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Preface

These notes grew out of my lectures for the last half-semester of the PhD core microeconomics
sequence in the Economics Department at Duke University. The intent of the course (and
hence of these notes) is twofold: The first goal is to expose students to some recent topics
and tools in microeconomics that are not covered in many traditional textbooks. Second,
as the final component of our core PhD sequence, this course aims to synthesize and extend
many of the concepts that are covered in earlier parts of the microeconomics sequence.

Broadly speaking, these notes focus on comparisons of risk and information and on how
individuals, firms, and other economic agents respond to changes in deterministic or stochas-
tic variables, or to information. The central tools for this type of analysis are referred to as
monotone comparative statics, and they can be used to address a wide array of economic
questions. For example, under what conditions on a production function will a decrease in
the price of labor lead to an increase in the demand for capital? What type of change to the
distribution of a risky asset will lead an expected-utility maximizer to increase zir investment
in that asset?1 How do cost changes for one firm affect the equilibrium production decisions
of competing firms?

To address such questions, these notes begin with the study of monotone comparative
statics in deterministic environments. Even within this relatively simple setting of determin-
istic single-agent decision problems, the comparative statics results we develop find numerous
applications. These concepts are then extended to multi-agent strategic environments, where
we obtain equilibrium existence results and comparative statics results for games with strate-
gic complementarities. Next, we expand our analysis to deal with risk. In this segment of the
notes, we first revisit several important stochastic orders that may be familiar from prior mi-
croeconomics courses: first-order stochastic dominance, the monotone likelihood ratio order,
and second-order stochastic dominance. We then explore conditions under which endoge-
nous decision variables respond monotonically to changes in the distribution of exogenous
variables according to one of these stochastic orders. The final portion of the notes concerns
imperfect information and signals. There, we examine different approaches to modeling
information and present Blackwell’s classic results on the comparison of experiments.

Some portions of these notes drew inspiration from the excellent treatments offered by
other instructors in their teaching materials, including Eddie Dekel, Jonathan Levin, and

1I’ll often utilize the gender neutral pronouns ze/zir/zirs/zirself.

https://studentaffairs.duke.edu/csgd/training-resources/gender-pronouns
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Muhamet Yildiz. I have also received a great deal of helpful feedback from past students
and teaching assistants. A special thanks goes out to Zichang Wang for creating many of
the figures for these notes.

Todd Sarver
February 2023
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References and Assigned Readings

Primary readings:

(1) Milgrom and Shannon (1994) (recommended).
(2) Dekel notes on Monotone Comparative Statics (optional).

Additional references:

(1) Topkis (1998)

1.1 Motivation and Intuition

1.1.1 Motivating Questions

We are often interested in the response of different economic agents to some change in the
underlying environment or conditions. We may also be interested in the indirect impact of
such changes on the equilibrium behavior of other agents. Monotone comparative statics
provides a set of tools that allow us to address these questions and make precise qualitative
predictions in many instances.

For a concrete example, consider a firm’s production decisions. Monotone comparative
statics can be used to answer the following types of questions:

• How does a monopoly production decision respond to a change in production costs?
• What is the response of a firm’s demand for one input to a change in the price of that

input? Of another input?
• How does a change in the production cost of one firm impact the equilibrium production

levels of that and other firms? What role does market structure and the substitutability
of these products play in determining this impact?

Broadly speaking, the goal of monotone comparative statics is to give robust qualitative
predictions about the interaction between parameters and strategic variables using minimal
assumptions.

1.1.2 Implicit Function Theorem Approach

Suppose an agent is maximizing the parameterized objective function f : X×T → R, where
T is a set of parameters and X is a decision variable. We will begin with the simplest case,
where X ⊆ R and T ⊆ R.

The parameterized solution set is defined as follows:

X∗(t) = argmax
x∈X

f(x, t).

The mapping from t to X∗(t) is a correspondence. A selection from X∗(t) is a function
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x∗ : T → R such that x∗(t) ∈ X∗(t) for all t ∈ T . When there is a unique solution to the
maximization problem for every t, we have X∗(t) = {x∗(t)}.

To make this problem as tractable as possible, we can impose some strong assumptions:

(1) A solution exists for every t. (compactness, continuity)
(2) The objective function f is twice continuously differentiable.
(3) The objective function f is strictly concave in x: fxx < 0. (This implies there is a

unique solution for every t.)
(4) The solution x∗(t) lies in the interior of X.

Then the solution satisfies the following first-order condition:

fx(x
∗(t), t) = 0. (1.1)

In addition, since fxx < 0, the implicit function theorem implies that x∗(t) is differentiable
in t and1

x∗′(t) = − fxt(x
∗(t), t)

fxx(x∗(t), t)
. (1.2)

Thus x∗′(t) ≥ 0 if and only if fxt(x∗(t), t) ≥ 0.

Figure 1.1 illustrates both the partial derivative fx(·, t) and the objective function f(·, t)
for different values of t and shows how the critical points move to the right as t increases,
under the assumptions that fxt > 0 and fxx < 0. The following example illustrates this type
of analysis more concretely in the context of a monopoly problem.

fx(·, t)

fx(·, t′)
fx(·, t′′)

X∗(t)

X∗(t′)

X∗(t′′)

x

(a) Derivative fx

X∗(t) X∗(t′)X∗(t′′)

f(·, t)

f(·, t′)

f(·, t′′)

x

(b) Objective function f

Figure 1.1: Solutions for the parameters t < t′ < t′′ in the case where fxx < 0.

1Note that the nontrivial part of the implicit function theorem is showing that x∗(t) is differentiable.
Once that is established, the exact formula for the derivative follows immediately by applying the chain rule
to obtain

fxx(x
∗(t), t)x∗′(t) + fxt(x

∗(t), t) = 0

and then rearranging terms.
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Example 1.1 (Monopoly response to change in cost). Consider a monopoly in a
market where inverse demand is given by P (x). Suppose the firm’s total cost function C(x, t)
depends on both the quantity produced x and some parameter t. The total profit of the firm
is therefore given by

f(x, t) = P (x)x− C(x, t).

The firm chooses output to maximize profit:

X∗(t) = argmax
x≥0

f(x, t).

Suppose we are interested in how the firm’s production decision changes with the parameter
t. To determine the relationship, consider the first-order condition for an interior solution:

fx(x, t) = P ′(x)x+ P (x)︸ ︷︷ ︸
MR

−Cx(x, t)︸ ︷︷ ︸
MC

= 0

Note also that the cross partial derivative is given by

fxt(x, t) = −Cxt(x, t).

Thus fxt ≥ 0 if and only if increasing t decreases marginal cost. It should not be surprising
that this simple and intuitive condition is connected to monotone comparative statics on
output: We would expect output to increase if marginal cost decreases for all levels of
output. However, note that other restrictions are also required in order to apply the implicit
function theorem method described above. For example, it relies on the assumption that the
objective function is concave in x, that is,

fxx(x, t) = P ′′(x)x+ 2P ′(x)− Cxx(x, t) < 0.

When might this concavity condition be satisfied? Some sufficient conditions for concavity
of the profit function are P ′ ≤ 0, P ′′ ≤ 0, and Cxx > 0, that is, the inverse demand function
is decreasing and concave and the cost function is strictly convex.

Unfortunately, there are some issues with the assumptions in the preceding example. Most
notably, this example imposes strong and unrealistic assumptions about inverse demand.
While it is plausible that inverse demand is decreasing, it is much less realistic to assume
that it is concave. This also begs the question of whether the comparative statics in this
example should depend on demand at all. Note that fxt depends only on the cost function,
and it seems quite plausible that monotone comparative statics could be obtained even
without assuming that f is concave.

Let’s explore relaxing some of the assumptions invoked in the implicit function theorem
approach. Assume as before that fxt ≥ 0, but now relax the assumption that f is concave.
Suppose that x∗(t) is a critical point for f (that is, a solution to Equation (1.1)) but that
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fxx(x
∗(t), t) > 0. In this case, Equation (1.2) implies that x∗′(t) < 0, which may give the

impression that the comparative statics for maximizers of the function f are now reversed.
However, that is not the case. Since fxx(x∗(t), t) > 0, the second order condition for x∗(t) to
be a solution to the maximization problem is violated. Thus, while x∗(t) is a critical point
of the function f , it is not a solution to the maximization problem in this case. Figure 1.2
illustrates the partial derivative fx(·, t) and the objective function f(·, t) for different values
of t in the case where fxt > 0 but f is not globally concave. Notice that the solutions (now
there may be multiple solutions) are still increasing in an intuitive sense (that we will make
precise shortly) even though the second-order condition is violated.

fx(·, t)
fx(·, t′)

fx(·, t′′)
X∗(t) X∗(t′)

X∗(t′′)

x

(a) Derivative fx

X∗(t) X∗(t′′)

f(·, t)

f(·, t′)

f(·, t′′)

X∗(t′)

x

(b) Objective function f

Figure 1.2: Solutions for the parameters t < t′ < t′′ in the non-concave case.

One might consider approaching the problem of comparative statics by extending the
implicit function theorem method discussed above to deal with non-concave functions by
formalizing the type of analysis illustrated in Figure 1.2. Instead, we will find that there is
a much simpler and more powerful approach to comparative statics. In this chapter and the
next, we will develop methods that relax not only concavity, but also differentiability and
the assumption that the solution is interior.

1.2 Single Variable Comparative Statics

We begin with the one-dimensional case of X ⊆ R and T ⊆ R. In Section 1.3, we will expand
on this analysis to consider multidimensional choice variables and parameters.

1.2.1 Strong Set Order

Definition 1.2. For any Y, Z ⊆ X, we say that Z dominates Y in the strong set order,
denoted Z ≥s Y , if for every y ∈ Y and z ∈ Z, min{y, z} ∈ Y and max{y, z} ∈ Z.
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• Equivalently, Z ≥s Y if for every y ∈ Y and z ∈ Z,

y > z =⇒ y ∈ Z and z ∈ Y.

• Does not require that for every y ∈ Y and z ∈ Z, z ≥ y.
• Illustrate (overlap permitted, but not y > z and y /∈ Z or z /∈ Y ).
• E.g., for intervals Y = [y, ȳ] and Z = [z, z̄], Z ≥s Y iff z̄ ≥ ȳ and z ≥ y.
• Strong set order reduces to usual order for singletons: {z} ≥s {y} if and only if z ≥ y.
• Empty set: Y ≥s ∅ ≥s Y . (Useful: allows us to separate the study of comparative

statics from the issue of existence of a solution.)

Lemma 1.3. Suppose Y, Z ⊆ R, and suppose each of these sets has maximum and minimum
elements, ȳ, y ∈ Y and z̄, z ∈ Z, respectively.2 If Z ≥s Y then z̄ ≥ ȳ and z ≥ y.

You are asked to prove this simple lemma in Exercise 1.1.

Definition 1.4. Suppose X ⊆ R and T ⊆ R. A correspondence X∗ : T ↠ X is monotone
nondecreasing in the strong set order if t′ ≥ t implies X∗(t′) ≥s X

∗(t).

The following result follows immediately from Lemma 1.3. Note that compactness is only
assumed in this result to ensure the existence of maximum and minimum elements of X∗(t)

for each t.

Corollary 1.5. Suppose X ⊆ R, T ⊆ R, and X∗ : T ↠ X is a nonempty-valued and
compact-valued correspondence (i.e., X∗(t) is nonempty and compact for all t ∈ T ). Define
functions x̄∗ : T → X and x∗ : T → X by x̄∗(t) = maxX∗(t) and x∗(t) = minX∗(t). If X∗ is
monotone nondecreasing in the strong set order, then x̄∗ and x∗ are nondecreasing functions.

1.2.2 Increasing Differences

Definition 1.6. Suppose X ⊆ R and T ⊆ R. A function f : X × T → R has increasing
differences in (x; t) if for all x′ > x and t′ > t,

f(x′, t′)− f(x, t′) ≥ f(x′, t)− f(x, t).

The condition above can also be written as

f(x′, t′)− f(x′, t) ≥ f(x, t′)− f(x, t).

2That is, suppose there exist ȳ, y ∈ Y such that y ≤ y ≤ ȳ for all y ∈ Y , and likewise for Z. This
assumption is satisfied, for example, if Y and Z are compact sets.
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When X ⊆ R and T ⊆ R, this property is equivalent to f being supermodular in (x, t),
which is sometimes written as

f(x′, t′) + f(x, t) ≥ f(x′, t) + f(x, t′).

However, the two concepts are not the same in general (when the parameter space or the
decision variable space are multidimensional), as we will see later in Section 1.3.2.

The following lemma shows that in the case where f is differentiable with respect to x or
t (or both), increasing differences boils down to some very simple conditions on the partial
derivatives fx and ft, or on the cross-partial derivative fxt.

Lemma 1.7. Suppose X ⊆ R and T ⊆ R, and suppose f : X × T → R. Consider the
following set of statements:

(1) f has increasing differences in (x; t).
(2) fx(x, t) is nondecreasing in t.
(3) ft(x, t) is nondecreasing in x.
(4) fxt ≥ 0.

These statements are related as follows:

• If X is an interval and fx(x, t) exists for all x ∈ X and t ∈ T , then (1) ⇐⇒ (2).
• If T is an interval and ft(x, t) exists for all x ∈ X and t ∈ T , then (1) ⇐⇒ (3).
• If both X and T are intervals and fxt(x, t) exists for all x ∈ X and t ∈ T (in particular,

if f is twice continuously differentiable), then all four statements are equivalent.

In Exercise 1.2, you are asked to prove the equivalence of statements (1)–(4) in Lemma 1.7
in the case whereX and T are intervals and under the assumption that f is twice continuously
differentiable. This assumption is convenient as it ensures that all of the partial derivatives
(and cross partial derivatives) are integrable and thus allows the result to be proved easily
using the fundamental theorem of calculus. However, if you would like an added challenge,
you can prove the lemma exactly as stated by instead using the mean value theorem.

We are now ready to state our first comparative statics result.

Theorem 1.8 (Topkis (1978)). Suppose X ⊆ R, T ⊆ R, and f : X × T → R. If f has
increasing differences in (x; t), then X∗(t) = argmaxx∈X f(x, t) is monotone nondecreasing
in t (in the strong set order), that is, t′ ≥ t implies X∗(t′) ≥s X

∗(t).

Proof. Fix any t′ ≥ t, x ∈ X∗(t), and x′ ∈ X∗(t′). We need to show that if x > x′ then
x′ ∈ X∗(t) and x ∈ X∗(t′). To see this holds under the stated assumptions, note that x > x′
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implies

0 ≤ f(x, t)− f(x′, t) (x ∈ X∗(t))

≤ f(x, t′)− f(x′, t′) (ID)
≤ 0. (x′ ∈ X∗(t′))

Thus we must have f(x, t) = f(x′, t) and f(x, t′) = f(x′, t′), which implies x′ ∈ X∗(t) and
x ∈ X∗(t′).

By Corollary 1.5, the largest and smallest solutions for each t (if they exist) are therefore
nondecreasing functions. In particular, if f(x, t) has a unique maximizer x∗(t) for each t,
then this solution is a nondecreasing function. Note that Theorem 1.8 not only relaxes the
assumptions that f is differentiable and concave, it also does not require any assumptions
about the solutions being in the interior of X. In fact, while the set X in this theorem could
be an interval, it could alternatively be a discrete set of points or any other subset of the
real line.

Example 1.9 (Monopoly response to change in cost). Consider again the problem
of a firm choosing output to maximize profit:

f(x, t) = P (x)x− C(x, t)

If C has decreasing differences in (x; t) (i.e., −C has ID in (x; t)), then f has ID in (x; t).
For example, if C is twice continuously differentiable, this is equivalent to Cxt ≤ 0. Thus,
without any restrictions on the inverse demand function, we can conclude that output is non-
decreasing (in the strong set order) in t, so long as increasing this parameter lowers marginal
cost. In addition, Theorem 1.8 also allows us to easily deal with many nondifferentiable
functions that arise naturally in economic applications. For example, suppose the cost for
the firm can be decomposed into a variable cost and a fixed cost that is only incurred if the
firm chooses to operate. That is, consider a cost function of the form

C(x, t) =

{
0 if x = 0

F (t) + V (x, t) if x > 0,

where F (t) is the fixed cost and V (x, t) is a variable cost function that is twice continuously
differentiable and satisfies V (0, t) = 0. In this case, it is not difficult to show that C(x, t) has
decreasing differences in (x; t) if and only if F (t) is decreasing in t and Vxt ≤ 0 (Exercise 1.9).
Thus, if fixed cost and marginal cost are both decreasing in t, then an increase in t leads to
higher production.



1.3. Multivariate Comparative Statics 9

1.3 Multivariate Comparative Statics

1.3.1 Lattices and the Strong Set Order

For any vectors x = (x1, . . . , xn) and x′ = (x′1, . . . , x
′
n) in Rn, recall that we write x′ ≥ x if

x′i ≥ xi for all i = 1, . . . , n. We write x′ > x if x′ ≥ x and x′ ̸= x.

Definition 1.10. Let x, x′ ∈ Rn.

(1) The meet of x and x′ is

x ∧ x′ = (min{x1, x′1}, . . . ,min{xn, x′n}).

(2) The join of x and x′ is

x ∨ x′ = (max{x1, x′1}, . . . ,max{xn, x′n})

• Illustrate meet and join for vectors in R and R2.
• Note that for any x, x′, we have x ∧ x′ ≤ x ≤ x ∨ x′ and x ∧ x′ ≤ x′ ≤ x ∨ x′.

Definition 1.11. A set X ⊆ Rn is a lattice if for all x, x′ ∈ X, we have x ∧ x′ ∈ X and
x ∨ x′ ∈ X. A set Z ⊆ X is a sublattice of X if Z itself satisfies the definition of a lattice.

• Illustrate that a product set in R2 is a lattice.
• Illustrate that if a set in R2 is totally ordered (i.e., a chain) then it is automatically a

lattice, as well as variations.
• A sublattice Z is simply a lattice that is a subset of another lattice X.

Definition 1.12. For any Y, Z ⊆ X, we say that Z dominates Y in the strong set order,
denoted Z ≥s Y , if for every y ∈ Y and z ∈ Z, y ∧ z ∈ Y and y ∨ z ∈ Z.

• Note that reduces to previous definition for n = 1.
• Illustrate using a few examples.
• Note that Z ≥s Z if and only if Z is a sublattice of X.
• Mention projections onto each coordinate (Exercise 1.5).

Definition 1.13. A partially ordered set (T,≥) is a set T equipped with a partial order
≥. That is, the binary relation ≥ is:

(1) Transitive: t ≥ t′ and t′ ≥ t′′ imply t ≥ t′′.
(2) Reflexive: t ≥ t.
(3) Antisymmetric: t ≥ t′ and t′ ≥ t imply t = t′.
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We write t > t′ if t ≥ t′ and t′ ≱ t. For this chapter, we will focus on T ⊆ Rm for
concreteness. This is a partially ordered set when endowed with the usual order described
above. However, the comparative statics results developed in this chapter also apply to
more abstract settings (e.g., a set of probability distributions is a partially ordered set when
endowed with one of the stochastic orders that we will introduce in later chapters). Finally,
keep in mind that we will not require that T be a lattice. For example, it could be any
subset of Rm.

1.3.2 Increasing Differences and Supermodularity

Increasing differences is defined just as before, but keep in mind that we are now dealing
with X ⊆ Rn.

Definition 1.14. Suppose X is a lattice and T is a partially ordered set. A function
f : X × T → R has increasing differences in (x; t) if for all x′ > x and t′ > t,

f(x′, t′)− f(x, t′) ≥ f(x′, t)− f(x, t).

Lemma 1.15. If f : Rn×Rm → R is twice continuously differentiable, then f has increasing
differences in (x; t) if and only if ∂2f/∂xi∂tj ≥ 0 for i = 1, . . . , n, j = 1, . . . ,m.

Example 1.16 (Is ID enough for MCS?). Change in choice of x and y for 2/5 < t < 4.

• f(x, y, t) = 3tx+ (2 + t)y − (x+ y)2 − x2 − y2.
• fx(x, y, t) = 3t− 4x− 2y, fxt(x, y, t) = 3

• fy(x, y, t) = 2 + t− 2x− 4y, fyt(x, y, t) = 1

3t = 4x+ 2y

2 + t = 2x+ 4y

=⇒ 6t− (2 + t) = 5t− 2 = 6x =⇒ x = (5t− 2)/6

=⇒ (4 + 2t)− 3t = 4− t = 6y =⇒ y = (4− t)/6

• Issue: fxy(x, y, t) = −2 < 0

• Interpretation using two managers (one choosing x and the other choosing y) with the
same objective of maximizing firm profits, but who only myopically best respond to
the previous period output choice of the other manager: ↑ t ⇒↑ (x, y) ⇒↓ (x, y) ⇒↑
(x, y) ⇒ . . . . If this sequence of responses converges, then the limit is the new solution
for the new value of t. Note that we cannot make a definitive qualitative conclusion
about the final change from such a sequence of adjustments since there are adjustments
both up and down for x and y.
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Definition 1.17. Suppose X is a lattice and T is a partially ordered set. A function
f : X × T → R is supermodular in x if for all x, x′ ∈ X and t ∈ T ,

f(x ∧ x′, t) + f(x ∨ x′, t) ≥ f(x, t) + f(x′, t).

The condition above can equivalently be written as

f(x ∨ x′, t)− f(x′, t) ≥ f(x, t)− f(x ∧ x′, t).

As was the case with increasing differences, there is also a useful characterization of super-
modularity for differentiable functions.

Lemma 1.18. If f : Rn×Rm → R is twice continuously differentiable, then f is supermod-
ular in x if and only if ∂2f/∂xi∂xj ≥ 0 for i, j = 1, . . . , n, i ̸= j.

