this section.

Before proceeding, define Ac ⊂ A to be the set of convex menus. Then,
for all A ∈ A, we have co(A) ∈ Ac , where co(A) denotes the convex hull of
A. It will be useful to establish our representations first on this set of convex
menus. The following axiom will then allow us to easily extend our representa-
tion from Ac to A:

AXIOM 9 —Indifference to Randomization (IR): For every A ∈ A, A ∼
co(A).

It is proved in Lemma 6 of the Supplemental material to DLRS (2007) that
any preference that satisfies weak order and independence also satisfies IR.
Thus the preferences we consider all satisfy IR. Therefore, A ∼ co(A) and so
the utility of A can be defined to be that of co(A). Note that for any u ∈ R

Z

(i.e., any expected-utility function) and any A ∈A, we have

max
p∈A

p · u= max
p∈co(A)

p · u�

Thus if we establish our representations on Ac and apply the same functional
form to A, then the resulting function represents � on A.

mailto:tsarver@northwestern.edu
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We now associate each A ∈Ac with a continuous function. As in Section 2.1,
let U = {u ∈ R

Z :
∑

z∈Z uz = 0 and
∑

z∈Z u
2
z = 1} be the set of normalized (non-

constant) expected-utility functions on Δ(Z). Let C(U) be the set of all contin-
uous functions on U . When endowed with the supremum norm ‖ · ‖∞, C(U)
is a Banach space. Define an order ≥ on C(U) by f ≥ g if f (u) ≥ g(u) for all
u ∈ U . We can map Ac into C(U) by A �→ σA, where σA is defined for u ∈ U by

σA(u)= max
p∈A

p · u�

The function σA is called the support function of A. For a more complete in-
troduction to support functions, see Rockafellar (1970) or Schneider (1993).
The following lemma lists some of the important properties of the mapping
A �→ σA. Note that ‖ · ‖ denotes the Euclidean norm on Δ(Z).

LEMMA 6: For any A�B ∈Ac:
1. A ⊂ B ⇐⇒ σA ≤ σB.
2. σαA+(1−α)B = ασA + (1 − α)σB.
3. If p∗ = (1/|Z|� � � � �1/|Z|) and C = {p ∈ Δ(Z) :‖p − p∗‖ ≤ ε} for some

ε ∈ [0�1/|Z|], then σC = ε. In particular, σ{p∗} = 0.

PROOF: Parts 1 and 2. These are standard results that can be found in
Rockafellar (1970) or Schneider (1993).23 For instance, in Schneider (1993),
part 1 can be found on page 37 and part 2 follows from Theorem 1.7.5.

Part 3. Note that p∗ ·u= 0 for any u ∈ U , which follows from the requirement
that

∑
z uz = 0. Therefore, for any u ∈ U and p ∈C, using the Cauchy–Schwarz

inequality and the fact that ‖u‖ = 1, we have

p · u= (p−p∗) · u≤ ‖p−p∗‖ · ‖u‖ = ‖p−p∗‖ ≤ ε�

Now consider any u ∈ U and define p= p∗ + εu. For any z ∈ Z, we have |pz −
p∗

z| ≤ ‖p − p∗‖ ≤ 1/|Z|, which implies p ∈ Δ(Z). Clearly, we also have ‖p −
p∗‖ = ε and, hence, p ∈ C. Since ‖u‖ = 1, we have

p · u= p∗ · u+ ε‖u‖ = ε�

Therefore, σC(u) = maxp∈C(p · u)= ε for all u ∈ U . Q.E.D.

Let Σ= {σA ∈ C(U) :A ∈Ac} be the set of support functions. The following
representation result was proved in Dekel, Lipman, and Rustichini (2001) and
the Supplemental material to DLRS (2007)24:

23The standard setting for support functions is the set of nonempty closed and convex subsets
of R

n. However, by imposing our normalizations on the domain of the support functions U , the
standard results are easily adapted to our setting of nonempty closed and convex subsets of Δ(Z).

24W :Σ → R is Lipschitz continuous if there exists a constant κ such that W (σ) − W (σ ′) ≤
κ‖σ − σ ′‖∞ for all σ�σ ′ ∈ Σ, where ‖ · ‖∞ denotes the sup norm. Dekel, Lipman, and Rustichini
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LEMMA 7: If the preference � satisfies weak order, strong continuity, and inde-
pendence, then there exists a Lipschitz continuous (with respect to the sup norm)
linear functional W :Σ→ R such that for all A�B ∈Ac ,

W (σA)≥W (σB) ⇐⇒ A � B�

Hence we have a representation for � on Ac . This will serve as the starting
point of the proof of our representation theorem in Appendix C.1. Dekel, Lip-
man, and Rustichini (2001) proceeded by showing that the linear functional W
can be replaced with an integral over U , yielding an additive EU representa-
tion as in Equation (5). However, before making this transformation, we will
want to show that the dominance axiom implies that the functional W satis-
fies some additional properties, which will allow us to obtain our more specific
representation.

We now discuss how the linear functional W will be transformed into an in-
tegral. The Riesz representation theorem states that a continuous linear func-
tional on C(U) can be written as an integral with respect to some measure.
However, we are not yet able to apply the Riesz representation theorem since
W is only defined on Σ ⊂ C(U); we must first extend W to a continuous linear
functional on C(U). The following lemma shows that W has a unique continu-
ous linear extension to C(U).