We say that f is submodular in x if the function −f is supermodular in x. Note that an
equivalent way to define of submodularity is to take the definition of supermodularity and
reverse the inequality. By the preceding lemma, if f twice continuously differentiable, then
it is submodular if and only if ∂2f/∂xi∂xj ≤ 0 for all i ̸= j.

We are now ready to establish our first multivariate comparative statics theorem.

Theorem 1.19 (Topkis (1978)). Suppose X is a lattice, T is a partially ordered set, and
f : X × T → R. If f is supermodular in x and has increasing differences in (x; t), then
argmaxx∈X f(x, t) is monotone nondecreasing in t (in the strong set order).

Proof. Let X∗(t) = argmaxx∈X f(x, t). Fix any t′ ≥ t, x ∈ X∗(t), and x′ ∈ X∗(t′). Note
that

0 ≤ f(x, t)− f(x ∧ x′, t) (x ∈ X∗(t))

≤ f(x ∨ x′, t)− f(x′, t) (SM)
≤ f(x ∨ x′, t′)− f(x′, t′) (ID)
≤ 0. (x′ ∈ X∗(t′))

Thus f(x, t) = f(x ∧ x′, t) and f(x ∨ x′, t′) = f(x′, t′), which implies x ∧ x′ ∈ X∗(t) and
x ∨ x′ ∈ X∗(t′).

Table 1.1 illustrates Lemmas 1.15 and 1.18 in the case of a twice continuously differentiable
function f : X × T → R for X,T ⊆ R2. Tables 1.1a and 1.1b show the implications of
assuming supermodularity in x in addition to ID in (x; t). Adding this assumption of SM in
x rules out the type of objective function that appeared in Example 1.16 and (together with
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x1 x2 t1 t2
x1 + +
x2 + +
t1 + +
t2 + +

(a) ID in (x; t)

x1 x2 t1 t2
x1 + + +
x2 + + +
t1 + +
t2 + +

(b) ID in (x; t) and SM in x

x1 x2 t1 t2
x1 + + +
x2 + + +
t1 + + +
t2 + + +

(c) SM in (x, t) (not needed for MCS)

Table 1.1: Implications of increasing differences and supermodularity for cross-partial
derivatives of twice continuously differentiable function f : X × T → R for X,T ⊆ R2.

ID) ensures monotone comparative statics of multidimensional choice variables with respect
to increases in the parameter t, as Theorem 1.19 demonstrates.

It is important to note that the combined assumptions of ID in (x; t) and SM in x are
still weaker than assuming SM in all variables (x, t) simultaneously. Table 1.1c illustrates
the implications of assuming SM in all variables, which is an unnecessarily strong restriction
— we do not need ∂2f/∂t1∂t2 ≥ 0 for Theorem 1.19. This should be intuitive. We do not
care about how the individual would like to adjust t1 in response to t2 (and vice versa) since
neither of these variables are under the control of the individual. These parameters must be
taken as given, and the individual is only free to choose x1 and x2.

We now consider a variation of Example 1.16 where the objective function f that has
increasing differences in (x; t) and is supermodular in x.

Example 1.20. Consider the following variation of Example 1.16, where α ∈ (0, 1) is a
fixed constant (note that Example 1.16 considered the case of α = 2 > 1):

• f(x, y, t) = 3tx+ (2 + t)y − (x+ y)α − x2 − y2.
• fxt(x, y, t) = 3.
• fyt(x, y, t) = 1.
• fxy(x, y, t) = −α(α− 1)(x+ y)α−2 ≥ 0 since α ∈ (0, 1).
• The optimal x and y are nondecreasing in t when α ∈ (0, 1).

1.4 Useful Techniques for Applications

In this section, we summarize some useful techniques developed in Milgrom and Shannon
(1994) that can be used to apply monotone comparative statics to various economic problems.

1.4.1 Monotone Transformations

Suppose the function f : X × T → R fails to have increasing difference in (x; t). However,
suppose there exists a strictly increasing function g : R → R such that g ◦ f has increasing
differences in (x; t) (it suffices for g to have a domain that includes the range of f , not
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necessarily all of R). Then since

argmax
x∈X

f(x, t) = argmax
x∈X

g(f(x, t)),

we can apply our comparative statics results to this transformed objective function.

Example 1.21 (Increasing elasticity of demand). Suppose a firm chooses price p to
maximize profit

π(p, α) = D(p, α)(p− c),

where c > 0 is the constant marginal cost and D(p, α) = p−α is the demand function. Recall
that this is the family of constant elasticity of demand functions:

E(p, α) = − p

D(p, α)

∂D(p, α)

∂p
= α.

It can be shown that π does not have increasing differences in (p;α) or (p;−α) (Exercise 1.10).
However, the monotone transformation

log(π(p, α)) = log(D(p, α)) + log(p− c)

= −α log(p) + log(p− c)

does have increasing differences in (p;−α) (i.e., decreasing differences in (p;α)). Note that
this transformation is not well-defined for p ≤ c. However, since any solution clearly must
satisfy p > c, we can restrict attention to p ∈ (c,∞) without altering the solution set. Thus,
the optimal price p is nonincreasing in α (in the strong set order). This conclusion should
be intuitive. If demand is more elastic, then demand drops more quickly in response to an
increase in price; hence the firm will find it optimal to set a lower price.

Notice that the conclusion of Example 1.21 can be generalized: If D(p, α) is a demand
function and increasing α increases the elasticity of demand, then log(π(p, α)) has decreasing
differences in (p;α).

1.4.2 Parameter-Contingent Transformations

In the previous section, we applied the same transformation g for all parameter values t. In
fact, such independence is not required, and this transformation could also depend on the
parameter. Formally, if g : R × T → R is strictly increasing in its first argument for all t,
then

argmax
x∈X

f(x, t) = argmax
x∈X

g(f(x, t), t)

for every t ∈ T . The follow example illustrates a parameter-contingent transformation.
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Example 1.22 (Increase in market size). Consider the effects of an increase in the
market size on monopoly price. Each consumer in this market has an inverse demand given
by P (q). If the number of customers N is exogenous, then firm’s problem is to choose a
quantity per customer q to maximize:

π(q,N) = NqP (q)− C(Nq).

Without some restrictions on demand, we cannot conclude that π has increasing differences
in (q;N). However, note that for N > 0, we have

argmax
q≥0

π(q,N) = argmax
q≥0

π(q,N)

N
= argmax

q≥0

(
qP (q)− C(Nq)

N

)
.

Thus, q∗(N) is nondecreasing in N if −C(Nq)/N has increasing differences in (q;N). As-
suming that C is twice continuously differentiable (this assumption is not required for the
conclusion but makes the characterization of increasing differences simpler),

d2(−C(Nq)/N)

dNdq
=
d(−C ′(Nq))

dN
= −qC ′′(Nq).

Thus q∗(N) is nondecreasing in N if C is concave, and q∗(N) is nonincreasing in N if C is
convex. No restrictions on the inverse demand function are required for this conclusion.

It is important to note that taking a transformation that depends on the choice variable
x would alter the set of maximizers. For example, dividing by q in the previous example
would change the solution set q∗(N) and could therefore yield incorrect conclusions. Be
careful when applying this method that your transformation only involves parameters and
not choice variables.

1.4.3 Aggregation

Example 1.23 (Response to a price change). Consider a firm that produces a quan-
tity x of an output using a vector z ∈ Rk of inputs. If the input and output markets are
competitive, then the firm acts as a price-taker. Given a production function F : Rk

+ → R+,
output price p > 0, and input prices w ∈ Rk

++, the firm’s problem is thus

max
x∈R+,z∈Rk

+

x≤F (z)

(
px− w · z

)
= max

z∈Rk
+

(
pF (z)− w · z

)
.

Suppose we are interested in how output responds to an increase in the price p. To determine
this relationship, we can first separate the problem into one of cost minimization followed
by selection of profit-maximizing output:

π(x, p) = px− C(x),
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where
C(x) = min{w · z : z ∈ Rk, x ≤ F (z)}.

The profit function π has increasing differences in (x; p), and hence profit-maximizing output
is nondecreasing in p. No restrictions on the production technology are required for this
conclusion.

1.4.4 Composite Functions

Example 1.24 (Choosing market size). Suppose the monopoly in Example 1.22 is able
to choose its market size N , for example, by adding new outlets or by increasing advertising.
If the firm finds a new and less expensive way of expanding its market, how would this
influence its choice of market size N and quantity per customer q? Formally, suppose the firm
chooses (q,N) to maximize NqP (q)−C(Nq)−K(N, t) where K is submodular (KNt ≤ 0).
Using the aggregation method, we can write the problem of selecting a market size N as

max
N>0

(
g(N)−K(N, t)

)
,

where
g(N) = max

q≥0

(
NqP (q)− C(Nq)

)
.

Since g(N) −K(N, t) has increasing differences in (N ; t) by the assumption that KNt ≤ 0,
we know that N∗(t) is nondecreasing in t. Note that the optimal q depends only on N ,
and we know from Example 1.22 that q∗(N) is nondecreasing in N if C is concave (and
nonincreasing if C is convex). Thus q∗(N∗(t)) is nondecreasing in t if C is concave (and
nonincreasing if C is convex). There are a few details left to check about how monotonicity
in the strong set order is preserved under this composition of two correspondences. You are
asked to complete the missing arguments in Exercise 1.11.

1.5 Exercises

1.1 In this problem, you are asked to prove that Z ≥s Y implies that the greatest and
least elements of Z and Y are ordered.

(a) Prove Lemma 1.3.
(b) Is the converse of Lemma 1.3 also true? That is, does z̄ ≥ ȳ and z ≥ y imply

Z ≥s Y ? Prove or provide a counterexample.

1.2 Prove the equivalence of statements (1)–(4) in Lemma 1.7 in the case where X and T
are intervals and f is twice continuously differentiable. (Hint: Use the fundamental
theorem of calculus.) You can also prove the actual statement of the lemma for an
added challenge (hint: mean value theorem), but that is not required.
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1.3 Consider a one-period work-consumption problem. The individual has two sources of
consumption: accumulated wealth and income earned in the current period. Her utility
function for (i, w) ∈ R2

+ takes the form:

U(i, w) = u(w + i)− e(i),

where u : R+ → R is her utility for money and e : R+ → R is the effort cost associated
with earning income i.3 The individual takes w as given can chooses i optimally.
Suppose u is twice continuously differentiable and u′′ ≤ 0.

(a) Does U have increasing differences (i;w)? If not, is there a way to transform this
problem into one that does have increasing differences?

(b) What conclusions can be made about the relationship between w and the optimal
income i?

1.4 Consider a two-period consumption-savings problem. The suppose the individual has
the following utility function for (c1, c2) ∈ R2

+:

U(c1, c2) = u(c1) + βu(c2),

where β ∈ (0, 1) and u : R+ → R is strictly increasing. The individual has initial wealth
w at the start of period 1 and can save between the two periods at a (deterministic)
gross interest rate of R > 0.

(a) Suppose you know that u is twice continuously differentiable and concave, u′′ ≤ 0.
What conclusions can be made about how the optimal c1 and c2 change with
wealth w?4

(b) Suppose we relax the differentiability assumption from part (a). That is, do
not make any assumptions about whether u is differentiable, but maintain the
assumption that u is concave. Under these weaker assumptions, what conclusions
can be made about how the optimal c1 and c2 change with w?5

(c) In the previous parts of the problem, is it possible to have a selection c∗1(w) from
the optimal consumption choices in period 1 that strictly decreases in w at some
wealth levels, so w′ > w and c∗1(w

′) < c∗1(w)? Either provide an example where
this can happen or prove that it cannot happen. Also, if your answer is that
c∗1(w) can strictly decrease in w under the assumptions given in this problem,
what change in the assumptions would ensure that every selection c∗1(w) from the

3Think of this as an indirect “utility cost” function that minimizes the effort cost needed to earn a
particular income i, taking into account the wages and utility costs associated with one, or perhaps many,
uses of labor effort. This is analogous to the cost minimization problem of a firm.

4Hint: It may be helpful to substitute out for c2 and express utility as a function of c1 and w. Then do
a similar substitution for c1.

5Hint: If u is concave, then for any a′ > a and b > 0, u(a+ b)−u(a) ≥ u(a′+ b)−u(a′). You can use this
fact without proving it, but it is another good exercise to prove that this is true for any concave function,
whether or not it is differentiable.
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solution is monotonically nondecreasing in w?

1.5 Suppose X ⊆ Rn is a lattice. We have shown conditions under which the solution to
a parameterized maximization problem X∗(t) is nondecreasing in the strong set order
(on Rn). However, we are often interested in whether the set of solutions for one of the
variables X∗

i (t) for i ∈ {1, . . . , n} is nondecreasing in the strong set order on R. Fix
any Y, Z ⊆ X. For each i define

Yi = {a ∈ R : ∃y ∈ Y such that yi = a}.

and define Zi similarly. In other words, Yi and Zi are the projections of the sets Y and
Z, respectively, onto the ith coordinate.

(a) Suppose Z ≥s Y in the strong set order on Rn. Is Zi ≥s Yi in the strong set order
on R? Prove or provide a counterexample.

(b) Suppose Zi ≥s Yi in the strong set order on R for each i ∈ {1, . . . , n}. Is Z ≥s Y

in the strong set order on Rn? Prove or provide a counterexample.

1.6 Suppose that X, Y, Z ⊆ Rn are nonempty and Z ≥s Y and Y ≥s X. Prove that
Z ≥s X. That is, the strong set order is transitive for nonempty sets.

1.7 Answer the following:

(a) Suppose X ⊆ Rn is a lattice, and f : X → R and g : X → R are supermodular.
For any α ∈ (0, 1), the convex combination of f and g, denoted αf + (1− α)g, is
defined by

(αf + (1− α)g)(x) = αf(x) + (1− α)g(x).

Is the convex combination of supermodular functions supermodular? Prove or
provide a counterexample.

(b) Suppose X1, X2 and X3 are subsets of R and f : X1×X2×X3 → R is supermod-
ular function. Define F (x1, x2) = maxx3∈X3 f(x1, x2, x3) (assume the maximizer
exists). Is F supermodular? Prove or provide a counterexample.

1.8 Consider the effects of an increase in the market size on the decisions of a monopoly
firm. Each consumer in the market has an inverse demand given by P (q). If the number
of customers N ≥ 0 is exogenous, then the firm’s problem is to choose a quantity per
customer q ≥ 0 to maximize:

π(q,N) = NqP (q)− C(Nq),

where C is the firm’s cost function. Assume the inverse demand function takes the
parametric form

P (q) = q−α,
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for some α ∈ (0, 1), and the cost function takes the parametric form

C(q) = q + β exp(βδq)− β,

for some β ∈ R and δ > 0. Answer the following. Remember that you must provide
arguments to support all of your answers, and you will not receive full credit if you
include any unnecessary parameter restrictions.

(a) Starting with some basics:
i. Is C(q) nonnegative and nondecreasing in q ≥ 0 for all of the permitted

parameter values (permitted meaning that β can be any real number, but δ
must be strictly positive)?

ii. For which parameter values is C convex, and for which is it concave?
(b) Under what, if any, restrictions on the parameters α, β, and/or δ is the optimal

quantity per customer q nondecreasing (in the strong set order) in N? Under
what restrictions is q nonincreasing in N?

(c) Under what, if any, restrictions on the parameters α, β, and/or δ is the optimal
total quantity Q ≡ Nq produced by the firm nondecreasing (in the strong set
order) in N?

(d) Under what, if any, restrictions on the parameters α, β, and/or δ is the optimal
price charged by the monopolist nondecreasing (in the strong set order) in N?

(e) Under what, if any, restrictions on the parameters α, β, and/or δ is the profit of
the monopolist nondecreasing in N?

1.9 Suppose as in Example 1.9 that X = R+, T ⊆ R is an interval, and C : X × T → R is
defined by

C(x, t) =

{
0 if x = 0

F (t) + V (x, t) if x > 0,

where F (t) is the fixed cost and V (x, t) is a variable cost function that is twice con-
tinuously differentiable and satisfies V (0, t) = 0. Show that C(x, t) has decreasing
differences in (x; t) if and only if F (t) in nonincreasing in t and Vxt ≤ 0.

1.10 Suppose as in Example 1.21 that π(p, α) = D(p, α)(p− c) where D(p, α) = p−α. Show
that π has neither increasing nor decreasing differences in (p;α).

1.11 Suppose T ⊆ R, X ⊆ R, and consider two correspondences φ : T ↠ X and ψ : X ↠ R.
Define the composition of these correspondences as follows:

ψ(φ(t)) ≡ {y ∈ R : y ∈ ψ(x) for some x ∈ φ(t)} =
⋃

x∈φ(t)

ψ(x).

If φ(t) and ψ(x) are both monotone nondecreasing in the strong set order, then is the
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composition ψ(φ(t)) monotone nondecreasing in the strong set order? Prove or provide
a counterexample.
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2.1 Single Variable Comparative Statics

As in the previous chapter, we begin our analysis with the case of X ⊆ R and T ⊆ R.

2.1.1 Single Crossing Property

In Sections 1.4.1 and 1.4.2, we introduced the technique of taking monotone transformations
of the objective function. The invariance of the solution set to such monotone transforma-
tions illustrates that monotonicity of the solution set follows from the ordinal properties of
the objective function. That is, knowing the level curves of f(·, t) for each t is sufficient
to determine the set of solutions and how they vary with t. For a familiar analogy, since
utility functions are only identified up to a monotone transformations, we often focus on
indifference curves and ordinal properties (e.g., quasiconcavity) rather than cardinal prop-
erties (e.g., concavity). Similarly, the single crossing property is an ordinal condition that
relaxes the cardinal property of increasing differences.

Definition 2.1. Suppose X ⊆ R and T ⊆ R. A function f : X×T → R satisfies the single
crossing property in (x; t) if for all x′ > x and t′ > t,

f(x′, t) ≥ f(x, t) =⇒ f(x′, t′) ≥ f(x, t′)

and
f(x′, t) > f(x, t) =⇒ f(x′, t′) > f(x, t′).

The single crossing property is named after the similar property of a single-variable func-
tion. Fix any x′ > x and define a function g : T → R by g(t) = f(x′, t)− f(x, t). The single
crossing property implies that g crosses zero at most once and from below.1 Equivalently,

1However, there could be an interval of parameter values where g(t) = 0. For example, it could be that
g(t) = g(t′) = 0 for some t′ > t. In this case, the single crossing property requires that g(t′′) = 0 for all
t′′ ∈ (t, t′). Similarly, a function f : X × T → R that has the single crossing property in (x; t) could have
f(x′, t) = f(x, t) and f(x′, t′) = f(x, t′) for x′ > x and t′ > t, so long as f(x′, t′′) = f(x, t′′) for all t′′ ∈ (t, t′).
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for fixed x′ > x, the function f(x′, ·) crosses the function f(x, ·) at most once and from
below. Keep in mind that to check for the single crossing property, we want to look for
single crossing of the function as we increase t while holding fixed the pair of values x and
x′.2

Several important features of the single crossing property (SC) and its connection with
increasing differences (ID) are worth highlighting:

(1) If f has increasing differences in (x; t), then it has the single crossing property in (x; t).
That is, ID implies SC.

(2) If f has SC in (x; t), then so does any strictly increasing transformation of f (as in
Section 1.4.1) or any parameter-contingent transformation of f (as in Section 1.4.2).

Both observations follow directly from the definitions of SC and ID. The first observation
implies that SC is a weaker (less restrictive) condition that ID. The second observation
implies that SC is an ordinal property: It is robust to monotone transformations of the ob-
jective function. Combining these two observations, we obtain the following useful sufficient
condition that can sometimes be used to verify that a function has the single cross property:

(3) If a strictly increasing transformation of f has ID, then f has SC.

Note that this condition is sufficient for SC, but not necessary. You are asked to explore the
relationship between ID and SC and the role of monotone transformations in more detail in
Exercises 2.4 and 2.5.

Figure 2.1 illustrates the distinction between increasing differences and the single crossing
property: Figure 2.1a shows a function that violates increasing differences, but satisfies the
single crossing property. Figure 2.1b illustrates a function that violates both ID and SC.

f(·, t)

f(·, t′)x x′ x

(a) f violates ID, but satisfies SC

f(·, t)f(·, t′)

x x′ x

(b) f violates both ID and SC

Figure 2.1: The single crossing property is weaker than increasing differences (t < t′).

2In particular, the single crossing property in (x; t) is not equivalent to saying that for t′ > t, the function
f(·, t′) crosses f(·, t) once from below—this would be the single crossing property in (t;x).
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The following is our first main result for single variable comparative statics.

Theorem 2.2 (Milgrom and Shannon (1994)). Suppose X ⊆ R, T ⊆ R, and f :

X × T → R. If f satisfies the single crossing property in (x; t), then argmaxx∈X f(x, t) is
monotone nondecreasing in t (in the strong set order).

Proof. Let X∗(t) = argmaxx∈X f(x, t). Fix any t′ ≥ t and x ∈ X∗(t), x′ ∈ X∗(t′). We need
to show that if x > x′ then x′ ∈ X∗(t) and x ∈ X∗(t′). To see this, suppose x > x′, and note
first that

x ∈ X∗(t) =⇒ f(x, t) ≥ f(x′, t)

=⇒ f(x, t′) ≥ f(x′, t′) (SC)
=⇒ x ∈ X∗(t′).

Next, we prove that x′ ∈ X∗(t) by contradiction:

x′ /∈ X∗(t) =⇒ f(x, t) > f(x′, t)

=⇒ f(x, t′) > f(x′, t′) (SC)
=⇒ x′ /∈ X∗(t′),

a contradiction to the assumption that x′ ∈ X∗(t′). Thus we must have x′ ∈ X∗(t).

2.1.2 When Single Crossing Cannot Be Weakened

One may wonder whether there is a condition even weaker than the single crossing property
that can be used to obtain monotone comparative statics. It turns out that the answer
depends on the flexibility that we have in specifying the constraint set. If the constraint set
for x is fixed at X, then a condition like single crossing may not be necessary for solutions
to be nondecreasing in the parameter t (although SC is of course sufficient for this). On the
other extreme, if we require monotonicity of the solution set in t for all possible constraint
sets S ⊆ X, then the single crossing property becomes a necessary condition. In fact, as
the following theorem shows, we only need monotonicity for each binary set S ⊆ X, that is,
each set of the form S = {x̄, x̄′}.

Theorem 2.3. Suppose X ⊆ R, T ⊆ R, and f : X × T → R. If argmaxx∈S f(x, t) is
monotone nondecreasing in t (in the strong set order) for each S ⊆ X of the form S = {x̄, x̄′},
then f satisfies the single crossing property in (x; t).

Proof. Fix any x̄′ > x̄ and let S = {x̄, x̄′}. Let X∗(t) = argmaxx∈S f(x, t). Then, for any
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t′ > t, we have

f(x̄′, t) ≥ f(x̄, t) =⇒ x̄′ ∈ X∗(t)

=⇒ x̄′ ∈ X∗(t′) (X∗ is nondecreasing)
=⇒ f(x̄′, t′) ≥ f(x̄, t′).

Similarly,

f(x̄′, t) > f(x̄, t) =⇒ x̄ /∈ X∗(t)

=⇒ x̄ /∈ X∗(t′) (X∗ is nondecreasing)
=⇒ f(x̄′, t′) > f(x̄, t′).

Thus, f satisfies the single crossing property.

How do we connect these necessary and sufficient conditions? Recall that Theorem 2.2
states that if f has SC in (x; t), then the set of maximizers in X ⊆ R is nondecreasing in
t. Of course, by a simple relabeling, this means that the set of all maximizers from any set
S ⊆ X is also nondecreasing in t when f has SC. In particular, this implies that the same is
true for any binary set S. Finally, Theorem 2.3 states that monotonicity of the solution in t
for every binary constraint set S implies that f has SC. The diagram in Figure 2.2 illustrates
these logical relationships.

X∗(t, S)
nondecreasing in t for

all binary S

f has SC in (x; t)

X∗(t, S)
nondecreasing in t for

every S ⊆ X Theorem 2.2

Theorem 2.3

Figure 2.2: Relationship between properties of the function f and properties of the
solution set X∗(t, S) = argmaxx∈S f(x, t) in the single-dimensional case (X ⊆ R).

Combining these observations, we obtain the following corollary.

Corollary 2.4. Suppose X ⊆ R, T ⊆ R, and f : X × T → R. Then argmaxx∈S f(x, t) is
monotone nondecreasing in t (in the strong set order) for each S ⊆ X if and only if f has
the single crossing property in (x; t).

Corollary 2.4 implies that the single crossing property is the weakest condition that can
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ensure monotone comparative statics on every possible constraint set S ⊆ X.3

2.1.3 When Increasing Differences Cannot Be Weakened

We have now observed that increasing differences is sufficient to obtain monotone compar-
ative statics, but it is not necessary. In particular, the single crossing property is a weaker
condition that is also sufficient for comparative statics. However, interestingly enough, there
are circumstances where ID might become a necessary condition. Suppose the objective
function takes the form

g(x, t) = f(x, t)− px.

For example, if f is the revenue function for a firm (output level times a fixed output price)
as a function of the quantity x of an input and if p is the unit price of that input, then g is the
profit function for the firm. It is easy to see that if the function f has ID, then so does g. But
if the function f only satisfies SC, then g may fail to satisfy SC. Figure 2.3 illustrates this
possibility using the example introduced previously in Figure 2.1a. The following theorem
shows that if all values of p are possible in this objective function, then the only way to
ensure that g has SC is if f has ID.

f(·, t)

f(·, t′)

px

x x′ x

Figure 2.3: The function f(x, t) satisfies SC, but f(x, t)− px violates SC.

Theorem 2.5. Let X ⊆ R, T ⊆ R, and f : X × T → R. Then f(x, t) − px has the single
crossing property in (x; t) for all p ∈ R if and only if f has increasing differences in (x; t).

Proof. If f has increasing differences in (x; t), then f(x, t)−px also has increasing differences
in (x; t) and therefore f(x, t)− px has the single crossing property in (x; t).

To prove the converse, suppose f does not have increasing differences in (x; t). Then there
3What if we only need MCS for some smaller class of subsets such as intervals? In this case, we can use

a weaker condition, such as the interval dominance order (Quah and Strulovici (2009)).
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exist x′ > x and t′ > t such that

f(x′, t′)− f(x, t′) < f(x′, t)− f(x, t).

Choose p ∈ R such that

f(x′, t′)− f(x, t′)

x′ − x
< p <

f(x′, t)− f(x, t)

x′ − x
.

Rearranging these inequalities yields

f(x′, t′)− px′ < f(x, t′)− px and f(x′, t)− px′ > f(x, t)− px,

violating the single crossing property of f(x, t)− px.

In the case where f is nondecreasing in x, Theorem 2.5 continues to hold if we replace p ∈
R with the weaker restriction p ≥ 0. It should be obvious from the proof why monotonicity
of f in x permits this relaxation of the assumptions.

Combining Theorem 2.5 and Corollary 2.4, we obtain the following result.

Corollary 2.6. Suppose X ⊆ R, T ⊆ R, and f : X×T → R. Then argmaxx∈S[f(x, t)−px]
is monotone nondecreasing in t (in the strong set order) for each S ⊆ X and for all p ∈ R if
and only if f has increasing differences in (x; t).

2.1.4 Strict Single Crossing

In this section, we explore a strong version of the single crossing property that ensures that
any selection function from the solution correspondence is nondecreasing. You are asked to
complete the proofs of these results in Exercise 2.2.

Definition 2.7. Suppose X ⊆ R and T ⊆ R. A function f : X×T → R satisfies the strict
single crossing property in (x; t) if for all x′ > x and t′ > t,

f(x′, t) ≥ f(x, t) =⇒ f(x′, t′) > f(x, t′).

Theorem 2.8. SupposeX ⊆ R, T ⊆ R, and f : X×T → R. LetX∗(t) = argmaxx∈X f(x, t).
If f satisfies the strict single crossing property in (x; t), then for any t′ > t, x ∈ X∗(t), and
x′ ∈ X∗(t′), we have x′ ≥ x.

Corollary 2.9. Suppose X ⊆ R, T ⊆ R, and f : X × T → R. If f satisfies the strict
single crossing property in (x; t), then every selection x∗(t) from argmaxx∈X f(x, t) must be
nondecreasing in t.
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Note that this result does not imply that every (or even any) selection from the solution
correspondence is strictly increasing.

2.2 Multivariate Comparative Statics

2.2.1 Single Crossing Property and Quasisupermodularity

The definition of the single crossing property extends to any lattice X ⊆ Rn and any partially
ordered set T (such as T ⊆ Rm) without change.

Definition 2.10. Suppose X is a lattice and T is a partially ordered set. A function
f : X × T → R satisfies the single crossing property in (x; t) if for all x′ > x and t′ > t,

f(x′, t) ≥ f(x, t) =⇒ f(x′, t′) ≥ f(x, t′)

and
f(x′, t) > f(x, t) =⇒ f(x′, t′) > f(x, t′).

Just as increasing differences can be relaxed to single crossing, supermodularity can be
relaxed to quasisupermodularity.

Definition 2.11. Suppose X is a lattice and T is a partially ordered set. A function
f : X × T → R is quasisupermodular in x if for all x, x′ and for all t,

f(x, t) ≥ f(x ∧ x′, t) =⇒ f(x ∨ x′, t) ≥ f(x′, t)

and
f(x, t) > f(x ∧ x′, t) =⇒ f(x ∨ x′, t) > f(x′, t).

Theorem 2.12. Let X be a lattice, T be a partially ordered set, and f : X × T → R.
If f is quasisupermodular in x and satisfies the single crossing property in (x; t), then
argmaxx∈X f(x, t) is monotone nondecreasing in t (in the strong set order).

Proof. Let X∗(t) = argmaxx∈X f(x, t). Fix any t′ ≥ t, x ∈ X∗(t), and x′ ∈ X∗(t′). Note
that

x ∈ X∗(t) =⇒ f(x, t) ≥ f(x ∧ x′, t)
=⇒ f(x ∨ x′, t) ≥ f(x′, t) (QSM)
=⇒ f(x ∨ x′, t′) ≥ f(x′, t′) (SC)
=⇒ x ∨ x′ ∈ X∗(t′).



2.2. Multivariate Comparative Statics 29

Next, we prove that x ∧ x′ ∈ X∗(t) by contradiction:

x ∧ x′ /∈ X∗(t) =⇒ f(x, t) > f(x ∧ x′, t)
=⇒ f(x ∨ x′, t) > f(x′, t) (QSM)
=⇒ f(x ∨ x′, t′) > f(x′, t′) (SC)
=⇒ x′ /∈ X∗(t′),

a contradiction to the assumption that x′ ∈ X∗(t′). Therefore, it must be the case that
x ∧ x′ ∈ X∗(t).

2.2.2 Changing the Constraint Set

Suppose we consider the possibility of altering the constraint set instead of the parameter t,
or we consider altering both the constraint set and the parameter. In the following theorem,
we consider replacing the constraint set S ⊆ X with another set S ′ ⊆ X that dominates S
in the strong set order.

Theorem 2.13. Let X be a lattice, T be a partially ordered set, and f : X × T → R.
If f is quasisupermodular in x and satisfies the single crossing property in (x; t), then
argmaxx∈S f(x, t) is monotone nondecreasing in t and S (in the strong set order), that is,
for t′ ≥ t and S ′ ≥s S,

argmax
x∈S′

f(x, t′) ≥s argmax
x∈S

f(x, t).

Proof. Let X∗(t, S) = argmaxx∈S f(x, t). Fix any t′ ≥ t and S ′ ≥s S, and take any x ∈
X∗(t, S) and x′ ∈ X∗(t′, S ′). Since x ∈ S, x′ ∈ S ′, and S ′ ≥s S, the definition of the strong
set order states that x∧x′ ∈ S and x∨x′ ∈ S ′. Next, the argument that f(x∨x′, t′) = f(x′, t′)

and f(x, t) = f(x ∧ x′, t) is exactly the same as in the proof of Theorem 2.12. Combining
these observations, conclude that x ∧ x′ ∈ X∗(t, S) and x ∨ x′ ∈ X∗(t′, S ′).

In particular, suppose we have a constraint set S(t) that is also parameterized by t, and
suppose this set is monotone nondecreasing in t in the strong set order. Then Theorem 2.13
can be applied to show that under single crossing and quasisupermodularity, the solution set
is nondecreasing in t, that is, for all t′ ≥ t,

argmax
x∈S(t′)

f(x, t′) ≥s argmax
x∈S(t)

f(x, t).

2.2.3 Necessity of the Conditions

Theorem 2.3 showed the necessity of single crossing for monotonicity of the solutions in the
case of a one-dimensional choice variable and parameter. The result extends immediately
to any lattice X and partially ordered set T . The proof of the following result is literally
identical to the proof of Theorem 2.3 for these more general spaces.
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Theorem 2.14. Let X be a lattice, T be a partially ordered set, and f : X × T → R. If
argmaxx∈S f(x, t) is monotone nondecreasing in t (in the strong set order) for each S ⊆ X

of the form S = {x̄, x̄′} for x̄′ > x̄, then f satisfies the single crossing property in (x; t).

The following result shows that monotonicity of the solution with respect to changes in the
constraint set implies quasisupermodularity. Since quasisupermodularity only plays a role for
multi-dimensional choice variables (it is trivially satisfied for any single-dimensional choice
variable), there is no analogue to this result from our study of single variable comparative
statics.

Theorem 2.15. Let X be a lattice, T be a partially ordered set, and f : X × T → R.
Suppose argmaxx∈S f(x, t) is monotone nondecreasing in S (in the strong set order) for each
t, that is, S ′ ≥s S implies

argmax
x∈S′

f(x, t) ≥s argmax
x∈S

f(x, t).

Then f is quasisupermodular in x.

Proof. Let X∗(t, S) = argmaxx∈S f(x, t). Fix any t and x, x′ ∈ X. Let S = {x ∧ x′, x} and
S ′ = {x′, x∨ x′}. Thus S ′ ≥s S. Since X∗ is nondecreasing in S, it follows that x ∈ X∗(t, S)

implies x ∨ x′ ∈ X∗(t, S ′), and x′ ∈ X∗(t, S ′) implies x ∧ x′ ∈ X∗(t, S). Therefore,

f(x, t) ≥ f(x ∧ x′, t) =⇒ x ∈ X∗(t, S)

=⇒ x ∨ x′ ∈ X∗(t, S ′)

=⇒ f(x ∨ x′, t) ≥ f(x′, t),

and

f(x, t) > f(x ∧ x′, t) =⇒ x ∧ x′ /∈ X∗(t, S)

=⇒ x′ /∈ X∗(t, S ′)

=⇒ f(x ∨ x′, t) > f(x′, t).

Thus f is quasisupermodular in x.

2.2.4 The General Theorem

Combining Theorems 2.13, 2.14, and 2.15, we obtain the following result from Milgrom and
Shannon (1994, Theorem 4).

Theorem 2.16 (Milgrom and Shannon (1994)). Let X be a lattice, T be a partially
ordered set, and f : X × T → R. Then argmaxx∈S f(x, t) is monotone nondecreasing in t

and S (in the strong set order) if and only if f is quasisupermodular in x and has the single
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crossing property in (x; t).

Proof. The “if” part of the theorem follows directly from Theorem 2.13.

To establish the “only if” part, suppose argmaxx∈S f(x, t) is monotone nondecreasing in
t and S. To show that f satisfies the single crossing property in (x; t), recall first that if
S = {x̄, x̄′} for x̄′ > x̄, then S ≥s S. Thus, for any such set S, if t′ ≥ t, then

argmax
x∈S

f(x, t′) ≥s argmax
x∈S

f(x, t).

By Theorem 2.14, this implies that f satisfies the single crossing property in (x; t). Finally,
Theorem 2.15 implies that f is quasisupermodular in x.

2.3 Greatest and Least Solutions

When X ⊆ R, the existence of a largest and smallest maximizer of an objective function
f can be ensured by imposing standard topological assumptions, such as compactness of X
and continuity of f . However, when X ⊆ Rn, these assumptions are no longer sufficient.
The difficultly is that a solution set X∗(t) may not contain an element x̄ that is greater
than every other solution in all dimensions. In this section, we establish the existence of
greatest and least maximizers under the additional assumptions that X is a lattice and f is
a quasisupermodular function. We will use these results in the next section and then again
in the following chapter when we study supermodular games.

We first establish three lemmas that will be combined together to yield our desired result
about greatest and least solutions.

Lemma 2.17. Suppose X is a lattice, T is a partially ordered set, and f : X × T → R. If
f is quasisupermodular in x, then the solution set X∗(t) = argmaxx∈X f(x, t) is a sublattice
of X for each t.

Proof. Fix any x, x′ ∈ X∗(t). Since X is a lattice, we have x ∧ x′, x ∨ x′ ∈ X. To show that
x ∨ x′ ∈ X∗(t), note that

x ∈ X∗(t) =⇒ f(x, t) ≥ f(x ∧ x′, t)
=⇒ f(x ∨ x′, t) ≥ f(x′, t) (QSM)
=⇒ x ∨ x′ ∈ X∗(t).
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Next, we prove that x ∧ x′ ∈ X∗(t) by contradiction:

x ∧ x′ /∈ X∗(t) =⇒ f(x, t) > f(x ∧ x′, t)
=⇒ f(x ∨ x′, t) > f(x′, t) (QSM)
=⇒ x′ /∈ X∗(t),

a contradiction to the assumption that x′ ∈ X∗(t). Therefore, it must be the case that
x ∧ x′ ∈ X∗(t).

If this proof seemed somewhat familiar, there is a good reason why. The proof of Theo-
rem 2.12 used similar arguments. In fact, while a direct proof of this lemma is instructive,
it is unnecessary: Applying Theorem 2.12 to the trivial parameter set T = {t} implies that
X∗(t) ≥s X

∗(t). Then, recall that a set dominates itself in the strong set order if and only
if it is a sublattice. Thus, X∗(t) is a sublattice for each t.

Lemma 2.18. Suppose X ⊆ Rn is a nonempty lattice and is compact.4 Then, X has a
greatest and least element, that is, there exist x, x̄ ∈ X such that x ≤ x ≤ x̄ for all x ∈ X.

Proof. We will prove the existence of a greatest element x̄ ∈ X. The existence of a least
element follows from a similar argument. Since X is compact, the set argmaxx∈X xi (the set
of maximizers of the continuous function g(x) = xi) is nonempty. For each i ∈ {1, . . . , n},
fix x̂i ∈ argmaxx∈X xi. Then xi ≤ x̂ii for all x ∈ X. Let x̄ = x̂1 ∨ x̂2 ∨ · · · ∨ x̂n = (x̂11, . . . , x̂

n
n).

That is, x̄ is the coordinate-wise maximum of all of the vectors x̂i. In particular, for any
x ∈ X and any i ∈ {1, . . . , n}, xi ≤ x̂ii = x̄i. It remains only to show that x̄ ∈ X. Since X
is a lattice and x̂1, x̂2 ∈ X, we have x̂1 ∨ x̂2 ∈ X. Repeating this argument, we also have
x̂1 ∨ x̂2 ∨ x̂3 = (x̂1 ∨ x̂2) ∨ x̂3 ∈ X. Continuing in this manner, it follows by induction that
x̄ = x̂1 ∨ x̂2 ∨ · · · ∨ x̂n ∈ X.

Lemma 2.19. Suppose Y, Z ⊆ Rn, and suppose each of these sets has greatest and least
elements, ȳ, y ∈ Y and z̄, z ∈ Z, respectively. If Z ≥s Y then z̄ ≥ ȳ and z ≥ y.

You are asked to prove this lemma in Exercise 2.10. Note that Lemma 2.19 extends the
one-dimensional monotonicity result from Lemma 1.3 to multi-dimensional Euclidean spaces.

Theorem 2.20. Suppose X is a nonempty lattice and is compact, T is a partially ordered
set, and f : X × T → R. If f is continuous in x and quasisupermodular in x, then:

(1) The solution set X∗(t) = argmaxx∈X f(x, t) is nonempty and has greatest and least
elements x̄(t) and x(t), respectively, for each t ∈ T .

4This is a special case of what is referred to as a complete lattice.
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(2) If f also has the single crossing property in (x; t), then t′ ≥ t implies x̄(t′) ≥ x̄(t) and
x(t′) ≥ x(t).

Proof. Since X is compact and f is continuous in x, the usual arguments imply that X∗(t) is
nonempty and compact for each t.5 Since f is quasisupermodular in x, Lemma 2.17 implies
X∗(t) is also a sublattice of X. Then, since X∗(t) is a lattice and is compact, Lemma 2.18
implies there exist x(t), x̄(t) ∈ X∗(t) such that x(t) ≤ x ≤ x̄(t) for all x ∈ X∗(t).

If f also satisfies the single crossing property in (x; t), then the set of maximizers X∗(t) is
monotone nondecreasing in t in the strong set order by Theorem 2.16. That is, t′ ≥ t implies
X∗(t′) ≥s X

∗(t). By Lemma 2.19, this implies x̄(t′) ≥ x̄(t) and x(t′) ≥ x(t).

2.4 Application: Le Chatelier Principle

It is a well-known principle in economics that long-run demand is typically more elastic than
short-run demand. For example, a change in the price of labor may lead to a change in the
use of labor in the short run, even if capital is temporarily fixed. In the long run, capital
may also change, thereby altering the marginal product of labor. This feedback leads to an
additional change in labor use.

More concretely, depending or whether capital or labor are complements or substitutes,
standard economic intuition would suggest one of two possible scenarios for the response of
labor to a decrease in the wage rate:

• Complements: Labor increases in the short run ⇒ capital increases in the long run ⇒
labor increases even more in the long run.

• Substitutes: Labor increases in the short run ⇒ capital decreases in the long run ⇒
labor increases even more in the long run.

Notice that in both cases, the long-run response of labor is greater than the short-run
response. Paul Samuelson coined the term “Le Chatelier Principle” to refer this property
after the related principle in Physics.

The intuition provided above is very informal and is in fact incorrect when arbitrary pro-
duction functions are allowed. Consider the following stylized example taken from Milgrom
and Roberts (1996).

Example 2.21 (Labor response smaller in the long run). Let the feasible triples
of labor, capital, and output (l, k, q) be the convex hull of the following set of three points:

5Fix any t, and treat f as a function of only x. The existence of a maximizer follows from the Weierstrass
maximum theorem. If we let v = maxx∈X f(x, t), then the solution set X∗(t) = argmaxx∈X f(x, t) is the
inverse image of this maximum value, X∗(t) = {x ∈ X : f(x, t) = v}. Since the inverse image of a closed set
under a continuous function is closed (in fact, this is one way of defining continuity), X∗(t) is closed. As a
closed subset of the compact set X, the set X∗(t) is therefore compact.
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{(0, 0, 0), (2, 0, 1), (1, 1, 1)}. If the price of output is 2 and the initial wage and capital rental
rates satisfy w < r < 1, then the initial optimal input mix is (l, k) = (2, 0). If the wage rises
to some value 1 < w < 2 − r, then the new short-run optimal input mix is (0, 0), but the
new long-run optimal is (1, 1). The demand for labor falls more in the short run than in the
long run.

This example shows that not every production technology generates higher demand elas-
ticity in the long run. However, under certain restrictions on the production technology,
the conclusion of greater long-run elasticity of demand is valid. Extending Paul Samuelson’s
early formal work on the subject, Milgrom and Roberts (1996) applied the methods of mono-
tone comparative statics to the problem and demonstrated that the Le Chatelier Principle
holds for both complements and substitutes.