LEMMA 8: Any Lipschitz continuous linear functional W :Σ→ R has a unique
continuous linear extension to C(U).

See Lemma 11 in the Supplemental material to DLRS (2007) for the proof.
We now give an outline of the construction used in DLRS (2007) because

it will be important in subsequent proofs. When we translate the dominance
axiom on � into properties of the functional W , we will need to show that
these properties hold for the extension of W to C(U).

First, define

H =
⋃
s≥0

sΣ= {sσ ∈ C(U) : s ≥ 0 and σ ∈ Σ}�

H∗ =H −H = {f ∈ C(U) : f = f1 − f2 for some f1� f2 ∈ H}�
The following important properties of H∗ are established in Lemma 10 of the
Supplemental material to DLRS (2007): (i) For any f ∈ H∗, there exist σ1�σ2 ∈
Σ and s > 0 such that f = s(σ1 − σ2), and (ii) H∗ is a dense linear subspace of
C(U). Using the first property, extend W to H∗ by linearity. That is, if f ∈ H∗,

(2001) assumed the standard continuity axiom instead of strong continuity and obtained a con-
tinuous functional W . DLRS (2007) showed that if the preference satisfies the strong continuity
axiom, then this functional is Lipschitz continuous.
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then there exist σ1�σ2 ∈ Σ and s > 0 such that f = s(σ1 − σ2), so define the
extension Ŵ :H∗ → R by Ŵ (f ) = s[W (σ1) − W (σ2)]. DLRS (2007) proved
that this extension is well defined and that it is the unique linear extension of
W to H∗. In addition, they proved that the Lipschitz continuity of W on Σ

implies that Ŵ is bounded. Therefore, apply the Hahn–Banach theorem (see
Theorem 4, p. 223, of Royden (1988)) to conclude that Ŵ can be extended to
a continuous linear functional W̄ :C(U) → R. Since H∗ is dense in C(U), it
follows that W̄ is the unique continuous linear extension of Ŵ to C(U).

APPENDIX B: DECOMPOSING BOUNDED LINEAR FUNCTIONALS

Our representation centers around how the measure from the additive EU
representation is divided into a positive and negative measure. Equivalently,
we are interested in how the continuous linear functional described in Appen-
dix A decomposes into the difference of two positive linear functionals. The
following lemma offers a construction of these two functionals.

LEMMA 9: Suppose W is a bounded linear functional on C(U). For each f ∈
C(U) such that f ≥ 0, define

W +(f ) = sup
0≤g≤f

W (g)�

For arbitrary f ∈C(U), since there exists M ≥ 0 such that f +M ≥ 0, define

W +(f ) =W +(f +M)−W +(M)�

Then W + is a well-defined (i.e., the choice of M is unimportant), positive linear
functional. If we define W − = W + − W , then W − is also a positive linear func-
tional.

See Section 13.5 of Royden (1988) for the proof.

APPENDIX C: PROOFS

C.1. Proof of Theorem 1

The necessity of the axioms was established in Lemmas 1 and 2. We now
prove that if � satisfies weak order, strong continuity, independence, and dom-
inance, then it has a regret representation. We begin by making a few manipu-
lations of our axioms. First, we note the relationship between strong continuity
and the following continuity axiom:

AXIOM 10—Continuity: For all A ∈ A, the sets {B ∈ A :B � A} and {B ∈
A :B �A} are closed (in the Hausdorff metric topology).



292 TODD SARVER

It is easily verified that continuity implies vNM continuity. Continuity and
L continuity are not directly comparable, but when combined with our other
axioms, strong continuity is stronger than continuity:

LEMMA 10: If � satisfies weak order, strong continuity, and independence, then
it satisfies continuity.

PROOF: This result follows from Theorem 2 and the continuity of the addi-
tive EU representation, which is proved in DLRS (2007).25 Q.E.D.

The following stronger version of the dominance axiom will be important:

AXIOM 11—Strong Dominance: If for every q ∈ B there exists a p ∈ A such
that {p} � {q}, then A�A∪B.

Given Lemma 10, the following lemma establishes that in the presence of
our other axioms, dominance and strong dominance are equivalent:

LEMMA 11: Suppose � satisfies weak order and continuity. Then � satisfies
dominance if and only if it satisfies strong dominance.

PROOF: Obviously, strong dominance implies dominance. We want to show
that dominance implies strong dominance. Suppose that � satisfies domi-
nance, and that A and B are such that for all q ∈ B, the exists p ∈ A such
that {p} � {q}.

Note that since Δ(Z) is separable, we can choose a countable dense subset
of B, say B∗ = {q1� q2� � � �}. Define the sequence {Bn} by Bn = {q1� � � � � qn}, so
that Bn ⊂ Bn+1 for all n and B∗ = ⋃∞

n=1 Bn. Then it is a standard result that
Bn → B∗ = B in the Hausdorff metric topology. Now q1 ∈ B and, hence, there
exists p ∈ A such that {p} � {q1}. Thus dominance implies A � A ∪ {p1} =
A ∪ B1. Similarly, there exists p ∈ A with {p} � {q2}, so dominance implies
A∪B1 �A∪B1 ∪{q2} =A∪B2. Therefore, by transitivity A �A∪B2. A simple
induction argument extends this line of reasoning to show that A �A∪Bn for
all n ∈ N.