We begin with a general objective function and subsequently specialize the result to the
input demand decision of a firm. In the abstract statement of the problem, there are two
choice variables, x ∈ X and y ∈ Y , where X ⊆ R and Y ⊆ R.6 The objective function
f : X×Y ×T → R depends on a parameter t. To simplify exposition, in the case of multiple
solutions our analysis will focus on the greatest maximizers. Thus, for each parameter t, let
(x∗(t), y∗(t)) denote the greatest long-run solution. That is,

(x∗(t), y∗(t)) ∈ argmax
(x,y)∈X×Y

f(x, y, t)

and
(x∗(t), y∗(t)) ≥ (x′, y′) ∀(x′, y′) ∈ argmax

(x,y)∈X×Y

f(x, y, t).

From Theorem 2.20, we know that this greatest solution exists if X and Y are compact
and f is continuous and quasisupermodular in (x, y). Moreover, if f has the single crossing
property in (x, y; t), then x∗(t) and y∗(t) are nondecreasing in t.

While both variables can be freely adjusted in the long run, suppose that only x can be
varied in the short run. We are therefore interested in the optimal x conditional on both
a parameter t and the temporarily-fixed value y. For any fixed y and t, let xs(y, t) be the
largest short-run solution. That is,

xs(y, t) ∈ argmax
x∈X

f(x, y, t)

and
xs(y, t) ≥ x′ ∀x′ ∈ argmax

x∈X
f(x, y, t).

After a change in the parameter from t to t′, y remains fixed at y∗(t) in the short run,
and hence the optimal choice of x is temporarily xs(y∗(t), t′). However, in the long run,

6The results in this section immediately generalize to the case where X and Y are lattices in a multidi-
mensional space.
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x and y are both changed to their optimal long-run values x∗(t′) and y∗(t′). Note that
x∗(t′) = xs(y∗(t′), t′) since the short- and long-run solutions for x are the same when y takes
its optimal long-run value.

Theorem 2.22 (Milgrom and Roberts (1996)). Suppose X ⊆ R and Y ⊆ R are
compact, T is a partially ordered set, and f : X × Y × T → R. If f is continuous and
quasisupermodular in (x, y) and has the single crossing property in (x, y; t), then for any
t′ ≥ t,

x∗(t) ≤ xs(y∗(t), t′) ≤ x∗(t′), and
x∗(t) ≤ xs(y∗(t′), t) ≤ x∗(t′).

Proof. As noted above, Theorem 2.20 implies that x∗(t) and y∗(t) are nondecreasing in t.
Thus y∗(t′) ≥ y∗(t). Also note that xs(y, t) is nondecreasing in t for fixed y, which follows
by applying Theorem 2.20 with x treated as the variable, t as the parameter, and y fixed
as a constant;7 it is also nondecreasing in y for fixed t by the same theorem since quasisu-
permodularity of f in (x, y) implies the single crossing property in (x; y) (see Exercise 2.6).
Changing one variable at a time, we therefore obtain:

xs(y∗(t), t) ≤ xs(y∗(t), t′) ≤ xs(y∗(t′), t′), and
xs(y∗(t), t) ≤ xs(y∗(t′), t) ≤ xs(y∗(t′), t′).

Since x∗(t) = xs(y∗(t), t) for any t, this completes the proof.

The first set of inequalities displayed in Theorem 2.22 captures the short-run and long-run
response to an increase in the parameter from t to t′. Note that y is fixed at y∗(t) in the short
run. The second set of inequalities captures the response to a decrease in the parameter from
t′ to t. In this case y is fixed at y∗(t′) in the short run. For both directions of a change in
the parameter, the variable x responds more in the long run than in the short run.

One particular application of interest is a firm’s optimal labor demand when capital is
fixed in the short run. Letting g denote the production function, the profit function is

π(l, k, w) = pg(l, k)− wl − rk.

We are not including the output price p and rental rate of capital r as arguments in this
function since we are only considering variation in the wage in what follows. Define the
largest solutions for long-run labor and capital, l∗(w) and k∗(w), and the largest solution for
short-run labor, ls(k, w), just as in the case of general objective functions above.

7Here, we could also simply apply our single-dimensional single crossing result (Theorem 2.2) to show
that the set of maximizing x are nondecreasing in t (in the strong set order) when y is held fixed. We would
then apply Corollary 1.5 to conclude that there exists a greatest maximizing x and it is nondecreasing in t.
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Corollary 2.23. Suppose L ⊆ R and K ⊆ R are compact and g : L×K → R is continuous.
If g is either supermodular or submodular, then for any w > w′,8

l∗(w) ≤ ls(k∗(w), w′) ≤ l∗(w′)

l∗(w) ≤ ls(k∗(w′), w) ≤ l∗(w′).

When g is supermodular, labor and capital are complements; when g is submodular,
they are instead substitutes. Note that in either case, Theorem 2.22 can be applied after
an appropriate transformation of the variables. You are asked to complete the details in
Exercise 2.11.

2.5 Exercises

2.1 Answer the following. In what follows, do not assume that any of the functions are
differentiable.

(a) Suppose X ⊆ R and T ⊆ R, and suppose that f : X×T → R and g : X×T → R
have increasing differences in (x; t). Does the function h : X × T → R defined by
h(x, t) = f(x, t) + g(x, t) have increasing differences in (x; t)? Prove or provide a
counterexample.

(b) Suppose X ⊆ R and T ⊆ R, and suppose that f : X×T → R and g : X×T → R
have the single crossing property in (x; t). Does the function h : X × T → R
defined by h(x, t) = f(x, t) + g(x, t) have the single crossing property in (x; t)?
Prove or provide a counterexample.

2.2 This problem concerns the strict single crossing property.

(a) Prove Theorem 2.8.
(b) Prove Corollary 2.9.
(c) If we change the statement of Corollary 2.9 by replacing “strict single crossing”

with “single crossing”, is it still true? Prove or provide a counterexample.
(d) If we change the statement of Corollary 2.9 by replacing “nondecreasing in t” with

“strictly increasing in t”, is it still true? Prove or provide a counterexample.

2.3 Suppose X = R+ and T = R2
+. Let f(x, t) = xg(t1 + t2) − x2 for some function

g : R+ → R+.

(a) Find a condition on g that is necessary and sufficient for f to have increasing
differences in (x; t).

8In the case where g is submodular, let l∗(w) again be the greatest solution for long-run labor, but let
k∗(w) instead be the smallest solution for long-run capital. This change is important for technical reasons,
since a change of variables will be required to prove the result for the case of submodular g; however, it
obviously does not effect the economic interpretation of the result.
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(b) Find a condition on g that is necessary and sufficient for f to be supermodular
in t.

(c) Find a condition on g that is necessary and sufficient for argmaxx∈R+
f(x, t) to be

monotone nondecreasing in t.
(d) Is supermodularity or quasisupermodularity of f in t necessary for MCS? Explain

why or why not.

2.4 Suppose X ⊆ Rn is a lattice, T is a partially ordered set, f : X × T → R, and
g : R× T → R is strictly increasing in its first variable for every t ∈ T .

(a) Prove that if g(f(x, t), t) has increasing differences in (x; t) then f satisfies the
single crossing property in (x; t).

(b) Prove that if g(f(x, t), t) is supermodular in x then f is quasisupermodular in x.

2.5 Suppose X ⊆ R, T ⊆ R and f : X × T → R++, that is, f(x, t) > 0 for every pair
(x, t) ∈ X × T . The following diagram illustrates the logical relationships between
various properties of f and log f :

f has ID in (x; t) f has SCP in (x; t)

log f has ID in (x; t) log f has SCP in (x; t)

(1)

(4) X (3)

(2)

(5)X

Prove each of the relationships (1)–(5) illustrated above. (Note that (4) and (5) are
negative relationships, meaning that you should show that they do not hold in general.)

2.6 Suppose X1 ⊆ R and X2 ⊆ R. Let X = X1 × X2 ⊆ R2 (note that X is therefore a
lattice). Suppose f : X × T → R, where T is a partially ordered set. We will write
x = (x1, x2) for elements of X and t for elements of T . Do not assume that f is
differentiable.

(a) Prove that f is supermodular in x if and only if f has increasing differences in
(x1;x2) (for every fixed t).

(b) Prove that if f is quasisupermodular in x, then f satisfies the single crossing
property in (x1;x2) (for every fixed t). (Optional: You can also show conversely
that if f has the single crossing property in both (x1;x2) and (x2;x1), then f is
quasisupermodular in x.)

(c) Suppose f has increasing differences in (x1; t) (for every fixed x2) and in (x2; t)

(for every fixed x1). Does this imply that f has increasing differences in (x; t)?
Prove or provide a counterexample.

(d) Suppose f has the single crossing property in (x1; t) (for every fixed x2) and in
(x2; t) (for every fixed x1). Does this imply that f has the single crossing property
in (x; t)? Prove or provide a counterexample.
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2.7 Suppose X ⊆ R2 is a lattice, and suppose that f : X → R is defined by f(x) =

g(x1 + x2) for x = (x1, x2) ∈ X, where g : R → R. Suppose there exists some
α ∈ R such that g is strictly decreasing up to α and strictly increasing beyond α;
that is, y < y′ ≤ α implies g(y) > g(y′), and α ≤ y < y′ implies g(y) < g(y′). Is f
quasisupermodular in x? Prove or provide a counterexample.

2.8 Suppose a firm has production function f(x) for inputs x ∈ Rn
+. Assume that f is

nondecreasing but make no other assumptions. Both the input and the output markets
are competitive: The price of output is p > 0 and the price of inputs is given by the
vector w ∈ Rn

++.

(a) Starting with a concrete example, suppose n = 2 and f(x) = xα1x
β
2 for α, β ∈ (0, 1)

with α+β < 1. Solve for optimal inputs as a function of the prices p, w1, and w2.
What is the relationship between wi and xi, and what is the relationship between
wi and xj for j ̸= i?

(b) Move back to the general case of any n and an unspecified production function
f . Is it necessarily the case that X∗

i (p, w) is nonincreasing in wi? If yes, prove it.
If not, briefly explain why not and give the weakest condition that you can find
on f that is sufficient for X∗

i (p, w) to be nonincreasing in wi. Prove that your
condition is sufficient.

(c) Is it necessarily the case that X∗
i (p, w) is nonincreasing in wj for j ̸= i? If yes,

prove it. If not, briefly explain why not and give the weakest condition that you
can find on f that is sufficient for X∗

i (p, w) to be nonincreasing in wj. Prove that
your condition is sufficient.

(d) Suppose n = 2. Is it necessarily the case that X∗
i (p, w) is nondecreasing in wj

for j ̸= i? If yes, prove it. If not, briefly explain why not and give the weakest
condition that you can find on f that is sufficient for X∗

i (p, w) to be nondecreasing
in wj. Prove that your condition is sufficient.

(e) Provide an example of a production function on R2 that has the properties you
found in part (d).

2.9 A consumer has preferences over amounts of money m ∈ R and amounts of consump-
tion of n ≥ 1 non-money goods x ∈ Rn

+. Assume that her preferences are continuous,
strictly monotonic, and quasilinear in money. The utility of bundle (m,x) is

U(m,x) = m+ v(x)

where v : Rn
+ → R is twice continuously differentiable. The consumer has wealth w.

Bundle (m,x) costs m+ p ·x, where p ∈ Rn
++ is the non-money goods price vector and

the price of money is fixed at 1. Note that although each xi must take nonnegative
values, m is permitted to take negative values (this is a standard assumption when
working with quasilinear utility). Let M∗(p) and X∗(p) denote the demands for money
and non-money goods, respectively.
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For the first parts of the problem, assume that n = 1:

(a) Is it necessarily the case that X∗(p) is nonincreasing in p? If yes, prove it. If not,
briefly explain why not, and give the weakest condition that you can find on v

that is sufficient for X∗(p) to be nonincreasing in p. Prove that your condition is
sufficient.

(b) Find a condition in terms of v′′(·) and v′(·) under which M∗(p) is nondecreasing
in p.

(c) Either using your results from the previous part of the problem or by direct
calculation, prove that for v(x) = ln(x) we have that M∗(p) is constant in p.

(d) Argue that there are functions for which M∗(p) is strictly increasing in p and
functions for which M∗(p) is strictly decreasing in p. (Hint: Although we have not
discussed general theorems giving conditions for strictly increasing or decreasing
solutions, in this case you are just looking for utility functions that give closed-
formed solutions with these properties. If you solved part (b) correctly, then it
may give you a hint of a parametric family of functions that you could use and
that includes v(x) = ln(x) as a special case.)

Now assume that n > 1:

(e) Is it necessarily the case that X∗(p) is nonincreasing in p? If yes, prove it. If
not, briefly explain why not, and give the weakest condition that you can find on
v that is sufficient for X∗(p) to be nonincreasing. Prove that your condition is
sufficient.

(f) Assume any conditions that you found in part (e). Let V (p) denote the consumer’s
indirect utility function (as a function of p only). Prove that V is supermodular:

i. AssumingX∗(p) is singleton-valued, and hence has a unique selection function
x∗(p).

ii. Without assuming X∗(p) is singleton-valued.

2.10 Prove Lemma 2.19.

2.11 This problem continues the analysis of the Le Chatelier Principle for a firm’s labor
decision.

(a) Prove Corollary 2.23. Your proof should include two parts, one for each of the
two cases considered in the corollary (complements and substitutes). Be specific
about how the optimal long-run capital k∗(w) relates to k∗(w′) in each of these
two cases.

(b) Can the assumption of supermodularity (submodularity) of g be replaced with
quasisupermodularity (quasisubmodularity) in Corollary 2.23? Explain why or
why not.

2.12 Suppose a firm has the following constant elasticity of substitution (CES) production
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function:
f(x1, x2) = (αxγ1 + (1− α)xγ2)

β/γ,

for γ ∈ R (and γ ̸= 0), α ∈ (0, 1), and β > 0.9 Assume that both the input and output
markets are competitive, so the firm is a price taker. The market price of output is
p > 0, and the price of inputs are w1, w2 > 0. Taking these prices as given, the firm
chooses x1, x2 ∈ [0, x̄] to maximize profit. You can assume throughout that if there
are multiple solutions, the firm chooses the solution with the highest value of x2 (and
if there are multiple solutions with this value of x2, the firm chooses the one with the
highest value of x1 conditional on this x2).

(a) Under what restrictions on the parameter values are the inputs complements
(meaning an increase in the price of one input weakly decreases the optimal quan-
tity of the other)?

(b) Suppose x2 is fixed in the short run (e.g, capital), and x1 is variable in both the
long run and the short run (e.g., labor). Under the parameter restrictions you
found in part (a), is the change in x1 in response to an increase in w1 smaller in
the long run than in the short run, larger in the long run than in the short run,
or is the comparison of the magnitude of these two changes indeterminate under
these assumptions? If you draw a definitive conclusion about which response is
larger, provide precise arguments in support of your conclusion. If you claim there
is insufficient information to determine whether the change is larger in the short
run or the long run, provide a careful explanation of why this is the case (but
counterexamples are not required for this part).

(c) Under what restrictions on the parameter values are the inputs substitutes (mean-
ing an increase in the price of one input weakly increases the optimal quantity of
the other)?

(d) Suppose x2 is fixed in the short run (e.g, capital), and x1 is variable in both the
long run and the short run (e.g., labor). Under the parameter restrictions you
found in part (c), is the change in x1 in response to an increase in w1 smaller in
the long run than in the short run, larger in the long run than in the short run,
or is the comparison of the magnitude of these two changes indeterminate under
these assumptions? If you draw a definitive conclusion about which response is
larger, provide precise arguments in support of your conclusion. If you claim there
is insufficient information to determine whether the change is larger in the short
run or the long run, provide a careful explanation of why this is the case (but
counterexamples are not required for this part).

9This production function is called CES because the elasticity of substitution between the inputs is
σ = 1/(1− γ).
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3.1 Introduction and Definitions

3.1.1 Examples of Strategic Complements and Substitutes

Before delving into the formal definition of a supermodular game, we begin with a few simple
motivating examples that illustrate when the strategies of different players are complemen-
tary in the sense that one player increasing zir strategy leads the other player to want to
increase zir strategy in response. Such games are said to have strategic complements.

Example 3.1 (Price Competition with Differentiated Products).

Di(pi, p−i) = ai − bipi +
∑
j ̸=i

dijpj, bi, dij ≥ 0

πi(pi, p−i) = (pi − ci)Di(pi, p−i)

∂2πi
∂pi∂pj

= dij ≥ 0.

The profit function has increasing differences in (pi; p−i). The best response to an increase
in p−i is to increase pi: This is a game with strategic complements.

Example 3.2 (Search). This is a simplified version of the Diamond (1982) search model.
Suppose agents exert effort to look for trading partners.

ui(ei, e−i) = ei ·
∑
j ̸=i

ej − c(ei).

This utility function has increasing differences in (ei; e−i). Hence, this is also a game of
strategic complements.

There are other situations where the strategies of the players are substitutes in the sense
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that one player increasing zir strategy leads the other player to want to decrease zir strategy.
Such games are said to have strategic substitutes. The following is an example of such a
game.

Example 3.3 (Cournot Duopoly).

P (q1, q2) = a− b(q1 + q2), b ≥ 0

πi(qi, qj) = (P (q1, q2)− ci)qi

∂2πi
∂qi∂qj

= −b ≤ 0.

Thus, πi has increasing differences in (qi;−qj). The best response to an increase in qj is to
decrease qi: This is a game with strategic substitutes.

The first two examples are special cases of what we will refer to as supermodular games.
The third example is not, but we will see that after a change of variables, it can be trans-
formed into a supermodular game. We next define these concepts formally and then explore
some of the properties of supermodular games.

3.1.2 Supermodular Games

Consider an n-player game. Each player has a strategy space Si that is a subset of Rmi for
some positive integer mi ∈ N. Thus we can write si = (s1i , . . . , s

mi
i ) ∈ Si to denote a pure

strategy for player i. We denote the complete strategy profile by

s = (s1, . . . , sn)

= (s11, . . . , s
m1
1 , s12, . . . , s

m2
2 , . . . , s1n, . . . , s

mn
n ) ∈ S1 × · · · × Sn ⊆ Rm,

where m = m1 + · · · + mn. The generality of multi-dimensional strategy spaces will be
important for some of our applications, but for intuition you can simply think of each Si as
a subset of R and think of S as a subset of Rn.

Let

S ≡
∏
i∈N

Si = S1 × · · · × Sn and S−i ≡
∏
j ̸=i

Sj.

Following conventional game theory notation, we will often write (si, s−i) ∈ S to denote the
strategy profile obtained when player i uses strategy si ∈ Si and the profile of strategies of
the other players is s−i ∈ S−i.

Definition 3.4. Let N = {1, . . . , n} denote the set of players. A normal-form game
(N, (Si)i∈N , (ui)i∈N) is a supermodular game if for each i ∈ N :
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(1) Si ⊆ Rmi is a lattice and is compact.1

(2) ui(si, s−i) is continuous in si for fixed s−i.2

(3) ui(si, s−i) is quasisupermodular in si and satisfies the single crossing property in
(si; s−i).

The classic definition of a supermodular game due to Topkis (1979) assumes each player
i has a utility function ui that is supermodular in their own strategy si and has increasing
differences in (si; s−i). The important implication of these assumptions in the analysis of
the game is that the set of best responses of each player is nondecreasing (in the strong
set order) in the strategies of the other players; in particular, the greatest and least best
responses are nondecreasing. We have therefore used the more general ordinal notions of
quasisupermodularity and the single crossing property from Milgrom and Shannon (1994) in
Definition 3.4, but have retained the original name.

The following theorem proves the existence and monotonicity of the greatest and least
best response functions for each player in a supermodular game. Define the best-response
correspondence Bi : S−i ↠ Si for player i by

Bi(s−i) = argmax
si∈Si

ui(si, s−i).

Theorem 3.5. Suppose (N, (Si)i∈N , (ui)i∈N) is a supermodular game. Then:

(1) Bi(s−i) is nonempty and has greatest and least elements Bi(s−i) and Bi(s−i), respec-
tively.

(2) If s′−i ≥ s−i then Bi(s
′
−i) ≥ Bi(s−i) and Bi(s

′
−i) ≥ Bi(s−i).

The set of best responses Bi(s−i) of player i is the set of optimal strategies si, taking
the strategy profile s−i of the other players as given. Translating into the notation of the
previous chapters, the objective function f is the utility function ui, the choice variable
x is the strategy si, and the parameter t is the strategy profile s−i of the other players.
Theorem 3.5 is therefore a special case of Theorem 2.20.

In the case where players have single-dimensional strategy spaces—which is again what
you should be thinking of for intuition—the result simply says that there are upper and
lower bounds in Bi(s−i) and these are nondecreasing in s−i. In the general case with mul-
tidimensional strategy spaces, Bi(s−i) is a set of vectors si ∈ Rmi . Theorem 3.5 shows that
there exist best responses that are greatest (and least) in all of the mi coordinates.

1This is a special case of what is referred to as a complete lattice.
2Upper semi-continuity in si is in fact sufficient for our first set of results, since continuity will only be

used to show the existence of a compact set of best responses to each profile of strategies of the other players.
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3.2 Equilibrium Existence

For a given normal-form game, define the combined best-response correspondence of all
players B : S ↠ S by

B(s) =
∏
i∈N

Bi(s−i) = B1(s−1)× · · · ×Bn(s−n).

Recall that the fixed points of this correspondence are precisely the pure-strategy Nash
equilibria of the game:

s ∈ B(s) ⇐⇒ s is a Nash equilibrium.