Therefore, for each n ∈ N, A∪Bn ∈ {C ∈A :C �A}. Since the lower contour
sets are closed by the continuity assumption and A ∪ Bn → A ∪ B, we have
A �A∪B, as desired. Q.E.D.

From Lemma 7, we know that there exists a Lipschitz continuous linear func-
tional W :Σ → R such that for all A�B ∈ Ac , W (σA) ≥ W (σB) if and only if

25The necessity of strong continuity was also discussed by DLRS (2007), and they showed
by counterexample that weak order, continuity, and independence alone are not sufficient to
guarantee the existence of an additive EU representation.
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A � B. Define a function v :Δ(Z) → R by v(p) = W (σ{p}). By Lemma 6 and
the linearity of W ,

v(αp+ (1 − α)q) = W (σ{αp+(1−α)q}) =W (ασ{p} + (1 − α)σ{q})

= αW (σ{p})+ (1 − α)W (σ{q})

= αv(p)+ (1 − α)v(q)�

Hence, v is affine. By the definition of U (see Equation (1)), it contains the
normalization of any affine function on Δ(Z). Therefore, there exist ū ∈ U ,
ᾱ≥ 0, and β̄ ∈ R such that v = ᾱū+ β̄. If we take p∗ = (1/|Z|� � � � �1/|Z|), then
σ{p∗} = 0 by Lemma 6 and, hence, v(p∗) = W (0) = 0. We also have p∗ · ū = 0
and thus β̄= 0. Therefore, v = ᾱū.

We now use the strong dominance to obtain a particular property of W . Sup-
pose ᾱσA(ū) = ᾱσB(ū) and σA ≤ σB. Choose any p ∈ arg maxq∈A q · ū. Then,
for any q ∈ B,

ᾱ(q · ū)≤ ᾱσB(ū)= ᾱσA(ū)= ᾱ(p · ū)�
which implies v(p) ≥ v(q) or, equivalently, {p} � {q}. Strong dominance there-
fore implies A � A ∪ B. By Lemma 6, σA ≤ σB implies A ⊂ B, so A ∪ B = B.
Hence, A � B, so we have W (σA) ≥ W (σB). We now want to generalize this
property to all functions in C(U). We say that W :C(U) → R has the domina-
tion property if for all f�g ∈ C(U),26

ᾱf (ū)= ᾱg(ū) and f ≤ g �⇒ W (f)≥ W (g)�

We have just demonstrated that W has the domination property on Σ. We
now show that the extension of W to C(U) described in Lemma 8 also has the
domination property.

LEMMA 12: If W is a Lipschitz continuous linear functional on Σ that has the
domination property, then the unique continuous linear extension of W to C(U)
also has the domination property.

PROOF: We will abuse notation slightly and let W also denote the extension
of W to C(U). We first show that the domination property holds on the set H∗

defined in Appendix A. As noted in that section, H∗ is a dense linear subspace
of C(U). Consider any f�g ∈ H∗ such that ᾱf (ū) = ᾱg(ū) and f ≤ g. Since
H∗ is a linear subspace, h = g − f ∈ H∗. Also, note that ᾱh(ū) = 0 and h ≥ 0.
Proving the domination property holds on H∗ thus only requires that we show
for h ∈ H∗, that ᾱh(ū) = 0 and h ≥ 0 implies W (h) ≤ 0. Consider such an h.

26Note that if ᾱ > 0, then we can drop it from these conditions. We include ᾱ so as to consider
the two cases, ᾱ= 0 and ᾱ > 0, simultaneously.
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As discussed in Appendix A, there exist σ1�σ2 ∈ Σ and s > 0 such that h =
s(σ1 −σ2). The assumed properties of h imply ᾱσ1(ū)= ᾱσ2(ū) and σ1 ≥ σ2.
Since the domination property holds on Σ, this implies W (σ1) ≤ W (σ2). The
linearity of W therefore implies W (h) ≤ 0.

We now prove that the domination property holds on C(U). Since C(U) is a
linear space, it again suffices to show that for h ∈ C(U), ᾱh(ū) = 0 and h ≥ 0
implies W (h) ≤ 0. Consider such an h. Since H∗ is dense in C(U), there exists
a sequence {hn} ⊂H∗ such that hn → h in the sup-norm topology. Without loss
of generality, we can assume that ᾱhn(ū) = 0 and hn ≥ 0 for all n. To see this,
consider the sequence {h′

n} ⊂H∗ defined by

h′
n =

{
hn� if ᾱ= 0,
hn − hn(ū)� if ᾱ > 0.

We claim that ᾱh′
n(ū) = 0 and h′

n → h. If ᾱ = 0, then this is obvious. If ᾱ > 0,
then ᾱh′

n(ū)= ᾱ[hn(ū)− hn(ū)] = 0 and

‖h′
n − h‖∞ = ‖(hn − hn(ū))− h‖∞ ≤ ‖hn − h‖∞ + ‖hn(ū)‖∞�

where ‖ · ‖∞ denotes the sup norm on C(U). Since ᾱ > 0, h(ū) = 0, so hn → h
implies ‖hn(ū)‖∞ → 0. Clearly, ‖hn − h‖∞ → 0 because hn → h, and, there-
fore, h′

n → h. Now consider the sequence {h′′
n} ⊂ H∗ defined by h′′

n(u) =
max{h′

n(u)�0}.27 Since h≥ 0, it must be that ‖h′′
n −h‖∞ ≤ ‖h′

n −h‖∞ and, there-
fore, h′′

n → h. Now, for all n ∈ N, we have h′′
n ∈ H∗, ᾱh′′

n(ū) = 0, and h′′
n ≥ 0.

Hence, the domination property on H∗ implies that W (h′′
n) ≤ W (0) = 0. By

the continuity of W on C(U), this implies W (h) ≤ 0, which completes the
proof. Q.E.D.

So far, we have shown that there exists a continuous linear functional W
on C(U) that has the domination property, and such that W (σA) ≥ W (σB) if
and only if A � B. Now, apply the technique described in Appendix B to write
W as the difference of two positive linear functionals, W = W + − W −. The
domination property has an important implication for W +.

LEMMA 13: Suppose W has the domination property on C(U). Then, for any
σ1�σ2 ∈ Σ, ᾱσ1(ū)≥ ᾱσ2(ū) �⇒W +(σ1)≥W +(σ2).

PROOF: First, consider any f1� f2 ∈ C(U) such that f1� f2 ≥ 0 and ᾱf1(ū) ≥
ᾱf2(ū). Lemma 9 states that

W +(f2)= sup
0≤g≤f2

W (g)�

27The functions in this sequence are elements of H∗ because 0 ∈ H∗ and H∗ is a vector lattice,
which implies it contains the pointwise maximum of any two of its elements. A proof that H∗ is a
vector lattice can be found in Lemma 11 of Dekel, Lipman, and Rustichini (2001).
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Choose an arbitrary g ∈ C(U) such that 0 ≤ g ≤ f2. Then define h by h(u) =
min{g(u)� f1(u)}. Clearly, h ∈ C(U) and 0 ≤ h ≤ f1. Now ᾱg(ū) ≤ ᾱf2(ū) ≤
ᾱf1(ū), and, hence, ᾱh(ū) = ᾱg(ū). Since we also have h ≤ g, the domina-
tion property implies W (g) ≤ W (h) ≤ W +(f1). The choice of 0 ≤ g ≤ f2 was
arbitrary, so therefore W +(f1)≥W +(f2).

Now, consider any σ1�σ2 ∈ Σ such that ᾱσ1(ū) ≥ ᾱσ2(ū). Since each of
these functions is bounded, there exists an M ≥ 0 such that σ1 +M , σ2 +M ≥ 0.
Since ᾱ(σ1 +M)(ū) ≥ ᾱ(σ2 +M)(ū), the results of the previous paragraph im-
ply W +(σ1 +M) ≥ W +(σ2 +M). Then, by the definition of W +,

W +(σ1) = W +(σ1 +M)−W +(M)≥ W +(σ2 +M)−W +(M)

= W +(σ2)�

which completes the proof. Q.E.D.

LEMMA 14: Let X be a nonempty convex subset of a vector space, and let u1

and u2 be two affine functionals on X . There exist α ≥ 0 and β ∈ R such that
u2 = αu1 +β if and only if u1(x) ≥ u1(y)�⇒ u2(x) ≥ u2(y) for all x� y ∈ X .

This is a standard result. See, for example, Corollary B.3 of Ghirardato, Mac-
cheroni, and Marinacci (2004).

It is easily verified that the mapping σ �→ ᾱσ(ū) defines a linear functional
on Σ. Since W + is also linear, Lemmas 13 and 14 imply there exist α ≥ 0 and
β ∈ R such that W +(σ)= αᾱσ(ū)+β. Letting σ = 0, we see that β= 0. Thus
for all σ ∈ Σ, we have

W (σ)= αᾱσ(ū)−W −(σ)�(12)

Although it may not be immediately obvious, we have almost obtained a regret
representation. The remaining steps are completed in the following lemma.

LEMMA 15: If W satisfies the condition given in Equation (12), then � has a
regret representation.

PROOF: First, note that we can write Equation (12) as

W (σ)= (2 + α)ᾱσ(ū)− [2ᾱσ(ū)+W −(σ)]�
This step is only necessary to ensure that the coefficient of ᾱσ(ū) is greater
than unity. We will see shortly why this is important.

It is straightforward to show that the mapping f �→ f (ū) is a positive lin-
ear functional on C(U). Therefore, if we define T :C(U) → R by T(f ) =
2ᾱf (ū) + W −(f ) for f ∈ C(U), then T is also a positive linear functional
on C(U). Therefore, the Riesz–Markov theorem (see Section 13.4 of Royden
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(1988)) implies there is a finite positive Borel measure μ on U such that for
every f ∈ C(U),

T(f )=
∫
U
f (u)μ(du)�

Since σA(u)= maxp∈A p · u= maxp∈A u(p), for A ∈Ac we have

W (σA)= (2 + α)ᾱσA(ū)−
∫
U

max
p∈A

u(p)μ(du)�(13)

Recall that ᾱ and ū are defined so that W (σ{p}) = v(p) = ᾱ(p · ū) for any
p ∈ Δ(Z). We also have σ{p}(u) = p · u; hence Equation (13) implies (1 +
α)ᾱ(p · ū) = ∫