In other courses, you have already seen one approach to proving the existence of a Nash
equilibrium that relies on the Kakutani fixed point theorem and therefore assumes continuity
and convexity properties. In particular, Kakutani’s theorem can be applied if each Si is
nonempty, compact, and convex and if the correspondence B is upper hemi-continuous,
nonempty-valued, and convex-valued, conditions that are satisfied if ui is continuous in
(si, s−i) and quasi-concave in si.3

In this section, we show that these assumptions can be relaxed when B is monotonic, as in
a supermodular game. These results provide a useful alternative approach to establishing the
existence of a pure-strategy Nash equilibrium in games where continuity and quasi-concavity
may be violated, or where the strategy space Si is not convex. We will further show that
the set of equilibria in a supermodular game has a useful structure.

For a given supermodular game, define functions B : S → S and B : S → S by

B(s) = (Bi(s−i))i∈N = (B1(s−1), . . . , Bn(s−n))

B(s) = (Bi(s−i))i∈N = (B1(s−1), . . . , Bn(s−n)).

Thus, B and B are greatest and least best-response functions that bound the best-response
correspondence B. Note that these functions can be used to determine a set of sufficient
(but not necessary) conditions for a strategy profile to be a Nash equilibrium:

s = B(s) =⇒ s is a Nash equilibrium
s = B(s) =⇒ s is a Nash equilibrium.

Importantly, by Theorem 3.5, both B and B are nondecreasing functions. This property will
3What about mixed strategies? If we assume expected-utility preferences over lotteries, then quasi-

concavity of ui in the lottery is immediate. If the game is finite, then continuity is also implied and the
existence of a mixed-strategy Nash equilibrium therefore ensured. Unfortunately, existence results for finite
games based on Kakutani’s theorem do not guarantee the existence of a pure-strategy Nash equilibrium. It
is also important to keep in mind that in infinite games, continuity of ui in the lottery is not automatic—
it requires continuity of ui with respect to pure strategies. Thus, continuity is needed to prove even the
existence of equilibrium in mixed strategies in infinite games using Kakutani’s theorem.
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be central to our approach to proving the existence of Nash equilibrium in supermodular
games.

In the case of a two-player game in which each player’s strategy space is a subset of
the real line, Figure 3.1a illustrates the (two-dimensional) best-response set B(s) and the
greatest and least best responses B(s) and B(s) that arise from the best response sets B1(s2)

and B2(s1) of the two players. While this figure depicts the best responses to a single (fixed)
strategy profile s = (s1, s2) (not pictured), we will of course be interested in how B(s) and
B(s) change as s varies and where these functions have fixed points.

B(s)

B(s)

B2(s1)

B2(s1)

B2(s1)

B1(s2)B1(s2) B1(s2)

B(s)

s1

s2

(a) Illustration of B(s), B(s), and B(s)

B1(s2)

supA

A

B1(s2)
x1

x2

(b) Supremum of A ⊆ R2

Figure 3.1: Best response mappings and supremum of a two-dimensional set.

We will prove the existence of a Nash equilibrium by applying a fixed point theorem due to
Tarski. Before stating this theorem, we need to formally define the supremum and infimum
of subsets of a Euclidean space Rm. These definitions extend the familiar definitions from the
one-dimensional real line. For any nonempty and bounded set A ⊆ Rm, the supremum, or
least upper bound, of A is the vector x̄ = supA that satisfies: (i) x ≤ x̄ for all x ∈ A, and (ii)
if any other vector y satisfies x ≤ y for all x ∈ A then x̄ ≤ y. Note that if A = {x, x′}, then
the supremum of A is simply the join of these two vectors: sup{x, x′} = x ∨ x′. In general,
for any bounded set A ⊆ Rm, we will use the notation supA and

∨
A interchangeably.

Figure 3.1b illustrates the supremum in the case of a set A ⊆ R2. We similarly write inf A

or
∧
A to denote the infimum, or greatest lower bound, of A.

Importantly, if X ⊆ Rm is a lattice and is compact, then for any nonempty subset A ⊆ X

the supremum and infimum of this set are also elements of X, that is, inf A, supA ∈ X. It is
a good exercise to verify this claim.4 It is also a good exercise to check why the assumptions
that X is a lattice and that it is compact are both needed.

Theorem 3.6 (Tarski fixed point theorem). Suppose X ⊆ Rm is a nonempty lattice
that is compact, and suppose f : X → X is a nondecreasing function. Then f has a fixed

4Hint: The proof strategy will have a similar flavor to the proof of Lemma 2.18. First show that there
exist vectors x̂i in X such that the ith coordinate of x̂i is the supremum of the ith coordinate of the elements
of A. Then take the join x̄ = x̂1 ∨ x̂2 ∨ · · · ∨ x̂m.
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point. Moreover,
x̄ ≡ sup{x ∈ X : x ≤ f(x)}

is the largest fixed point, and

x ≡ inf{x ∈ X : f(x) ≤ x}

is the smallest fixed point. That is, if x ∈ X and f(x) = x, then x ≤ x ≤ x̄.

Proof. Let A = {x ∈ X : x ≤ f(x)}, and let x̄ = supA. (Note that A is nonempty since
the least element of X must be contained in A.) By the definition of the supremum, for any
x ∈ A, we have x ≤ x̄ and therefore f(x) ≤ f(x̄) since f is nondecreasing. Since x ≤ f(x)

for all x ∈ A, we therefore have x ≤ f(x) ≤ f(x̄) for all x ∈ A. Thus, f(x̄) is an upper
bound of the set A. Since x̄ is the least upper bound, this implies x̄ ≤ f(x̄).

To show the opposite inequality, note that since x̄ ≤ f(x̄) and f is nondecreasing, we
have f(x̄) ≤ f(f(x̄)). That is, f(x̄) ∈ A. Since x̄ is an upper bound for A, this implies
f(x̄) ≤ x̄. Combining the two steps, we have shown that f(x̄) = x̄, so x̄ is a fixed point.
Moreover, since any fixed point of f must be in the set A, it follows that x̄ is the largest
fixed point. The proof that x is the smallest fixed point is similar.

1

10

f

↖ ↗
{x : x ≤ f(x)}

↑
x

x

(a) Largest fixed point

1

10

f

↖ ↗
{x : x ≥ f(x)}

↑
x

x

(b) Smallest fixed point

Figure 3.2: Illustration of the Tarski fixed point theorem.

Figure 3.2 illustrates the Tarski fixed point theorem, showing the two sets employed in the
theorem and the largest and smallest fixed points. Note that unlike many other fixed point
theorems used in economics, this result does not require that the function f be continuous.
This assumption is replaced with the requirement that the function be nondecreasing. Also,
despite the fact that the domain of f in this figure happens to be an interval, the set X in
this theorem need not be convex; if fact, it could simply be a discrete set of points. However,
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it is essential for this result that the set X is a lattice, a requirement that is not needed for
some other fixed point theorems.

Theorem 3.7 (Topkis (1979)). Suppose (N, (Si)i∈N , (ui)i∈N) is a supermodular game.
Then a pure-strategy Nash equilibrium exists. Moreover,

s̄ = sup{s ∈ S : s ≤ B(s)}

is the largest Nash equilibrium, and

s = inf{s ∈ S : B(s) ≤ s}

is the smallest Nash equilibrium. That is, if s is a pure-strategy Nash equilibrium, then
s ≤ s ≤ s̄.

Proof. Define s̄ as in the statement of the theorem. By Theorem 3.5, B(s) is nondecreasing
in s. Therefore, s̄ as defined above is a fixed point of B by Theorem 3.6 (i.e., s̄ = B(s̄)),
and hence s̄ is a Nash equilibrium. To see that it is the largest Nash equilibrium, consider
any other Nash equilibrium strategy profile s ∈ S. By definition, s ∈ B(s) and therefore
s ≤ B(s). Thus s ∈ {s′ ∈ S : s′ ≤ B(s′)}, which implies s ≤ s̄. The argument that s is the
smallest Nash equilibrium is similar.

Example 3.8 (Partnership Game). Suppose players 1 and 2 are engaged in a partner-
ship relationship. Each player supplies an input si ∈ [0, z̄i], and the output of the firm is
f(s1, s2) = sα1 s

β
2 , where α, β ∈ (0, 1) and α + β < 1. For example, s1 could be capital and

s2 could be labor, or each si could be a different (and complementary) type of skilled labor.
Note that f has increasing differences in (s1; s2) (or equivalently, ID in (s2; s1)). The partners
share output equally, and both find it costly to supply their input. Specifically, their utility
functions are

u1(s1, s2) =
sα1 s

β
2

2
− s1 and u2(s1, s2) =

sα1 s
β
2

2
− s2.

For each strategy of the other player, there is a unique best response: Bi(s−i) = {Bi(s−i)} =

{Bi(s−i)} where

B1(s2) = B1(s2) = min

{(α
2

)1/(1−α)

s
β/(1−α)
2 , z̄1

}
B2(s1) = B2(s1) = min

{(β
2

)1/(1−β)

s
α/(1−β)
1 , z̄2

}
.

Note that s ≤ B(s) is equivalent to s2 ≤ B2(s1) and s1 ≤ B1(s2), that is, each player’s
strategy is below her best response to the other player’s strategy. The set of strategy profiles
where s ≤ B(s) is illustrated in Figure 3.3a, along with the largest Nash equilibrium s̄ of
this game. Similarly, s ≥ B(s) if and only if each player’s strategy is above her best response
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to the other player’s strategy. These strategies and the smallest Nash equilibrium s are
illustrated in Figure 3.3b.

z1

z2

0

B2(s1)

B1(s2)

s1

s2
s

B(s)
s

{s ∈ S : s ≤ B(s)}

s1

s2

(a) Largest Nash equilibrium

z1

z2

s

B2(s1)

B1(s2)

{s ∈ S : B(s) ≤ s}

s1

s2

(b) Smallest Nash equilibrium

Figure 3.3: Applying the Topkis theorem to the partnership game.

3.3 Comparative Statics

Definition 3.9. A parameterized supermodular game (N, (Si)i∈N , (ui)i∈N , T ) is a fam-
ily of supermodular games with payoff functions that are parameterized by t in some partially
ordered set T , such that for each i ∈ N :

(1) Si ⊆ Rmi is a lattice and is compact.
(2) ui(si, s−i, t) is continuous in si for fixed s−i and t.
(3) ui(si, s−i, t) is quasisupermodular in si and satisfies the single crossing property in

(si; s−i, t).

Theorem 3.10. Suppose (N, (Si)i∈N , (ui)i∈N , T ) is a parameterized supermodular game,
and let s̄(t) and s(t) denote the largest and smallest Nash equilibria for each t ∈ T . Then
these equilibria are nondecreasing in t.

Proof. For each fixed t ∈ T , define Bi(s−i, t), Bi(s−i, t), B(s, t), and B(s, t) as above. We
know from Theorem 3.7 that the largest and smallest Nash equilibria are

s̄(t) = sup{s ∈ S : s ≤ B(s, t)},
s(t) = inf{s ∈ S : B(s, t) ≤ s}.
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By Theorem 2.20, Bi(s−i, t) and Bi(s−i, t) are nondecreasing in both s−i and t.5 Therefore,
B(s, t) and B(s, t) are nondecreasing in both s and t. Thus

t < t′ =⇒ B(s, t) ≤ B(s, t′) ∀s ∈ S

=⇒ {s ∈ S : s ≤ B(s, t)} ⊆ {s ∈ S : s ≤ B(s, t′)}
=⇒ s̄(t) ≤ s̄(t′).

Similarly,

t < t′ =⇒ B(s, t) ≤ B(s, t′) ∀s ∈ S

=⇒ {s ∈ S : B(s, t′) ≤ s} ⊆ {s ∈ S : B(s, t) ≤ s}
=⇒ s(t) ≤ s(t′).

Thus, the extremal equilibria are nondecreasing in t.

Example 3.11 (Partnership Game, continued). Suppose the production function in
the partnership game depends on a parameter t > 0, so f(s1, s2, t) = tsα1 s

β
2 . The utility

functions of the two players are therefore now

u1(s1, s2, t) =
tsα1 s

β
2

2
− s1 and u2(s1, s2, t) =

tsα1 s
β
2

2
− s2.

The best responses are now Bi(s−i, t) = {Bi(s−i, t)} = {Bi(s−i, t)} where

B1(s2, t) = B1(s2, t) = min

{(tα
2

)1/(1−α)

s
β/(1−α)
2 , z̄1

}
B2(s1, t) = B2(s1, t) = min

{(tβ
2

)1/(1−β)

s
α/(1−β)
1 , z̄2

}
.

Figure 3.4a shows how the set {s ∈ S : s ≤ B(s, t)} becomes larger at t increases, and
hence the largest Nash equilibrium s̄(t) also increases. Figure 3.4b illustrates how the set
{s ∈ S : B(s, t) ≤ s} becomes smaller as t increases, although in this particular example s(t)
nonetheless remains constant in t. Note that this is not a contradiction to our results since
Theorem 3.10 only implies that the largest and smallest Nash equilibria are nondecreasing,
not that they are strictly increasing.

It is important to keep in mind that our comparative statics results for supermodular
games do not state that the set of Nash equilibria is nondecreasing in t in the strong set
order. For instance, in the partnership game example, there are exactly two Nash equilibria,
s(t) and s̄(t). The first does not change with t, and the second is nondecreasing in t. However,

5In this application of the theorem, take the choice variable x for player i to be her strategy si and take
her “parameter” to be the pair (s−i, t).
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B2(s1, t)

B1(s2, t)

B2(s1, t′)

B1(s2, t′)

s(t)

s(t′)

{s ∈ S : s ≤ B(s, t)}

{s ∈ S : s ≤ B(s, t′)}

s1

s2

(a) Largest Nash equilibrium

z1

z2

s(t) = s(t′)

B2(s1, t)

B1(s2, t)

B2(s1, t′)

B1(s2, t′)

{s ∈ S : B(s, t′) ≤ s}

{s ∈ S : B(s, t) ≤ s}

s1

s2

(b) Smallest Nash equilibrium

Figure 3.4: Nash equilibrium comparative statics in the partnership game (t < t′).

the set of Nash equilibria in this example is not nondecreasing in the strong set order, that
is, it is not the case that t′ > t implies {s(t′), s̄(t′)} ≥s {s(t), s̄(t)} (think about why this
fails).

The following example illustrates another limitation on the kinds of comparative statics
predictions that can be made in supermodular games. It shows that when there are more
than two Nash equilibria, the non-extreme equilibria (the Nash equilibria other than s(t)

and s̄(t)) may fail to be nondecreasing.

Example 3.12 (Search). Consider an n-player game where the strategy of each player is
her search intensity ei ∈ [0, 1], and let

ē−i =
1

n− 1

∑
j ̸=i

ej.

Suppose
ui(ei, e−i, t) = teig(ē−i)− c(ei),

where g : [0, 1] → [0, 1] is increasing and continuously differentiable with g(0) = 0, and
c : [0, 1] → R is increasing and continuously differentiable.

∂2ui
∂ei∂ej

=
tg′(ē−i)

(n− 1)
≥ 0 and

∂2ui
∂ei∂t

= g(ē−i) ≥ 0,

so ui has increasing differences in (ei; e−i, t). Thus, this is a parameterized supermodular
game. More explicitly, if c(ei) = e2i /2 then

Bi(e−i, t) = {tg(ē−i)}.
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Since the best responses are nondecreasing and payoffs are symmetric, the largest and small-
est equilibria are symmetric (see Exercise 3.1). Symmetric equilibrium satisfy ei = tg(ei).

• Graph with three crossings.
• Show middle equilibrium may be decreasing.
• Illustrate best-response dynamics.

1

1

0

tg(e)

t′g(e)

e

e

Figure 3.5: Non-monotonicity of non-extreme Nash equilibrium for t′ > t. Symmetric
Nash equilibria satisfy e = tg(e) and ei = e for all i.

3.4 Iterated Strict Dominance and Rationalizability
• Discuss coordination games as an illustration of why NE is not necessarily a predictive

tool absent some sort of learning or adaptive dynamics.
• Although weaker concepts like iterated elimination of strictly dominated strategies and

rationalizability might yield weaker predictions, their benefit is that they rely only on
common knowledge of rationality.

Definition 3.13. A pure strategy si ∈ Si for player i is strictly dominated by another pure
strategy s′i ∈ Si if ui(s′i, s−i) > ui(si, s−i) for all s−i ∈ S−i. A strategy si is undominated
if it is not dominated by another pure strategy.

Lemma 3.14. Suppose (N, (Si)i∈N , (ui)i∈N) is a supermodular game. Let z, z̄ ∈ S be the
smallest and largest strategy profiles, so z ≤ s ≤ z̄ for any s ∈ S. If si ≱ Bi(z−i) or
si ≰ Bi(z̄−i) then si is strictly dominated. Thus, the profiles of undominated strategies for
each player are contained in [B(z), B(z̄)] = {s ∈ S : B(z) ≤ s ≤ B(z̄)}.

The intuition for this result is simple in the case where each player has a single-dimensional
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strategy space. We begin with a proof for that case before proceeding to the general proof.

Proof—special case of one-dimensional strategy spaces Si ⊆ R. SinceBi(z−i) is the least best
response of player i to the smallest profile z−i of other players’ strategies, si < Bi(z−i) implies
that ui(Bi(z−i), z−i) > ui(si, z−i). For any strategy profile s−i ∈ S−i of the other players,
since s−i ≥ z−i, single crossing of ui in (si; s−i) therefore implies that ui(Bi(z−i), s−i) >

ui(si, s−i). Thus si is strictly dominated by Bi(z−i).

In the case where players have multidimensional strategy spaces, there is a slight compli-
cation to this argument since si ≱ Bi(z−i) does not necessarily imply si < Bi(z−i) (since si
could be lower in one dimension but higher in others). Nonetheless, quasisupermodularity
of ui in si can be used to prove the result.

Proof—general case. Fix any i ∈ N and any si ≱ Bi(z−i). Then, it must be the case that si
is strictly lower than Bi(z−i) in at least one coordinate. Thus, for any s−i ∈ S−i,

si ∧Bi(z−i) < Bi(z−i) =⇒ ui(Bi(z−i), z−i) > ui(si ∧Bi(z−i), z−i)

=⇒ ui(si ∨Bi(z−i), z−i) > ui(si, z−i) (QSM)
=⇒ ui(si ∨Bi(z−i), s−i) > ui(si, s−i), (SC)

so si is strictly dominated by si∨Bi(z−i). A similar argument applies to any si ≰ Bi(z̄−i).

Example 3.15 (Price Competition with Differentiated Products). Suppose firms
1 and 2 simultaneously set prices pi ∈ [0, z̄i]. Each firm has a constant marginal cost c > 0,
and the demand for firm i is

Di(pi, pj) = a− bpi + dpj,

where a, b, d > 0 and a/b > c.6 The profit for firm i is therefore

πi(pi, pj) = (pi − c)Di(pi, pj),

and the best responses are

Bi(pj) =

{
a+ bc+ dpj

2b

}
.

Figure 3.6 illustrates the best responses of the two firms, along with the points B(z) and
B(z̄). The green rectangle represents the set [B(z), B(z̄)] = {s ∈ S : B(0, 0) ≤ s ≤ B(z̄)}.

Figure 3.7 illustrates the importance of strategic complementarities in Lemma 3.14, as
well as some of the limitations of this result. Figure 3.7a shows that if we remove the

6This equation for the demand function permits negative demand when pi is sufficiently large. However,
this is not a serious issue because the inequality a/b > c ensures that the best response of each firm is to set
a price where demand is strictly positive.
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B1(0) B1(z̄2) z̄1

B2(0)

B2(z̄1)

z̄2

0

B1(p2)

B2(p1)

B(0, 0)

B(z̄)

p1

p2

Figure 3.6: Undominated strategies in the price competition game.

assumption of single crossing of ui in (si; s−i), and as an extreme allow the best responses
to fail to be nondecreasing, then there may be undominated strategies (or even a Nash
equilibrium) that lie outside of the set [B(z), B(z̄)]. Figure 3.7b shows that even when the
assumptions of the lemma are satisfied, some dominated strategies may remain in the set
[B(z), B(z̄)].7 In other words, while eliminating strategies outside of this set only involves
removing strictly dominated strategies, it does not necessarily imply that we have removed
all strictly dominated strategies.

B1(0) z̄1

B2(0)

z̄2

0

B2(s1)

B1(s2)

B(z)

s1

s2

(a) The lemma works because of complementarity.
Without SC, the conclusion may fail.

B1(0) B1(z̄2) z̄1

B2(0)

B2(z̄1)

z̄2

0

B1(s2)

B2(s1)

s1

s2

(b) The lemma does not say that we have
eliminated all strictly dominated strategies.

Figure 3.7: More on Lemma 3.14.

7Some care is required here. There is a difference between never being a best response to a pure strategy
of the other player and being a dominated strategy. However, suppose for the sake of argument that some
or all of the strategies in the gray region in Figure 3.7b are indeed strictly dominated for player 2.
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The process of iterated elimination of strictly dominated strategies proceeds as
follows: First, remove all strictly dominated pure strategies for each player i. Denote the
remaining (undominated) strategies for player i by S1

i , and let S1 ≡
∏

i∈N S
1
i denote the

profiles of these undominated strategies. Next, remove all strictly dominated pure strategies
in this reduced game where the space of strategy profiles is S1 to obtain S2, and so on.
A strategy si for player i is serially undominated if it is not eliminated at any stage of
this process of iterated elimination of strictly dominated strategies, that is, si ∈ Sk

i for all
k = 1, 2, . . . .

Note that Lemma 3.14 can be applied iteratively to show that the set of strategies sur-
viving two rounds of elimination of strictly dominated strategies are bounded by B2(z) =

B(B(z)) and B
2
(z̄) = B(B(z̄)), and so on for successive rounds of elimination. That is,

Sk ⊆ [Bk(z), B
k
(z̄)] for all k. What is the limit of this process of iterated elimination? The

sequences of largest and smallest best responses Bk
(z̄) and Bk(z), respectively, will converge

to precisely the largest and smallest Nash equilibria, provided the game is continuous in the
following sense.

Definition 3.16. A supermodular game (N, (Si)i∈N , (ui)i∈N) is a continuous supermod-
ular game if each ui is continuous in (si, s−i).