U u(p)μ(du). If we let K = 1 + α, then Equation (13) can be
written as

W (σA) = (1 +K)ᾱmax
p∈A

(p · ū)−
∫
U

max
q∈A

u(q)μ(du)(14)

= max
p∈A

[
1
K

∫
U
u(p)μ(du)+

∫
U
u(p)μ(du)

−
∫
U

max
q∈A

u(q)μ(du)

]

= 1
K

max
p∈A

∫
U

[
u(p)−K

[
max
q∈A

u(q)− u(p)
]]
μ(du)�

It is clear from Equation (14) that (μ�K) is a regret representation for �
if μ is a probability measure. If μ is not a probability measure, then it can
be normalized as follows: If μ(U) > 0, then let μ̂ = μ/μ(U), and (μ̂�K) is
a regret representation for �. If μ(U) = 0, then this type of renormaliza-
tion is not possible. However, in this case, it is obvious from Equation (14)
that W (σA) = 0 for all A ∈ Ac . Thus � must be trivial in that A ∼ B for all
A�B ∈A. Therefore, if we fix any u ∈ U and take a probability measure μ̂ such
that μ̂({u}) = μ̂({−u}) = 1/2, then (μ̂�0) is a regret representation for this
preference. Q.E.D.

C.2. Proof of Lemma 4

Clearly, if � satisfies singleton nontriviality, then ‖v‖ �= 0. To see the oppo-
site implication, suppose ‖v‖ �= 0. Then, treating v as a vector in R

Z , there must
be some z̄ ∈ Z such that vz̄ �= 0. Without loss of generality, suppose vz̄ > 0.
By Equation (8), vz̄ > 0 implies there exists some ẑ ∈ Z such that vẑ < 0. Let
p= δz̄ (i.e., p is the lottery that yields z̄ with probability 1) and q = δẑ . Then

v(p)= vz̄ > vẑ = v(q)�
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so � satisfies singleton nontriviality.
It remains only to prove that ‖v‖ �= 0 �⇒ v

‖v‖ ∈ U . By Equation (8),∑
z

vz
‖v‖ = 0. Clearly, we also have ‖ v

‖v‖‖ = 1 and, hence, v
‖v‖ ∈ U . Q.E.D.

C.3. Proof of Theorem 4

The following lemmas will be useful at several points in the proof of this
theorem:

LEMMA 16: If (μ�K) and (μ′�K′) represent the same preference and r ′ = αr,
then K′(1 − ‖v′‖)= αK(1 − ‖v‖).

PROOF: Define p∗ = (1/|Z|� � � � �1/|Z|) and let C = {p ∈ Δ(Z) :‖p−p∗‖ ≤
ε} for some ε ∈ (0�1/|Z|). We claim that r(C) = Kε(1 − ‖v‖) and r ′(C) =
K′ε(1 − ‖v′‖). By Lemma 6, we have maxp∈C(p · u) = σC(u) = ε for all u ∈ U .
Therefore,

r(C) = K

[∫
U

max
p∈C

(p · u)μ(du)− max
p∈C

∫
U
(p · u)μ(du)

]

= K
[
ε− max

p∈C
v(p)

]
�

If ‖v‖ = 0, then we have r(C) =Kε=Kε(1−‖v‖), as desired. If ‖v‖ > 0, then
by Lemma 4, v

‖v‖ ∈ U . Therefore, Lemma 6 implies

max
p∈C

v(p) = ‖v‖max
p∈C

(
p · v

‖v‖
)

= ‖v‖σC

(
v

‖v‖
)

= ε‖v‖

and, hence, r(C) = Kε(1 − ‖v‖). A similar argument shows r ′(C) = K′ε(1 −
‖v′‖). Since r ′ = αr, we have K′(1 − ‖v′‖)= αK(1 − ‖v‖). Q.E.D.

LEMMA 17: If (μ�K) represents a preference that has nontrivial regret, then
‖v‖ < 1.

PROOF: If ‖v‖ = 0, then the assertion is obviously true, so suppose ‖v‖ > 0.
We will first prove that ‖v‖ ≤ 1 with equality if and only if μ({v/‖v‖}) = 1. To
see this claim is true, note that for any u ∈ U , the Cauchy–Schwarz inequality
implies v · u≤ ‖v‖‖u‖ = ‖v‖ with equality if and only if v

‖v‖ = u. Therefore,

‖v‖ = v

‖v‖ · v =
∫
U

(
v

‖v‖ · u
)
μ(du) ≤

∫
U

1μ(du)= 1

with equality if and only if μ({v/‖v‖}) = 1. Note also that if μ({u}) = 1 for
some u ∈ U , then the preference induced by this representation must have
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trivial regret. Thus if the preference induced by (μ�K) has nontrivial regret,
then ‖v‖ < 1. Q.E.D.

Theorem 4, Part 1—if. First, note that since � has nontrivial regret, Lem-
ma 17 implies 1−‖v‖> 0 and hence 1

1−‖v‖ > 0. Suppose μ′ = αμ+ (1−α)δv/‖v‖
and K′ = [1 + 1−α

α‖v‖ ]K for some 0 < α < 1
1−‖v‖ . We will prove that (μ′�K′) and

(μ�K) represent the same preference by appealing to Theorem 3. That is, we
will find ᾱ > 0 such that v′ = ᾱv and r ′ = ᾱr. First, note that for any p ∈ Δ(Z),

v′(p) =
∫
U
(p · u)μ′(du)

= α

∫
U
(p · u)μ(du)+ (1 − α)

∫
U
(p · u)δv/‖v‖(du)

=
[
α+ 1 − α

‖v‖
]
v(p)�

Thus, take ᾱ = α+ 1−α
‖v‖ . Since α< 1

1−‖v‖ , it follows that ᾱ > 0.
It remains only to prove that r ′ = ᾱr. For any A ∈A,

r ′(A) = K′
[∫

U
max
p∈A

(p · u)μ′(du)− max
p∈A

∫
U
(p · u)μ′(du)

]

= K′
[
α

∫
U

max
p∈A

(p · u)μ(du)+ (1 − α)

∫
U

max
p∈A

(p · u)δv/‖v‖(du)

− max
p∈A

v′(p)
]

= K′
[
α

∫
U

max
p∈A

(p · u)μ(du)+ 1 − α

‖v‖ max
p∈A

v(p)

−
[
α+ 1 − α

‖v‖
]

max
p∈A

v(p)

]

= K′α
[∫

U
max
p∈A

(p · u)μ(du)− max
p∈A

v(p)

]
= α

K′

K
r(A)�

However, K′ = [1 + 1−α
α‖v‖ ]K implies αK′

K
= α+ 1−α

‖v‖ = ᾱ, as desired.
Theorem 4, Part 1—only if. We will first find 0 < α < 1

1−‖v‖ such that K′ =
[1+ 1−α

α‖v‖ ]K. By Theorem 3, there exist ᾱ > 0 such that v′ = ᾱv and r ′ = ᾱr. Since
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‖v‖ �= 0 by singleton nontriviality, this implies ᾱ= ‖v′‖
‖v‖ . Thus r ′ = ᾱr = ‖v′‖

‖v‖ r and
Lemma 16 implies

K′(1 − ‖v′‖) = ‖v′‖
‖v‖ K(1 − ‖v‖)�(15)

By assumption, the preference induced by (μ′�K′) and (μ�K) has nontrivial
regret, so Lemma 17 implies 1 − ‖v′‖ > 0 and 1 − ‖v‖ > 0. Therefore, Equa-
tion (15) can be written as K′ = ‖v′‖

‖v‖ (
1−‖v‖
1−‖v′‖)K. Now define α = 1−‖v′‖

1−‖v‖ and note
that 0 <α< 1

1−‖v‖ . It is easily verified that ‖v′‖
‖v‖ = α+ 1−α

‖v‖ and, hence,

K′ = ‖v′‖
‖v‖

1
α
K =

(
α+ 1 − α

‖v‖
)

1
α
K =

[
1 + 1 − α

α‖v‖
]
K�(16)

We now show that μ′ = αμ + (1 − α)δv/‖v‖. Let A ∈ Ac be arbitrary. Since
r ′ = ‖v′‖

‖v‖ r, we have

K′
[∫

U
max
p∈A

(p · u)μ′(du)− max
p∈A

v′(p)
]

= ‖v′‖
‖v‖ K

[∫
U

max
p∈A

(p · u)μ(du)− max
p∈A

v(p)

]
�

By the first part of Equation (16), α= ‖v′‖
‖v‖

K
K′ and, therefore, we have

∫
U

max
p∈A

(p · u)μ′(du)− max
p∈A

v′(p)

= α

∫
U

max
p∈A

(p · u)μ(du)− αmax
p∈A

v(p)�

Recall that v′ = ‖v′‖
‖v‖ v. It is also easily verified that ‖v′‖−α‖v‖ = 1−α. There-

fore, the above equation implies∫
U

max
p∈A

(p · u)μ′(du)

= α

∫
U

max
p∈A

(p · u)μ(du)+ (‖v′‖ − α‖v‖)max
p∈A

(
p · v

‖v‖
)

= α

∫
U

max
p∈A

(p · u)μ(du)+ (1 − α)

∫
U

max
p∈A

(p · u)δv/‖v‖(du)

=
∫
U

max
p∈A

(p · u)[αμ+ (1 − α)δv/‖v‖](du)�
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Using the definition of the support function from Appendix A, we have∫
U
σA(u)μ

′(du) =
∫
U
σA(u)[αμ+ (1 − α)δv/‖v‖](du)�

Given this result, the following lemma proves that μ′ = αμ+ (1 − α)δv/‖v‖:

LEMMA 18: If ν and ν′ are two Borel probability measures on U and if∫
U σA(u)ν(du)= ∫

U σA(u)ν
′(du) for all A ∈Ac , then ν = ν′.