We have assumed throughout that each ui is continuous in the player’s own strategy si.
Definition 3.16 imposes the stronger assumption that ui is jointly continuous in both si and
the strategies of the other players s−i.

Theorem 3.17 (Milgrom and Roberts (1990)). Suppose (N, (Si)i∈N , (ui)i∈N) is a con-
tinuous supermodular game. Then the set of serially undominated strategy profiles (those
that survive iterated elimination of strictly dominated strategies) has largest and smallest
elements s̄ and s. Moreover, both of these strategy profiles are Nash equilibria.

Note that the original results in Milgrom and Roberts (1990) assume each ui is super-
modular in si and has increasing differences in (si; s−i). The extension for their result to
the ordinal concepts of quasisupermodularity and single crossing presented here is due to
Milgrom and Shannon (1994).

Proof. Let z, z̄ ∈ S be the smallest and largest strategy profiles, so z ≤ s ≤ z̄ for any s ∈ S.
Let z1 = B(z) and z̄1 = B(z̄), and inductively define zk+1 = B(zk) and z̄k+1 = B(z̄k). By
repeated application of Lemma 3.14, any strategy profile that survives k rounds of elimination
of strictly dominated strategies must be contained in [zk, z̄k] = {s ∈ S : zk ≤ s ≤ z̄k}.

Observe that zk is an increasing sequence and z̄k is a decreasing sequence. These claims
can be proved by induction. First, note that z0 ≡ z ≤ z1 since z is the lower bound for all
strategies. Second, note that zk−1 ≤ zk implies zk = B(zk−1) ≤ B(zk) = zk+1 since B is
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nondecreasing. By induction, conclude that zk ≤ zk+1 for all k. A similar argument shows
that z̄k ≥ z̄k+1 for all k. Since these sequences are bounded and monotone, their limits exist
by the monotone convergence theorem. In particular,

s = lim
k
zk = sup{zk : k ∈ N} and s̄ = lim

k
z̄k = inf{z̄k : k ∈ N}.

By construction, any profile s of serially undominated strategies must satisfy zk ≤ s ≤ z̄k

for all k ∈ N, and hence s ≤ s ≤ s̄.

The last step is to show that s and s̄ are Nash equilibria. Consider first s. Since zk+1 =

B(zk) ∈ B(zk) for every k ∈ N, we must have

ui(z
k+1
i , zk−i) ≥ ui(si, z

k
−i), ∀si ∈ Si.

Taking the limit as k → ∞ and using the continuity of ui, we obtain

ui(si, s−i) ≥ ui(si, s−i), ∀si ∈ Si.

Thus s is a Nash equilibrium. An analogous argument shows that s̄ is a Nash equilibrium.

Corollary 3.18. A continuous supermodular game with a unique Nash equilibrium is dom-
inance solvable.

We will illustrate these results using the example of price competition with differentiated
products introduced above. It may be useful for you to draw similar illustrations for the
partnership game and the search game examples.

Example 3.19 (Price Competition with Differentiated Products, continued).
Consider again the price competition game described in the previous example. As in the proof
of Theorem 3.17, define z1 = B(z) and z̄1 = B(z̄), and inductively define zk+1 = B(zk) and
z̄k+1 = B(z̄k). Figure 3.8 illustrates these strategy profiles and the sets [zk, z̄k] that contain
all strategy profiles that survive k rounds of elimination of strictly dominated strategies.
In this particular example, there is a unique Nash equilibrium. Notice that the sequences
(zk)k∈N and (z̄k)k∈N both converge to this Nash equilibrium. In other words, this game is
dominance solvable.

Closely related results showing that best-response dynamics converge to the largest and
smallest Nash equilibrium appear in Vives (1990). The preceding results from Milgrom and
Roberts (1990), while in some ways quite similar, add the explicit connection to elimination
of strictly dominated strategies and rationalizability. Milgrom and Roberts (1990, Theo-
rem 8) also extend the convergence result for best-response dynamics to a broad class of
adaptive dynamics, which means that behavior in a wide variety of learning models applied
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Figure 3.8: Serially undominated strategies in the price competition game.

to a supermodular game should eventually (in the limit) satisfy the bounds described in
Theorem 3.17.

3.5 Exercises

3.1 Suppose (N, (Si)i∈N , (ui)i∈N) is a supermodular game. Suppose the players all have the
same strategy space and it is one dimensional, i.e., S∗ ≡ S1 = · · · = Sn ⊆ R. Suppose
the payoffs of the individuals are symmetric. Formally, the game is symmetric if for
all permutations π : N → N and for all s ∈ S = S∗ × · · · × S∗,

uπ(i)(s1, . . . , si, . . . , sn) = ui(sπ(1), . . . , sπ(i), . . . , sπ(n)).

This formal definition may be a bit difficult to digest, so consider a simple example to
illustrate: Suppose n = 3 and (s1, s2, s3) = (a, b, c), and let π be the permutation that
swaps 2 and 3 (that is, π(1) = 1, π(2) = 3, π(3) = 2). Then, applying this definition
to i = 1 gives u1(a, b, c) = u1(a, c, b). Applying it to i = 2 gives u3(a, b, c) = u2(a, c, b).
Applying it to i = 3 gives u2(a, b, c) = u3(a, c, b).

(a) Prove that the largest and smallest pure-strategy Nash equilibrium of this game
must be symmetric, i.e., each player is playing the same strategy.
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(b) Does this imply that every Nash equilibrium of the game is symmetric? Prove or
provide a counterexample.

(c) If, in addition, Bi(s−i) is singleton-valued (each player i has a unique best re-
sponse to every pure strategy of the other players), can we make the stronger
conclusion that every Nash equilibrium must be symmetric? Prove or provide a
counterexample.

(d) What can be said about symmetric games that are not supermodular? Specifically,
is there necessarily a largest and smallest Nash equilibrium? Provide a proof or
counterexample. If a symmetric game happens to have a largest Nash equilibrium,
is that equilibrium necessarily symmetric?

3.2 Consider a Cournot duopoly where each firm chooses a quantity qi ∈ Si ≡ [0, q̄].
Suppose each firm has a continuous cost function Ci : Si → R+ and the inverse
demand function P is decreasing and twice differentiable with P ′(Q)+ q̄P ′′(Q) < 0 for
all Q = q1 + q2 ∈ [0, 2q̄].

(a) Show that there exist Nash equilibria (x̄1, x2) and (x1, x̄2) such that xi ≤ qi ≤ x̄i
for any other Nash equilibrium (q1, q2).

(b) Suppose that firm 1 receives a government subsidy, receiving s > 0 for each unit
it sells. Can you say anything definitive about how xi and x̄i change? Prove
any definitive change that you claim or provide a counterexample to illustrate the
indeterminacy.

(c) Suppose that we add a constant ∆ > 0 to the inverse demand, so that the new
price is P̂ (q1+q2) = P (q1+q2)+∆ for each q1, q2. Can you say anything definitive
about how xi and x̄i change? Just discuss whether or not the theorems from the
chapter can be applied (a proof or counterexample is not required for this part).

3.3 Consider a two-person partnership game. Simultaneously, each player i invests si ∈
[0, 1], and the payoff of player i is

ui(si, sj, t) = tf(s1)f(s2)− C(si),

where t ≥ 0 is a parameter, and f and C are continuous and strictly increasing functions
with f(0) > 0.

(a) Show that the game is supermodular.
(b) Show that the smallest and largest strategies that survive iterated elimination of

strictly dominated strategies, as well as the smallest and largest Nash equilibrium
strategies, are nondecreasing functions of t.

(c) Give an example showing that the set of Nash equilibria is not nondecreasing in
the strong set order.

3.4 Suppose (N, (Si)i∈N , (ui)i∈N) is a continuous supermodular game. Let x = (x1, . . . , xn)
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be the smallest strategy profile that survives iterated elimination of strictly dominated
strategies. Consider the n− 1 player game that is created by fixing player n’s strategy
at xn (so she is no longer a part of the game). Let s = (s1, . . . , sn−1) be the smallest
Nash equilibrium of this new game. Is it the case that si = xi for all i ∈ {1, . . . , n−1}?
Prove or provide a counterexample.

3.5 Consider a firm that has a constant marginal cost of production c > 0. The firm chooses
a price p ≥ 0, and the demand for its product is given by a continuously differentiable
demand function D(p). Assume that D(p) > 0 and D′(p) ≤ 0 for all p ≥ 0. The firm
treats the marginal cost c as a fixed parameter and chooses a price p to maximize the
following profit function:

π(p, c) = (p− c)D(p).

Answer the following:

(a) Based only on the assumptions provided thus far, can we conclude that the set of
profit-maximizing prices is nondecreasing in c? If yes, prove it (and also explain
the precise sense in which the set of optimal prices is nondecreasing). If not,
provide a counterexample.

(b) Suppose for this part of the problem that there is a unique solution for the optimal
price, and it is given by the first-order condition ∂

∂p
π(p, c) = 0. (This is true, for

example, if the profit function is strictly concave in the price p.) Show that the
optimal price satisfies the equation

p− c

p
=

1

E(p)
,

where
E(p) = − p

D(p)

∂D(p)

∂p

is the price elasticity of demand. This mark-up relative to price is called the
Lerner index.

(c) Using the results from part (b), it can be shown that greater elasticity of demand
leads to a lower optimal price for the firm. Instead of trying to formalize an
argument along these lines based on first-order conditions, let’s instead try to
apply monotone comparative statics results to this problem. Suppose now that
the demand function depends on some parameter t ∈ T ⊆ R, so demand is given
by D(p, t). Suppose also that the price elasticity of demand,

E(p, t) = − p

D(p, t)

∂D(p, t)

∂p
,

is nondecreasing in the parameter t. Do not impose the (overly strong) assumption
used in part (b) that the solution is unique. What can we conclude about how a
change in t affects the optimal price p for the firm? If there is a tight relationship,
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prove it. If instead the implications of a change in t are ambiguous, give a careful
explanation of why (a counterexample is not required for this part).

Now, consider multiple firms N = {1, . . . , n} that compete in prices. The firms simul-
taneously choose prices pi ≥ 0 (you can also assume there is some large upper bound
on the set of feasible prices in order to make the strategy spaces compact). The profit
function of firm i is

πi(pi, p−i, ci) = (pi − ci)Di(pi, p−i),

where ci > 0 for each i ∈ N . Assume the demand function Di takes the following Logit
form:

Di(pi, p−i) =M
e−αpi∑
j∈N e

−αpj
.

In this equation, M > 0 and α > 0 are fixed parameters. Answer the following:

(d) Does a pure-strategy Nash equilibrium exist in this game, and if so, can you say
anything definitive about the structure of the set of Nash equilibria of this game?
Be precise, and prove any claims that you make.

(e) Suppose the marginal cost c1 for firm 1 increases. What is the impact on the price
p1 of firm 1 and the prices pj of firms j ̸= 1 that can occur in equilibrium? Be
precise, and prove any claims that you make.

3.6 Consider a partnership game with two players who invest in a public good project at
each date t ∈ {0, 1, 2, . . . , T} without observing each other’s previous investments.8

This game can therefore be treated as simultaneous-move game where the strategy of
player i is any function xi : {0, 1, . . . , T} → [0, 1], where xi(t) is the investment level
of player i at time t. The payoff of player i is

ui(x1, x2) =
T∑
t=0

δt[Af(x1(t), x2(t))− ci(xi(t), t)],

where δ ∈ (0, 1), A ∈ (0, 1) is a productivity parameter, f : [0, 1]2 → R is a su-
permodular, increasing, and continuous production function, and ci is a continuous
time-dependent cost function for player i.

(a) Does this game have pure-strategy Nash equilibria x and x̄ such that for any
equilibrium x of the game,

xi(t) ≤ xi(t) ≤ x̄i(t)

for all i ∈ {1, 2} and t ∈ {0, 1, . . . , T}? If yes, prove it. If not, briefly explain why
not and give the weakest condition that you can find on f and ci that is sufficient
for this to be true. Prove that your condition is sufficient.

8Note that T ∈ N is a fixed terminal time period, not a parameter as in some of our theorems.
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(b) Maintain any assumptions that were needed for the existence of a largest and
smallest Nash equilibrium in part (a). Treat A ∈ (0, 1) as a parameter of the game.
Show that if A′ > A then the largest and smallest equilibrium are nondecreasing:

xi(t, A
′) ≥ xi(t, A) and x̄i(t, A

′) ≥ x̄i(t, A), ∀i, t.

3.7 (Based on Bulow, Geanakoplos, and Klemperer (1985)) Consider two firms, 1 and 2,
and two markets, A and B. Firm 1 is a monopolist in market B and a duopolist with
firm 2 in market A. The firms simultaneously choose their quantities, so a strategy for
firm 1 is a pair (qA1 , qB1 ) and a strategy for firm 2 is a quantity qA2 . Suppose the inverse
demand in market A is

PA(qA1 , q
A
2 ) = αA − βAqA1 − βAqA2

for αA, βA > 0, and the inverse demand in market B is

PB(qB1 ) = αB − βBqB1

for αB, βB > 0. The firms have nonnegative and twice continuously differentiable cost
functions C1(q

A
1 , q

B
1 ) and C2(q

A
2 ).

(a) To gain intuition, consider a special case of the general model where

PA(qA1 , q
A
2 ) = 100− qA1 − qA2

PB(qB1 ) = 50

C1(q
A
1 , q

B
1 ) =

1

2
(qA1 + qB1 )

2

C2(q
A
2 ) =

1

2
(qA2 )

2.

Solve for the Cournot-Nash equilibrium quantities is this example.
(b) Keep all of the same assumptions as in part (a), except suppose there is a pos-

itive shock to demand in market B that changes the inverse demand function
to PB(qB1 ) = 60. Find the new Cournot-Nash equilibrium. In particular, what
happens to firm 1’s equilibrium quantity in market A?

(c) Move back to the general linear demand specification with parameters αA, βA, αB, βB

and cost functions C1(q
A
1 , q

B
1 ) and C2(q

A
2 ). Suppose there is a positive shock to

demand in market B in the form of an increase in αB.
• Under what conditions (if any) will this lead to a (weakly) larger equilibrium

quantity for firm 1 in market B?
• Under what conditions (if any) will this lead to a (weakly) larger equilibrium

quantity for firm 1 in market A?
• Under what conditions (if any) will this lead to a (weakly) smaller equilibrium

quantity for firm 1 in market A?
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(You can assume the Cournot-Nash equilibrium is unique to simplify the state-
ment of your answer.)

3.8 Consider a multi-market oligopoly problem with two firms, 1 and 2, and three markets,
A, B, and C. Firm 1 sells in markets A and B, firm 2 sells in markets B and C,
and no other firms sell in these markets. Thus firm 1 is a monopoly in market A,
the firms are duopolists in market B, and firm 2 is a monopoly in market C. The
firms simultaneously choose quantities, with firm 1 choosing qA1 , q

B
1 ∈ [0, q̄] and firm

2 choosing qB2 , qC2 ∈ [0, q̄]. Make the following assumptions about the inverse demand
functions:

• Inverse demand in market A is PA(qA1 , t) = t+ f(qA1 ), where t ≥ 0 is a parameter
and f is continuously differentiable and strictly decreasing function.

• Inverse demand in market B is PB(qB1 , q
B
2 ) = α− (qB1 + qB2 ).

• Inverse demand in market C is a continuously differentiable and strictly decreasing
function PC(qC2 ).

You can also assume that each of these functions is strictly positive even when both
firms produce the maximum quantities q̄ in each of the markets they serve. Assume
that the cost functions C1(q

A
1 , q

B
1 ) and C2(q

B
2 , q

C
2 ) are twice continuously differentiable.

Answer each of the following based solely on the information provided above together
whether the additional information provided about the cost function(s) in each part. If
you invoke unnecessary assumptions to draw conclusions about any variables, you can
still receive partial but not full credit. To simplify the problem, you can also assume
throughout this problem that the Cournot-Nash equilibrium is unique.9

(a) Suppose C1 is additively separable, meaning C1(q
A
1 , q

B
1 ) = CA

1 (q
A
1 ) + CB

1 (q
B
1 ) for

twice continuously differentiable functions CA
1 and CB

1 . Based on this information,
for the equilibrium values of each of qA1 , qB1 , qB2 , qC2 , specify whether the quantity
is weakly increasing in t, weakly decreasing in t, constant in t, or whether there
is not enough information to tell if any of these three conditions hold. Provide
precise arguments in support of any definitive conclusions you draw, and provide
a brief explanation in support of any cases where you say there is insufficient
information.10

(b) Suppose C1(q
A
1 , q

B
1 ) is supermodular in (qA1 , q

B
1 ). Based on this information, for

the equilibrium values of each of qA1 , qB1 , qB2 , qC2 , specify whether the quantity
is weakly increasing in t, weakly decreasing in t, constant in t, or whether there
is not enough information to tell if any of these three conditions hold. Provide

9Just to be sure there is no confusion: The information provided does not allow us to conclude that there
is a unique equilibrium. I’m saying that you can (without penalty) make that additional assumption in order
to simplify your answers.

10In other words, if you say that we cannot determine in which direction a particular equilibrium quantity
will move, just explain why our theorems do not apply. You do not need to provide counterexamples to
show that the quantity could move in either direction.
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precise arguments in support of any definitive conclusions you draw, and provide
a brief explanation in support of any cases where you say there is insufficient
information.

(c) Suppose C1(q
A
1 , q

B
1 ) = (qA1 )

2 + (qB1 )
2 + (qA1 + qB1 )

1/2 and C2(q
B
2 , q

C
2 ) = (qB2 )

2 +

(qC2 )
2 + (qB2 + qC2 )

2. Based on this information, for the equilibrium values of each
of qA1 , qB1 , qB2 , qC2 , specify whether the quantity is weakly increasing in t, weakly
decreasing in t, constant in t, or whether there is not enough information to tell if
any of these three conditions hold. Provide precise arguments in support of any
definitive conclusions you draw, and provide a brief explanation in support of any
cases where you say there is insufficient information.

3.9 This problem considers an arms race between two countries. In the static version of
the game, each player i = 1, 2 chooses a level of arms xi ∈ [0, x̄] and receives a utility
of

ui(xi, x−i) = B(xi − x−i)− C(xi).

Assume that B : [−x̄, x̄] → R is a twice continuously differentiable, (weakly) increas-
ing, and (weakly) concave function. Assume C : R → R is a twice continuously
differentiable function of any shape. Intuitively, the function C captures the cost of
investing in a level of arms xi, and B(xi − x−i) captures the payoffs associated with
the resulting conflict (which only depends on the difference in the level of arms of the
two countries).11 Answer the following:

(a) Under the assumptions given, is this a supermodular game? If yes, then list the
conditions required by the definition of a supermodular game and confirm that
they are satisfied, and state what this implies about the existence and structure
of the set of Nash equilibria of this game. If no, then explain which condition(s)
in the definition of a supermodular game could be violated and what additional
assumptions would ensure that this is a supermodular game.

(b) Consider now some micro-foundations for the function B described above. For
each of the following definitions of B, you will be asked to illustrate the function
and explain whether the function is twice continuously differentiable, (weakly)
increasing, and (weakly) concave.

i. Suppose

B(z) =


1 if z > 0

0 if z = 0

−1 if z < 0,

where z is the difference in arms levels, that is, z = xi − x−i. Draw a graph
of this function B : [−x̄, x̄] → R. Which of the conditions listed above does
this definition of B satisfy and which does it violate?

11Note that this type of game is traditionally referred to as an “arms race” following the literal interpretation
suggested above, but the game applies equally well to R&D races, political lobbying, and a host of other
applications.
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ii. Suppose B(z) = Pr[z > ε] − Pr[z < ε], where ε is a uniformly distributed
random variable on the interval [−α, α] and z = xi−x−i is again the difference
in arms levels. (Note that when α = 0, the variance of ε is zero and we have
the same definition of B as in the previous part of the problem.) Draw a
graph of this function B : [−x̄, x̄] → R. For what range of values of α, if any,
does this definition of B satisfy all of the conditions listed above? Explain.

Now, consider a two-period version of this game. Let xi be the level of arms of country
i = 1, 2 at time t = 1, and let yi be the level of arms of country i at time t = 2. These
levels of arms are determined by the level of investment I ti of country i at each time t
according to the following equations:

xi = I1i

yi = (1− δ)xi + I2i ,

where δ ∈ (0, 1) is the rate of depreciation or the arms stockpile. Intuitively, fraction
(1 − δ) of the investment in time t = 1 remains in time t = 2 and the investment in
time t = 2 is added to this amount. The utility of each player i = 1, 2 is now given by

ui = B(xi − x−i)− C(I1i ) +B(yi − y−i)− C(I2i ).

Note that we can write I2i = yi− (1− δ)xi and therefore write the utility of each player
solely as a function of the armament levels x1, y1, x2, y2:

ui(xi, yi, x−i, y−i) = B(xi − x−i)− C(xi) +B(yi − y−i)− C(yi − (1− δ)xi). (3.1)

Suppose, as before, that the armament levels in each period must satisfy the constraint
xi, yi ∈ [0, x̄]. That is, the upper bound x̄ applies to the level of arms that can be stored
in each period (not to the amount I ti that can be invested). Answer the following:

(c) Suppose that we write this as a game of choosing arms levels, as in Equation (3.1),
so the strategy of each player i is (xi, yi).12 Assume that B : [−x̄, x̄] → R is a twice
continuously differentiable, (weakly) increasing, and (weakly) concave function.
Assume that C : R → R is twice continuously differentiable, (weakly) increasing,
and (weakly) convex. Under these assumptions, is this a supermodular game?
Explain.

(d) Maintaining the same assumptions on B and C that were given in part (c), does
this game have a unique Nash equilibrium? If yes, argue carefully why this is the

12Note that by writing the strategies in this way, we are implicitly assuming that yi cannot be conditioned
on xj ; that is, the period 2 investment strategy of country i is a single numerical value and not a function
that can depend on the period 1 investment by country j. This assumption might be sensible if either (i) the
investments levels must be chosen well in advance and cannot be adjusted based on observed investments by
the other country, or (ii) the investment level of the other country cannot be observed until the end of period
2. Under either of these assumptions, this interaction can be modeled as a static game, as we have done
here. If, instead, the period 2 investment of county i could depend on the period 1 investment by country j,
how would the game change? What solution concept would you use?
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case. If no, explain why not and provide the weakest sufficient conditions on B

and/or C that you can find that ensure that there is a unique Nash equilibrium.
Prove your conditions are sufficient. (Note: You are not required to find neces-
sary conditions, but finding weaker sufficient conditions and avoiding unnecessary
assumptions will earn more points.)

(e) Are there sufficient conditions on B and/or C such that this game dominance
solvable? (Reminder: A game is dominance solvable if the processes of iterated
elimination of strictly dominance strategies leaves only a single strategy profile.)
If yes, provide the weakest sufficient conditions that you can find such that this
is true. (Note: As in the previous part, you are not required to find necessary
conditions, but finding weaker sufficient conditions and avoiding unnecessary as-
sumptions will earn more points.) If no, explain why this is not possible.
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4.1 First-Order Stochastic Dominance

4.1.1 Definition and Equivalent Characterizations

Definition 4.1. A cumulative distribution function is a function F : R → R that is
nondecreasing, right-continuous, and satisfies

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

As the following definition formalizes, one cumulative distribution function first-order
stochastically dominates another if every individual with a nondecreasing Bernoulli utility
function prefers the first to the second.

Definition 4.2. Suppose F and G are cumulative distribution functions on R. We say F

first-order stochastically dominates G, denoted F ≥FOSD G, if∫
u(x) dF (x) ≥

∫
u(x) dG(x). (4.1)

for every nondecreasing function u : R → R for which both integrals are defined.1

1Throughout these lecture notes, integration is in the sense of Lebesgue-Stieltjes. If you are not already
familiar with the basics of measure theory and these different integration concepts, you might find the
following YouTube videos useful for a brief overview:

• Riemann vs Lebesgue integral: https://youtu.be/PGPZ0P1PJfw
• Lebesgue-Stieltjes measures: https://youtu.be/IsmgLGVpLpQ

https://youtu.be/PGPZ0P1PJfw
https://youtu.be/IsmgLGVpLpQ
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Theorem 4.3. The distribution F first-order stochastically dominates G if and only if
F (x) ≤ G(x) for all x ∈ R.

The following examples illustrate this stochastic order.

Example 4.4. Suppose F,G,H have support [0, 1] and admit the following density func-
tions:

f(x) = 1 g(x) =


1− ε if 0 ≤ x ≤ 1

3

1 + ε if 1
3
< x ≤ 2

3

1 if 2
3
< x ≤ 1

h(x) =


1− ε if 0 ≤ x ≤ 1

3

1 if 1
3
< x ≤ 2

3

1 + ε if 2
3
< x ≤ 1

Figure 4.1 illustrates these density functions and the corresponding cumulative distribution
functions F , G, and H, respectively. Notice that H ≥FOSD G ≥FOSD F .

1/3 2/3 1

1− ε

1

1 + ε

f

g h

x

(a) Probability density functions

1/3 2/3 1

1

F

G

H

x

(b) Cumulative distribution functions

Figure 4.1: Illustration of Example 4.4.

Example 4.5 (Uniform distributions). Suppose F is the uniform distribution on the
interval [0, a]. That is,

F (x) =


0 if x < 0

x/a if 0 ≤ x ≤ a

1 if a < x.

Similarly, suppose G is the uniform distribution on the interval [0, b]. It is each to see that
if a ≥ b, then F (x) ≤ G(x) for all x ∈ R and hence F ≥FOSD G.

Example 4.6 (Binary discrete distributions). Suppose the distribution F assigns
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probability α ∈ [0, 1] to the point a > 0 and assigns probability 1− α to the point 0. Then,

F (x) =


0 if x < 0

1− α if 0 ≤ x < a

1 if a ≤ x.

Similarly, suppose G assigns probability β ∈ [0, 1] to the point b > 0 and assigns probability
1 − β to the point 0. If α ≥ β and a ≥ b, then F ≥FOSD G. Notice that this illustrates at
least two ways of obtaining a first-order stochastic dominance increase of the distribution G:
First, one could fix the probabilities by taking α = β and increase the upper mass point from
b to some larger a > b. Second, one could fix the supports by taking a = b and increase the
probability of this outcome from β to some larger α > β. Of course, making both changes
simultaneously also leads to a first-order stochastic dominance increase.

There are different ways of representing uncertainty about outcomes. Sometimes working
with a cumulative distribution function is most convenient. Other times, working with
random variables is easier. It is important to understand the connections between these
different ways of representing uncertainty and the implications of various stochastic orders
in each of these domains. Suppose X is a random variable defined on a probability space
(Ω,F , P ). That is, X : Ω → R. The distribution of X is defined by

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}).

For two random variables X and Y , we write X ≥ Y if X(ω) ≥ Y (ω) for all ω ∈ Ω.

Corollary 4.7. Suppose X and Y are random variables defined on a probability space
(Ω,F , P ). If X ≥ Y , then FX ≥FOSD FY .

Proof. If X(ω) ≥ Y (ω) for all ω ∈ Ω, then for any x ∈ R,

{ω ∈ Ω : X(ω) ≤ x} ⊆ {ω ∈ Ω : Y (ω) ≤ x}.

Therefore,

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}) ≤ P ({ω ∈ Ω : Y (ω) ≤ x}) = FY (x).

Since this is true for any x ∈ R, Theorem 4.3 implies FX ≥FOSD FY .

The converse of this corollary is not true. It is possible to have random variables X and
Y where X(ω) < Y (ω) for some ω, yet FX ≥FOSD FY . The following example illustrates.
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Example 4.8. Suppose Ω = [0, 1] and P is the uniform distribution. Let

X(ω) = 1 + ω and Y (ω) = 2− 2ω.

Then, Y (ω) > X(ω) for all ω < 1/3, but

FX(x) =


0 if x < 1

x− 1 if 1 ≤ x < 2

1 if 2 ≤ x

FY (x) =


0 if x < 0
x
2

if 0 ≤ x < 2

1 if 2 ≤ x

Thus, FX(x) ≤ FY (x) for all x, so FX ≥FOSD FY even though X ̸≥ Y . However, note that
we can construct another random variable that has the same distribution as Y and that is
pointwise dominated by X. For example, define Z(ω) = 2ω. Then, Y and Z have the same
distribution, FY = FZ , and therefore FX ≥FOSD FZ . In addition, X ≥ Z.

1

1

2
X

Y

Z

ω

(a) Random variables

1 2

1

FX

FY

x

(b) Cumulative distribution functions

Figure 4.2: Illustration of Example 4.8.

As hinted at by the previous example, a partial converse of Corollary 4.7 is true. Specif-
ically, if G ≥FOSD H then there exists a probability space (Ω,F , P ) and random variables
X and Y on this space such that FX = G, FY = H, and X ≥ Y . In fact, constructing such
random variables in one approach to proving Theorem 4.3, as we show next.

4.1.2 Proof of Characterization Theorem (optional)

For the rest of this section, let (Ω,F , P ) be the probability space consisting of the uniform
measure on the unit interval: Let Ω = (0, 1), let F be the Borel σ-algebra on (0, 1), and let
P be the uniform (Lebesgue) measure.

Lemma 4.9. If F (x) ≤ G(x) for all x ∈ R, then there exist random variables X : (0, 1) → R
and Y : (0, 1) → R such that the distribution of X is F , the distribution of Y is G, and
X ≥ Y .
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Proof. Define random variables X : (0, 1) → R and Y : (0, 1) → R by

X(ω) = inf{x ∈ R : F (x) ≥ ω},
Y (ω) = inf{x ∈ R : G(x) ≥ ω}.

We first show that the distribution of X is F and the distribution of Y is G. To see this,
note that

X(ω) ≤ x ⇐⇒ x ≥ inf{x′ ∈ R : F (x′) ≥ ω}
⇐⇒ x ∈ {x′ ∈ R : F (x′) ≥ ω} (since F is right continuous)
⇐⇒ ω ≤ F (x).

Thus for any x ∈ R,

FX(x) = P ({ω ∈ (0, 1) : X(ω) ≤ x}) = P ({ω ∈ (0, 1) : ω ≤ F (x)}) = F (x).

A similar argument shows that FY (x) = G(x).

Next, to see that X ≥ Y , recall that F and G were assumed to satisfy F (x) ≤ G(x) for
all x ∈ R. Therefore, for any ω ∈ (0, 1),

{x ∈ R : F (x) ≥ ω} ⊆ {x ∈ R : G(x) ≥ ω},

and hence X(ω) ≥ Y (ω). Since this is true for all ω, we have X ≥ Y .

Using this lemma, we can now easily prove Theorem 4.3.

Proof of Theorem 4.3. We first prove that if F (x) ≤ G(x) for all x ∈ R, then Equation (4.1)
is satisfied for every nondecreasing function u : R → R. To show this, define random variables
X and Y as in Lemma 4.9, so FX = F , FY = G, and X ≥ Y . For any nondecreasing function
u, we must therefore have u(X(ω)) ≥ u(Y (ω)) for all ω ∈ (0, 1). Thus,∫

Ω

u(X(ω)) dP (ω) ≥
∫
Ω

u(Y (ω)) dP (ω).

Since F is the distribution of X and G is the distribution of Y , this is equivalent to∫ ∞

−∞
u(x) dF (x) ≥

∫ ∞

−∞
u(x) dG(x).

Hence, Equation (4.1) is satisfied.

To prove the converse, suppose it is not the case that F (x) ≤ G(x) for all x ∈ R. This
implies there is some x̄ ∈ R such that F (x̄) > G(x̄). Consider the nondecreasing function
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u : R → R defined by

u(x) =

{
0 if x ≤ x̄

1 if x > x̄.

Then, ∫
u(x) dF (x) = (0)F (x̄) + (1)(1− F (x̄))

< (0)G(x̄) + (1)(1−G(x̄)) =

∫
u(x) dG(x),

and hence Equation (4.1) is violated.

4.2 Monotone Likelihood Ratio Order

To study the monotone likelihood ratio order, we will consider two classes of distributions:

(1) F is continuously distributed with a density function f , so that

F (x) =

∫ x

−∞
f(t) dt.

(2) F is discretely distributed with either finite support {x1, . . . , xn} or a countably infinite
support {x1, x2, . . . } and a discrete density function f , so that

F (x) =
∑
xi≤x

f(xi).

Note that this restriction is not without loss of generality, as there are many distributions
that do not admit density functions. Nonetheless, many distributions of interest will fall into
one of these two cases.

Definition 4.10. Suppose F and G are cumulative distribution functions on R, and suppose
these distributions have (either discrete or continuous) density functions f and g, respec-
tively. Then F dominates G in the monotone likelihood ratio order, denoted F ≥MLR G

(or f ≥MLR g), if
f(x′)g(x) ≥ f(x)g(x′), ∀x′ > x.

When g is strictly positive, then the condition in this definition can be written as

f(x′)

g(x′)
≥ f(x)

g(x)
, ∀x′ > x,

that is, f(x)/g(x) is nondecreasing in x.
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Example 4.11. Suppose F,G,H are defined as in Example 4.4. That is,

f(x) = 1 g(x) =


1− ε if 0 ≤ x ≤ 1

3

1 + ε if 1
3
< x ≤ 2

3

1 if 2
3
< x ≤ 1

h(x) =


1− ε if 0 ≤ x ≤ 1

3

1 if 1
3
< x ≤ 2

3

1 + ε if 2
3
< x ≤ 1

It is easy to see that F ̸≥MLR G and G ̸≥MLR H. However, F ≥MLR H.

Example 4.12 (Uniform distributions, continued). Suppose as in Example 4.5 that
F is the uniform distribution on the interval [0, a] and G is the uniform distribution on the
interval [0, b]. It is not difficult to show that if a ≥ b, then F ≥MLR G.

Example 4.13 (Binary discrete distributions, continued). Suppose as in Exam-
ple 4.6 that the distribution F assigns probability α ∈ [0, 1] to the point a > 0 and assigns
probability 1 − α to the point 0. Similarly, G assigns probability β ∈ [0, 1] to the point
b > 0 and assigns probability 1 − β to the point 0. We make two observations about these
distributions:

• It is easy to see that if a = b and α ≥ β, then F ≥MLR G.
• However, if a ̸= b and α, β ∈ (0, 1), then F ̸≥MLR G, even if a > b and α > β. To see

this, note that b > 0, yet

f(b)g(0) = 0(1− β) ̸≥ (1− α)β = f(0)g(b),

violating the definition of the MLR order.

Contrasting Examples 4.4 and 4.6 with their counterparts in Examples 4.11 and 4.13,
we see that first-order stochastic dominance does not imply dominance in the monotone
likelihood ratio order. That is, FOSD is not strong enough to imply MLR dominance.
However, the opposite is true: The MLR order is stronger (more restrictive) than the FOSD
order, as the following lemma demonstrates.

Lemma 4.14. If F ≥MLR G then F ≥FOSD G.

Proof. We will prove the result for the case where F and G are continuously distributed. The
proof for discrete distributions is analogous. Fix any x. Then for any t′ ≥ x ≥ t, F ≥MLR G

implies that f(t′)g(t) ≥ f(t)g(t′). Integrating over t ∈ (−∞, x], we have

f(t′)G(x) =

∫ x

−∞
f(t′)g(t) dt ≥

∫ x

−∞
f(t)g(t′) dt = F (x)g(t′), ∀t′ ≥ x.
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Then, integrating over t′ ∈ [x,∞), we have

(1− F (x))G(x) =

∫ ∞

x

f(t′)G(x) dt′ ≥
∫ ∞

x

F (x)g(t′) dt′ = (1−G(x))F (x).

This is only possible if F (x) ≤ G(x). Since x was arbitrary, this completes the proof.

Lemma 4.14 shows that the monotone likelihood ratio order is more restrictive than the
first-order stochastic dominance order. However, it may not be clear exactly what additional
structure is imposed by the MLR order. The following theorem demonstrates precisely what
the MLR order requires beyond first-order stochastic dominance.

Theorem 4.15. Suppose F and G admit continuous and strictly positive density functions
f and g, respectively.2 Then, the following statements are equivalent:

(1) F ≥MLR G.
(2) The conditional distribution of F first-order stochastically dominates the conditional

distribution of G on every interval [a, b]. Formally, for every a < b, we have

F (x)− F (a)

F (b)− F (a)
≤ G(x)−G(a)

G(b)−G(a)
∀x ∈ [a, b].

Proof. We first prove that 2 implies 1. Fix any a < x < b. Note that

F (x)− F (a)

F (b)− F (a)
=

F (x)− F (a)

F (b)− F (x) + F (x)− F (a)
=

1
F (b)−F (x)
F (x)−F (a)

+ 1
,

and similarly for G. Therefore, condition 2 implies

F (b)− F (x)

F (x)− F (a)
≥ G(b)−G(x)

G(x)−G(a)
,

and hence
F (b)− F (x)

G(b)−G(x)
≥ F (x)− F (a)

G(x)−G(a)
.

This is true for any a < x < b. Therefore, applying the same inequality for x < b < x′, we
have

F (x′)− F (b)

G(x′)−G(b)
≥ F (b)− F (x)

G(b)−G(x)
.

2Assuming strictly positive density functions ensures that the probability assigned by both F and G to
any interval [a, b] with b > a is strictly positive. The theorem and its proof can be extended to relax this
assumption, but with slightly more cumbersome arguments.
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Combining these two inequalities, we have

F (x′)− F (b)

G(x′)−G(b)
≥ F (b)− F (x)

G(b)−G(x)
≥ F (x)− F (a)

G(x)−G(a)
,

and hence
f(x′)

g(x′)
= lim

b→x′

F (x′)−F (b)
x′−b

G(x′)−G(b)
x′−b

≥ lim
a→x

F (x)−F (a)
x−a

G(x)−G(a)
x−a

=
f(x)

g(x)
.

Since this is true for any x′ > x, we have F ≥MLR G.

To prove that 1 implies 2, fix any a < b. Let F ∗ and G∗ denote the conditional distribu-
tions on this interval, and let f ∗ and g∗ denote the conditional densities. That is,

F ∗(x) =


0 if x < a
F (x)−F (a)
F (b)−F (a)

if a ≤ x ≤ b

1 if x > b

and f ∗(x) =


0 if x < a

f(x)
F (b)−F (a)

if a ≤ x ≤ b

0 if x > b,

with G∗ and g∗ defined similarly. Note that F ≥MLR G implies that F ∗ ≥MLR G∗ (this
is easily verified using the formulas for f ∗ and g∗ and the definition of the MLR order).
Therefore, by Lemma 4.14, F ∗ ≥FOSD G∗, which establishes condition 2.

4.3 Second-Order Stochastic Dominance

4.3.1 Mean-Preserving Reductions in Risk

Theorem 4.16. For any cumulative distribution functions F and G on [a, b], the following
are equivalent:

(1) There exist a pair of random variablesX and ε on some probability space (Ω,F , P ) such
that F is the cumulative distribution function of X, G is the cumulative distribution
function of X + ε, and E[ε|X] = 0.3

(2) For all t ∈ [a, b],∫ t

a

F (x) dx ≤
∫ t

a

G(x) dx and
∫ b

a

F (x) dx =

∫ b

a

G(x) dx.

(3) For every concave function u : [a, b] → R,∫
u(x) dF (x) ≥

∫
u(x) dG(x).

Note that these conditions imply that F and G have the same mean. This can be seen
3Using less precise but perhaps more descriptive notation, this means E[ε|X = x] = 0 for all x.
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in a number of ways. Using the first condition, the law of iterated expectations implies

E[X + ε] = E
[
X + E[ε|X]

]
= E[X].

This can also be seen from the second condition. Since F (a) = G(a) = 0 (since F and G

have bounded support, we can always choose a so that this is true) and F (b) = G(b) = 1,
integration by parts yields∫ b

a

F (x) dx =
[
xF (x)

]b
x=a

−
∫ b

a

x dF (x) = b−
∫ b

a

x dF (x),

and likewise for G. Thus∫ b

a

F (x) dx =

∫ b

a

G(x) dx ⇐⇒
∫ b

a

x dF (x) =

∫ b

a

x dG(x).

Finally, that F and G have the same mean also follows from the third condition applied to
the functions u(x) = x and u(x) = −x.

Definition 4.17. If any of the conditions in Theorem 4.16 hold, we say that F differs from
G by a mean-preserving reduction in risk and, equivalently, that G differs from F by a
mean-preserving increase in risk.

Remark 4.18. I will write F ≥MPRR G if F differs from G by a mean-preserving reduction
in risk. However, note that this is not established notation. In fact, even the terminology in
Definition 4.17 (which comes from Machina and Pratt (1997)) is not fully established. In the
operations research literature on stochastic orders, Condition 3 in Theorem 4.16 is referred
to as dominance in the concave order.4 Specifically, F is larger than G in the concave
order, denoted F ≥cv G, if ∫

u(x) dF (x) ≥
∫
u(x) dG(x)

for all concave u : [a, b] → R.5 Thus writing F ≥MPRR G (as we will in this course) is
equivalent to writing F ≥cv G (as in the operations research literature).

Example 4.19. Consider the probability space Ω = {ω1, ω2, ω3, ω4} with P (ω) = 1/4 for
4For example, see Shaked and Shanthikumar (2007, page 109).
5The operations research typically focuses on convexity rather than concavity, just as it usually focuses

on minimization rather than maximization. Therefore, it is even more common to see the convex order,
which is defined as above but for all convex u : [a, b] → R. Note that F is larger than G in the concave order
if and only if G is larger than F in the convex order.
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each ω ∈ Ω. Suppose the random variables X and ε are defined as follows:

X(ω1) = X(ω2) = 1 and X(ω3) = X(ω4) = 10

ε(ω1) = −1, ε(ω2) = 1, ε(ω3) = −2, ε(ω4) = 2.

Let Y = X + ε, so

Y (ω1) = 0, Y (ω2) = 2, Y (ω3) = 8, Y (ω4) = 12.

Since the partition generated by the random variable X is {{ω1, ω2}, {ω3, ω4}}, the condi-
tional expectation of ε given X is

E[ε|X](ω) =

{
1
2
ε(ω1) +

1
2
ε(ω2) if ω = ω1, ω2

1
2
ε(ω3) +

1
2
ε(ω4) if ω = ω3, ω4

= 0, ∀ω ∈ Ω.

Thus, letting FX and FY denote the distributions of the random variables X and Y , re-
spectively, FX is a mean preserving reduction in risk of FY by condition 1 in Theorem 4.16.
These cumulative distribution functions are illustrated below in Figure 4.3. This figure also
illustrates condition 2 in Theorem 4.16. For the value t indicated in the figure, the differ-
ence in the value of the integrals

∫ t

0
FY (x) dx−

∫ t

0
FX(x) dx is the difference between the red

shaded areas and the blue shaded areas, which is positive. It is easy to see that this is true
for any t ∈ [0, 12], and moreover, the integrals are equal for t = 12.

1 2 8 10 12

1/4

1/2

3/4

1
FY

FX

t x

Figure 4.3: Illustration of Example 4.19 and the integral condition from Theorem 4.16.

Rothschild and Stiglitz (1970) pointed out some of the limitations of mean-variance anal-
ysis and instead suggested using mean-preserving increases in risk as a comparative measure
of variability. Note that this notion of an increase in risk is stronger than an increase in
variance. The following lemma formalizes this claim; the proof is left as an exercise.