PROOF: As in Appendix A, let Σ= {σA ∈ C(U) :A ∈Ac}. Define W :Σ→ R

by

W (σ)=
∫
U
σ(u)ν′(du)−

∫
U
σ(u)ν(du)

for σ ∈ Σ. By assumption, we have W (σ) = 0 for all σ ∈ Σ. It is not difficult
to show that W is Lipschitz continuous with Lipschitz constant ν′(U) + ν(U).
Therefore, by Lemma 8, W has a unique continuous linear extension to C(U).
Obviously, W1 :C(U) → R, defined by W1(f ) = 0 for f ∈ C(U), is a contin-
uous linear extension of W . Another continuous linear extension of W is
W2 :C(U)→ R, defined for f ∈C(U) by

W2(f ) =
∫
U
f (u)ν′(du)−

∫
U
f (u)ν(du)�

Since the extension of W must be unique, we know that W1 = W2 or, equiva-
lently, ∫

U
f (u)ν′(du)=

∫
U
f (u)ν(du)(17)

for all f ∈ C(U). It is a standard result that Equation (17) implies ν′ = ν
(see Theorem 14.1 in Aliprantis and Border (1999)), which completes the
proof. Q.E.D.

Theorem 4, Part 2—if. Let ᾱ = K′
K
> 0. By Lemma 4, ‖v‖ = 0, and since μ′ =

μ, this implies ‖v′‖ = 0. Therefore, v′ = 0 = ᾱv. For any A ∈A,

r ′(A) =K′
∫
U

max
p∈A

(p · u)μ′(du) = ᾱK

∫
U

max
p∈A

(p · u)μ(du) = ᾱr(A)�

Applying Theorem 3, we conclude that (μ′�K′) also represents �.
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Theorem 4, Part 2—only if. By Theorem 3, there exists ᾱ > 0 such that v′ = ᾱv
and r ′ = ᾱr. Therefore, for any A ∈Ac ,

K′
∫
U

max
p∈A

(p · u)μ′(du)−K′ max
p∈A

v′(p)

= ᾱK

∫
U

max
p∈A

(p · u)μ(du)− ᾱKmax
p∈A

v(p)�

However, ‖v‖ = ‖v′‖ = 0 by Lemma 4, and hence v = v′ = 0. By Lemma 16,
K′ = ᾱK > 0. Therefore,∫

U
max
p∈A

(p · u)μ′(du) =
∫
U

max
p∈A

(p · u)μ(du)�

In the language of support functions, we have∫
U
σA(u)μ

′(du) =
∫
U
σA(u)μ(du)

for all A ∈Ac . Lemma 18 therefore implies μ′ = μ. Q.E.D.

C.4. Proof of Theorem 5

If. Suppose Equation (10) holds. Let A�B ∈ A be any menus such that A
dominates B with respect to �1 and �2, and such that A�2 A∪B.

Since A �2 A ∪ B, it must be that maxp∈A ū(p) < maxp∈A∪B ū(p) for some
ū ∈ supp(μ2). It is easily verified that this implies there exists an open neigh-
borhood E ⊂ U of ū such that

max
p∈A

u(p) < max
p∈A∪B

u(p) ∀u ∈E�(18)

Since A dominates B with respect to �1 and �2, it must also be that
maxp∈A v1(p) = maxp∈A∪B v1(p) and maxp∈A v2(p) = maxp∈A∪B v2(p). There-
fore, ū cannot equal v1

‖v1‖ or v2
‖v2‖ , so by Equation (10), ū ∈ supp(μ1). By the

definition of the support of a measure, μ1(E) > 0 and, hence, Equation (18)
implies ∫

U
max
p∈A

u(p)μ1(du) <

∫
U

max
p∈A∪B

u(p)μ1(du)�

Moreover, we have already shown that

max
p∈A

∫
U
u(p)μ1(du) = max

p∈A
v1(p)

= max
p∈A∪B

v1(p)= max
p∈A∪B

∫
U
u(p)μ1(du)�
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Finally, since �1 is a nontrivial regret preference, it must be that K1 > 0. There-
fore, using the formulation of the regret representation from Equation (4), it
follows that V1(A) > V1(A ∪ B), that is, A �1 A ∪ B. Thus �1 is more regret
prone than �2.

Only if. We prove by establishing the contrapositive. First, note that by
Lemma 4, singleton nontriviality implies ‖v1‖ > 0, ‖v2‖ > 0, and v1

‖v1‖ �
v2

‖v2‖ ∈ U .
Now, suppose there exists ū ∈ supp(μ2) such that ū /∈ supp(μ1)∪{ v1

‖v1‖ } ∪ { v2
‖v2‖ }.

We will show that this implies that �1 is not more regret prone than �2.
Since the support of a measure is closed, there exists an open neighborhood

E ⊂ U of ū such that E ∩ [supp(μ1)∪ { v1
‖v1‖ } ∪ { v2

‖v2‖ }] = ∅. Therefore, μ1(E)= 0
and μ2(E) > 0. Fix any ε > 0. Since E is open, it is possible to choose a func-
tion f ∈ C(U) such that f (ū) > 2ε and f (u) < −ε for all u /∈ E. Define H∗ as
in Appendix A and recall that H∗ is dense in C(U) by Lemma 10 in the Sup-
plemental material to DLRS (2007). Therefore, there exists g ∈ H∗ such that
‖f − g‖∞ < ε. It follows that

g(ū)≥ f (ū)− ‖f − g‖∞ > f(ū)− ε > ε

and

g(u)≤ f (u)+ ‖f − g‖∞ < f(u)+ ε < 0 ∀u /∈ E�

By Lemma 10 in the Supplemental material to DLRS (2007), there exist
A�B ∈Ac and s > 0 such that g = s(σB −σA). If we let ĝ = s(σA∪B −σA), then
it is easily verified that ĝ(u) = max{g(u)�0}. Therefore, ĝ(ū) = g(ū) > ε and
ĝ(u) = 0 for u /∈ E. Since ĝ is continuous, μ1(E) = 0, and ū ∈ supp(μ2), we
have ∫

U
ĝ(u)μ1(du) = 0 and

∫
U
ĝ(u)μ2(du) > 0�

This implies∫
U

max
p∈A∪B

u(p)μ1(du) =
∫
U
σA∪B(u)μ1(du) =

∫
U
σA(u)μ1(du)

=
∫
U

max
p∈A

u(p)μ1(du)

and ∫
U

max
p∈A∪B

u(p)μ2(du) =
∫
U
σA∪B(u)μ2(du) >

∫
U
σA(u)μ2(du)

=
∫
U

max
p∈A

u(p)μ2(du)�
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Since ĝ(u) = 0 for u /∈ E and v1
‖v1‖ �

v2
‖v2‖ /∈ E, we have σA∪B(

v1
‖v1‖) = σA(

v1
‖v1‖)

and σA∪B(
v2

‖v2‖)= σA(
v2

‖v2‖). Therefore,

max
p∈A

∫
U
u(p)μ1(du) = max

p∈A
v1(p)= max

p∈A∪B
v1(p)

= max
p∈A∪B

∫
U
u(p)μ1(du)

and

max
p∈A

∫
U
u(p)μ2(du) = max

p∈A
v2(p)= max

p∈A∪B
v2(p)

= max
p∈A∪B

∫
U
u(p)μ2(du)�

In addition, this implies that A dominates B with respect to �1 and �2. Since
�2 is a nontrivial regret preference, it must be that K2 > 0. Therefore, using
the formulation of the regret representation from Equation (4), we have shown
that V1(A) = V1(A ∪ B) and V2(A) > V2(A ∪ B). Thus A dominates B with
respect to �1 and �2, A�2 A∪B, and A ∼1 A∪B. Therefore, �1 is not more
regret prone than �2. Q.E.D.

C.5. Proof of Theorem 6

1 ⇒ 2. Since �1 is more regret averse than �2, for any q�p ∈ Δ(Z), we have

{q} �1 {p} �⇒ {q} �2 {p}
or, equivalently,

v1(q) ≥ v1(p) �⇒ v2(q) ≥ v2(p)�

Since v1 and v2 are affine functions, Lemma 14 implies that there exist α ≥ 0
and β ∈ R such that v2 = αv1 +β. By the argument given in footnote 10, β= 0.
Also, if α= 0, then v2(p)= 0 for all p ∈ Δ(Z), violating singleton nontriviality.
Thus α> 0.

We now show that r2 ≤ αr1. Let A ∈ A be arbitrary. We know by singleton
triviality that there exist p�q ∈ Δ(Z) such that {p} �1 {q}. Let p̂ = 1

2p+ 1
2q. By

independence, {p} �1 {p̂} �1 {q}. By continuity, there exists λ ∈ (0�1) such that
{p} �1 λA + (1 − λ){p̂} �1 {q}. Using continuity again, we know there exists
λ̄ ∈ [0�1] such that

λA+ (1 − λ){p̂} ∼1 λ̄{p} + (1 − λ̄){q}�(19)
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Let p̄ = λ̄p+ (1 − λ̄)q. Since �1 is more regret averse than �2, we have

λA+ (1 − λ){p̂} �2 {p̄}�(20)

Equations (19) and (20) imply

λ[αV1(A)] + (1 − λ)[αv1(p̂)]
= αV1[λA+ (1 − λ){p̂}] = αv1(p̄)= v2(p̄)

≤ V2[λA+ (1 − λ){p̂}] = λV2(A)+ (1 − λ)[αv1(p̂)]�
which implies V2(A) ≥ αV1(A). Therefore, for any A ∈A,

r2(A) = max
p∈A

v2(p)− V2(A) ≤ max
p∈A

[αv1(p)] − αV1(A) = αr1(A)�

as desired.
2 ⇒ 1. Suppose {p} �2 A or, equivalently, v2(p) > V2(A). Since v2 = αv1

and r2 ≤ αr1, we have

αv1(p) = v2(p) > V2(A) = max
q∈A

v2(q)− r2(A)

≥ max
q∈A

[αv1(q)] − αr1(A) = αV1(A)�

Thus {p} �1 A, so �1 is more regret averse than �2. Q.E.D.

C.6. Proof of Lemma 5

Defining the strong dominance axiom as in Appendix C.1, from Lemmas 10
and 11 we know that any regret preference satisfies strong dominance. Now,
consider any A�B ∈ A. We claim that either A � A ∪ B or B � A ∪ B. For
suppose A ∪ B � A. Then, by strong dominance, there must be some p ∈ B
such that {p} � {q} for all q ∈ A. However, applying strong dominance again,
we have that B �A∪B. Thus either A �A∪B or B �A∪B.

Suppose A � B. To show that � satisfies positive set betweenness, we must
prove that A �A∪B. From the previous paragraph, we have either A �A∪B
or A � B �A∪B. Hence, A �A∪B. Q.E.D.
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