Lemma 4.20. If F ≥MPRR G, then Var[X] ≤ Var[Y ] for any random variables X and Y

with distributions F and G, respectively.
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While Rothschild and Stiglitz (1970) are credited with bringing the general notions of
reductions in risk discussed in this section into the forefront of the economics literature,
earlier formal results more general than Theorem 4.16 can be found in the statistics literature,
most notably, in Blackwell (1951, 1953). We will discuss Blackwell’s seminal papers on the
comparison of statistical experiments in a later chapter. Rothschild and Stiglitz (1972) later
acknowledged Blackwell’s work on the subject after they became aware of it.

4.3.2 Second-Order Stochastic Dominance

While Rothschild and Stiglitz (1970) focused on random variables with the same mean
in their analysis of increasing risk, these ideas can be extended to random variables with
different means, as the following theorem and definition show.

Theorem 4.21. For any cumulative distribution functions F and G on [a, b], the following
are equivalent:

(1) There exist a pair of random variablesX and ε on some probability space (Ω,F , P ) such
that F is the cumulative distribution function of X, G is the cumulative distribution
function of X + ε, and E[ε|X] ≤ 0.6

(2) For all t ∈ [a, b], ∫ t

a

F (x) dx ≤
∫ t

a

G(x) dx.

(3) For every nondecreasing and concave function u : [a, b] → R,∫
u(x) dF (x) ≥

∫
u(x) dG(x).

Definition 4.22. In any of the conditions in Theorem 4.21 hold, we say that F second-
order stochastically dominates G, denoted F ≥SOSD G.

Remark 4.23. In the operations research literature on stochastic orders, F ≥SOSD G is
sometimes referred to as F being larger than G in the increasing concave order and
written as F ≥icv G.7 However, referring to this order as second-order stochastic dominance
is, by far, more common in economics.

Example 4.24. Consider a slight modification of Example 4.19 where X is defined just as
6Equivalently, there exist random variables X and Y such that F is the distribution of X, G is the

distribution of Y , and E[Y |X] ≤ X.
7For example, Müller and Stoyan (2002, page 16) or Shaked and Shanthikumar (2007, page 181).
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before, but ε(ω3) = −4 (rather than −2) and hence Y (ω3) = 6. That is,

X(ω1) = X(ω2) = 1 and X(ω3) = X(ω4) = 10

ε(ω1) = −1, ε(ω2) = 1, ε(ω3) = −4, ε(ω4) = 2

Y (ω1) = 0, Y (ω2) = 2, Y (ω3) = 6, Y (ω4) = 12.

We now have

E[ε|X](ω) =

{
1
2
ε(ω1) +

1
2
ε(ω2) if ω = ω1, ω2

1
2
ε(ω3) +

1
2
ε(ω4) if ω = ω3, ω4

=

{
0 if ω = ω1, ω2

−1 if ω = ω3, ω4.

Therefore, letting FX and FY denote the distributions of X and Y , respectively, FX is not a
mean preserving reduction in risk of FY , but FX ≥SOSD FY . Therefore, not every individual
with a concave Bernoulli utility function u will prefer X to Y , but every individual with a
concave and nondecreasing Bernoulli utility function will. Figure 4.4 illustrates the cumula-
tive distribution functions FX and FY . It is easy to see that condition 2 from Theorem 4.21
is satisfied. In particular,∫ t

0

FX(x) dx ≤
∫ t

0

FY (x) dx, ∀t ∈ [0, 12],

but now with a strict inequality at t = 12.

1 2 6 10 12

1/4

1/2

3/4

1
FY

FX

x

Figure 4.4: Illustration of Example 4.24 and the integral condition from Theorem 4.21.

By condition 3 in Theorem 4.21, it is immediate that the first-order stochastic dominance
order is stronger (more restrictive) than the second-order stochastic dominance order. The
relationships between the orders described so far are summarized as follows:

F ≥MLR G =⇒ F ≥FOSD G =⇒ F ≥SOSD G,

F ≥MPRR G =⇒ F ≥SOSD G.
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The fact that the second-order stochastic dominance order permits increases in mean as
well as decreases in variability might suggest that it is in some sense a combination of first-
order stochastic dominance with a mean-preserving decrease in risk. The following lemma
shows that this intuition is accurate.

Lemma 4.25. Fix any distributions F and G on [a, b]. Then F ≥SOSD G if and only if
there exists a distribution H such that

F ≥MPRR H ≥FOSD G.

Proof. If F ≥MPRR H ≥FOSD G, then F ≥SOSD H ≥SOSD G. By the transitivity of the
second-order stochastic dominance order, F ≥SOSD G.

To prove the converse, suppose F ≥SOSD G. By Theorem 4.21, there exist random
variables X and ε such that F is the distribution of X, G is the distribution of Y = X + ε,
and E[ε|X] ≤ 0. Define a random variable Z by

Z = Y − E[ε|X] = X + ε− E[ε|X],

and let H be the distribution of Z. Then Z ≥ Y since E[ε|X] ≤ 0 and therefore H ≥FOSD G

by Corollary 4.7. Define a random variable ε̂ = ε− E[ε|X]. By construction,

E[ε̂|X] = E
[
ε− E[ε|X]

∣∣X] = E[ε|X]− E[ε|X] = 0,

where the second equality follows from the law of iterated expectations. Note that

Z = Y − E[ε|X] = X + ε̂,

and hence F ≥MPRR H by Theorem 4.16.

4.4 Comparative Measures of Risk Aversion

In this section, we briefly review the definitions and various characterizations of risk aversion.
We begin with absolute risk aversion, where “absolute” means we are asking when a single
individual should be classified as risk averse. We next explore comparative risk aversion,
where “comparative” means we are asking when one individual should be classified as more
risk aversion than another.

These definitions can be stated either in terms of lotteries (meaning probability distribu-
tions) or random variables. We will focus on random variables in our definitions, since this
will make it more convenient to define decreasing (or increasing) absolute and relative risk
aversion. Keep in mind that if a preference ≿ is defined on the space of random variables, it
induces a preference over lotteries, and vice versa.8 Throughout this section, we are implic-

8Formally, if ≿ is defined on the space of probability distributions, then it induces a preference ≿′ over
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itly assuming that the preference ≿ is defined for gambles over some interval of real numbers
(i.e., the domain of the Bernoulli utility function u is an interval), and we are considering
only random variables X that take values in this interval.

Definition 4.26. An individual with risk preference ≿ is risk averse if she prefers to receive
the expected value of a random variable (for certain) to holding the random variable, that
is, E[X] ≿ X for any random variable X.

Before describing some equivalent characterizations of risk aversion, we begin by defining
a few useful objects. If ≿ is a preference over random variables, the certainty equivalent
of a random variable X, denoted CE≿(X), is the deterministic consumption value such the
individual is indifferent between this sure consumption and the original random variable:

CE≿(X) ∼ X.

Under mild regularity properties, a risk preference has a certainty equivalent for every gam-
ble. The risk premium of X, denoted RP≿(X), is the maximum amount that the individual
would be willing to pay to avoid the risk in X and instead receive its expected value as a
certain outcome:

X ∼
(
E[X]−RP≿(X)

)
.

There is an obvious relationship between the risk premium and the certainty equivalent:
RP≿(X) = E[X]− CE≿(X).

Theorem 4.27. Consider a risk preference ≿ that has an expected-utility representation
with a continuous and increasing Bernoulli utility function u. The following are equivalent:

(1) ≿ is risk averse.
(2) CE≿(X) ≤ E[X] for any random variable X.
(3) RP≿(X) ≥ 0 for any random variable X.
(4)

∫
u(x) dF (x) ≤ u(

∫
x dF (x)) for any distribution F .

(5) u is concave.

The proof of this result is straightforward and is left as an exercise.

With the definition of absolute risk aversion in hand, we now proceed to compare the risk
aversion of two individuals.

random variables, where we set X ≿′ Y if and only if FX ≿ FY . Conversely, if we start with a preference ≿
over random variables such that X ∼ Y whenever FX = FY (think about why this property is important),
then it induces a preference ≿′ over lotteries, where we set G ≿′ H if and only if there exist random variables
X and Y such that FX = G, FY = H, and X ≿ Y .
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Definition 4.28. One risk preference ≿1 is more risk averse than another ≿2 if for any
random variable X and any deterministic consumption value x,

X ≿1 x =⇒ X ≿2 x.

Definition 4.29. Given a twice differentiable Bernoulli utility functions u for money, the
Arrow-Pratt coefficient of absolute risk aversion at x is

A(x) = −u
′′(x)

u′(x)
.

Theorem 4.30. Consider any pair of risk preferences ≿1 and ≿2 that have expected-utility
representations with continuous and increasing Bernoulli utility functions u1 and u2, respec-
tively. The following are equivalent:

(1) ≿1 is more risk averse than ≿2.
(2) w +X ≿1 w =⇒ w +X ≿2 w for any deterministic wealth level w and any random

variable X.
(3) CE≿1(X) ≤ CE≿2(X) for any random variable X.
(4) RP≿1(X) ≥ RP≿2(X) for any random variable X.
(5)

∫
u1(x) dF (x) ≥ u1(x̄) =⇒

∫
u2(x) dF (x) ≥ u2(x̄) for any distribution F and riskless

outcome x̄.
(6) u1 is a concave transformation of u2, that is, there exists an increasing and concave

function ϕ such that u1(x) = ϕ(u2(x)).
(7) A1(x) ≥ A2(x) for all x.

We will not prove this result here, although the proof is not difficult (see Pratt (1964)
for the original treatment, or Mas-Colell, Whinston, and Green (1995) or Kreps (2013) for
a textbook treatment).

4.5 Exercises

4.1 Consider the subset {(p1, p3) : p1 ≥ 0, p3 ≥ 0, p1 + p3 ≤ 1} of R2. (We are using p3
to denote the second coordinate for reasons that will become clear shortly.) This set
is sometimes referred to as the Marschak-Machina triangle and can be used to graph-
ically represent probability distributions on any set of three prizes X = {x1, x2, x3}.
Specifically, assume the prizes are real numbers with x3 > x2 > x1 and let p1 be the
probability of x1, p2 = 1−p1−p3 be the probability of x2, and p3 be the probability of
x3.9 Draw this triangle, and choose an arbitrary point p = (p1, p3) somewhere in the

9Graphically, the bottom-right corner on the horizontal axis is the distribution that gives x1 with prob-
ability 1, the corner at the origin is the distribution that gives x2 with probability 1, and the upper corner
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interior of the triangle.

(a) Illustrate in your graph all the distributions in your triangle that first-order
stochastically dominate (FOSD) this distribution p. Provide equations or cal-
culations to support your answer.

(b) On a new graph or on your previous graph, illustrate all the distributions in
your triangle that monotone likelihood ratio (MLR) dominate this distribution p.
Provide equations or calculations to support your answer.

(c) To avoid clutter, start a new graph for this part. Draw the Marschak-Machina
triangle and your arbitrary distribution p again. Illustrate all the distributions
in your triangle that are a mean-preserving reduction in risk (MPRR) of this
distribution p. Provide equations or calculations to support your answer.

(d) On a new graph or on your previous graph, illustrate all the distributions in your
triangle that second-order stochastically dominate (SOSD) this distribution p.
Provide equations or calculations to support your answer.

(e) What relationship between these stochastic orders is indicated by your figures?
That is, indicate which of these four stochastic orders implies which of the others
(in the sense that q dominates p with respect to the first order implies q dominates
p with respect to the second).

4.2 In what follows, suppose X, Y , and Z are bounded random variables, and let FX , FY ,
and FZ denote the cumulative distribution functions of these random variables. Also,
let FX+Z and FY+Z denote the cumulative distributions of the random variables X+Z

and Y + Z, respectively. If you find it convenient, you are free to assume that these
random variables admit density functions fX , fY , fZ , fX+Z , and fY+Z (you are not
required to make this assumption, and it is not needed to solve the problem, but you
are free to make it without penalty). Answer the following:

(a) Suppose X, Y , and Z are independent random variables, and suppose that
FX ≥FOSD FY , that is, FX first-order stochastically dominates FY . Can we con-
clude that FX+Z ≥FOSD FY+Z? If yes, prove it. If not, provide a counterexample.

(b) You are now asked to determine if your answer to part (a) depends on the as-
sumption that the random variables are independent. That is, do not assume
that X, Y , and Z are independent. If FX ≥FOSD FY , can we conclude that
FX+Z ≥FOSD FY+Z? If yes, prove it. If not, provide a counterexample. (If you
answered “no” to part (a), you do not need to construct a new counterexample
for this part—you can simply refer to your previous counterexample.)

(c) Suppose X, Y , and Z are independent random variables, and suppose that
FX ≥MPRR FY , that is, FX is a mean-preserving reduction in risk of FY . Can we
conclude that FX+Z ≥MPRR FY+Z? If yes, prove it. If not, provide a counterex-
ample.

(d) Is this part of the problem, do not assume that X, Y , and Z are independent.

on the vertical axis is the distribution that gives x3 with probability 1.
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Suppose that FX ̸= FY , that is, X and Y do not have the same distribution. Is
it possible to have FX ≥MPRR FY and also have FX+Z ≤MPRR FY+Z? In other
words, loosely speaking, is it possible to have X be less risky than Y and yet have
X + Z be more risky than Y + Z? If yes, provide an example where this occurs.
If not, prove that this is impossible.

4.3 Suppose an individual has wealth w that she is allocating between a riskless asset with
gross return Rf and a risky asset with gross return R̃. The individual chooses an
investment α ∈ R in the risky asset, which yields a stochastic consumption of

(w − α)Rf + αR̃ = wRf + α(R̃−Rf ).

Note that we are permitting α < 0, which corresponds to a short sale of the asset, and
α > w, which corresponds to leveraging her investment in the risky asset by borrowing
at the risk free rate. The individual has a Bernoulli utility function u that twice
differentiable, strictly increasing, and concave.

(a) Show that if E[R̃] > Rf , then every solution (if there is a solution) must be strictly
positive (α > 0). [Hint: This proof can be based on first-order conditions and
does not require any sort of comparative statics analysis.]

(b) Show that if E[R̃] = Rf , then α = 0 is a solution. (Could there be others? What
conditions would ensure a unique solution?)

(c) Show that if E[R̃] < Rf , then every solution (if there is a solution) must involve
a short sale (α < 0).

(d) Suppose now that the individual is constrained from making short sales and must
have α ≥ 0. Show that if E[R̃] < Rf , then α = 0 is the unique solution.

4.4 Suppose an individual has wealth w and faces a loss of amount L with probability
π ∈ (0, 1). Suppose she has the option to purchase insurance coverage. She can choose
any level of coverage α ∈ [0, L] at a price p > 0 per unit of coverage. That is, she
pays a premium of pα for her coverage and receives a payment of α in the event of
a loss. Model all of these events as transpiring in a single period; that is, there is a
single period in which the insurance premium is paid, the loss is realized (in the event
that it occurs), and the insurance company makes a payout (if the loss is realized).
Suppose the individual has a Bernoulli utility function u that is twice differentiable,
strictly increasing, and strictly concave.

(a) We say that insurance is actuarially fair if the price of the policy is equal to
the expected payout by the insurance company (p = π). Show that if insurance
is actuarially fair, the individual will purchase full insurance (α = L).

(b) We say that insurance is actuarially unfair if the price of the policy is strictly
greater than the expected payout by the insurance company (p > π). Show that if
insurance is actuarially unfair, the individual will purchase less than full insurance
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(α < L).
(c) Suppose we relax the assumption that u is differentiable. Can you construct an ex-

ample of a Bernoulli utility function u that is strictly increasing and concave, but
not differentiable everywhere, such that for some value of w,L, π, p the individ-
ual would be willing to purchase full coverage even if the insurance is actuarially
unfair? Briefly (and without any formal details) explain why your example is not
“generic,” in the sense that it relies very specific parameter values. (Although
we assumed strict concavity of u in this problem, you are permitted to use an
example that is concave but not strictly concave for this part.)

4.5 This problem explores some of the mechanics of comparative risk aversion and decreas-
ing (constant, increasing) absolute and relative risk aversion. The following (equiva-
lent) definition of comparative risk aversion will be convenient for this problem: Indi-
vidual 1 is more risk averse than individual 2 if for any random variable X and any
deterministic wealth level w,

w +X ≿1 w =⇒ w +X ≿2 w.

Answer the following: (I am not expecting you to prove anything from first principles.
The goal is for you to see how to apply the theorems and definitions from this chapter
in a clever way that allows you to address the issues in this problem.)

(a) Think now about a single individual, and suppose this individual is an expected-
utility maximizer with an increasing and twice differentiable Bernoulli utility func-
tion u. We say that the individual exhibits decreasing absolute risk aversion
(DARA) if w + X ≿ w implies w′ + X ≿ w′ for every w′ > w and every ran-
dom variable X. Prove that the individual exhibits DARA if and only if A(w)
is nonincreasing in w, where A(w) = −u′′(w)

u′(w)
is the coefficient of absolute risk

aversion.
(b) We similarly say that the individual exhibits increasing absolute risk aversion

(IARA) if w + X ≿ w =⇒ w′ + X ≿ w′ for every w′ < w and every random
variable X, and that the individual exhibits constant absolute risk aversion
(CARA) if w+X ≿ w ⇐⇒ w′+X ≿ w′ for all w,w′. Prove that the individual
exhibits IARA (CARA) if and only if A(w) is nondecreasing (constant) in w.

(c) We say that an individual exhibits decreasing relative risk aversion (DRRA)
if w+X ≿ w implies kw+kX ≿ kw for every k > 1 and every wealth level w and
random variable X. We can also define the Arrow-Pratt coefficient of relative
risk aversion at w as

R(w) = −wu
′′(w)

u′(w)

Prove that the individual exhibits DRRA if and only if R(w) is nonincreasing in
w. (We can similarly define increasing and constant relative risk aversion in the
obvious ways and show that they are equivalent to R(w) being nondecreasing and
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constant, respectively.)
(d) Using the equivalences established in the previous parts of the problem, can you

determine the relationship between DARA and DRRA (i.e., does one imply the
other)?
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5.1 Increasing Differences and FOSD

5.1.1 Comparative Statics

In this chapter, we consider the case where the parameter t is random and its realization is
not learned until after the choice of some variable x. Examples include:

• The variable x could be the level of investment an individual makes in a financial asset,
with t being the actual return on the asset (unknown at the time of investment).

• The variable x could be the amount of savings by an individual, with t being uncertain
future income.

• The variable x could be the production level of a firm, with t being an uncertain
parameter that affects market demand.

Suppose the distribution of t is affected by some additional parameter θ. That is, the
parameter t has a cumulative distribution function Fθ(t), which itself depends on θ. There
are several interpretations of this modeling assumption:

• The parameter θ could represent a signal is informative about t, with Fθ(t) representing
the updated beliefs about the value of t following the signal realization θ.

• Alternatively, the parameter θ could represent the actions taken by some outside agent
(exogenous from the perspective of our decision maker) that directly influence the
distribution of t.

In this section, we will consider the case where increasing θ leads to a first-order stochastic
dominance increase in the distribution Fθ. In other words, we will assume that θ′ > θ implies
Fθ′ ≥FOSD Fθ. The examples given in Section 4.1 can be indexed by a parameter θ to form
such families. For instance, consider again the examples of the uniform distribution from
Example 4.5 and the discrete distribution from Example 4.6.

Example 5.1 (Uniform distribution). Suppose T = R, and suppose Fθ is the uniform
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distribution on the interval [0, θ] for θ > 0. That is,

Fθ(t) =


0 if t < 0

t/θ if 0 ≤ t ≤ θ

1 if θ < t.

Then, Fθ′ ≥FOSD Fθ whenever θ′ > θ.

Example 5.2 (Binary discrete distributions). Suppose T = R, and suppose that for
each θ ∈ R the distribution Fθ assigns some fixed probability α ∈ [0, 1] to the point θ and
assigns probability 1− α to the point 0. Then, Fθ′ ≥FOSD Fθ whenever θ′ > θ.

In addition, there are many examples of established families of distributions that satisfy
this ordering, such as:

• The normal distribution on T = R with mean θ for θ ∈ R.
• The exponential distribution on T = R+ with mean θ for θ > 0.
• The Poisson distribution on T = Z+ with mean θ for θ > 0.

We now provide our first comparative statics result for uncertain parameters t with dis-
tributions parameterized by θ.

Theorem 5.3. SupposeX ⊆ Rn is a lattice, T ⊆ R, and Θ ⊆ R. Suppose u : X×T → R has
increasing differences in (x; t), and {Fθ}θ∈Θ is a family of cumulative distribution functions
of T such that Fθ′ ≥FOSD Fθ if θ′ > θ. Then the function U : X ×Θ → R defined by

U(x, θ) =

∫
u(x, t) dFθ(t)

has increasing differences in (x; θ).1

Proof. Fix any x′ > x. Define a function g : T → R by

g(t) = u(x′, t)− u(x, t).

Since u has increasing differences in (x; t), the function g is nondecreasing. Fix any θ′ > θ.
1Note that we are implicitly assuming in this result that u(x, t) is integrable with respect to Fθ for each

x ∈ X and θ ∈ Θ, that is, the integral exists and is finite.



92 Chapter 5. Monotone Comparative Statics Under Risk

Since Fθ′ ≥FOSD Fθ, this implies

U(x′, θ′)− U(x, θ′) =

∫
g(t) dFθ′(t)

≥
∫
g(t) dFθ(t) = U(x′, θ)− U(x, θ).

Thus, U has increasing differences in (x; θ).

In the case of a single-dimensional choice variable, i.e., X ⊆ R, Theorem 5.3 gives us
sufficient conditions for monotone comparative statics in θ. However, if X ⊆ Rn for n >

1, then our comparative statics results require additional complementarity between choice
variables in the form of either supermodularity or quasisupermodularty of U in x. The
following result shows that supermodularity of u in x gives us the same property of U .

Theorem 5.4. Suppose X ⊆ Rn is a lattice and T ⊆ R. Suppose u : X × T → R is
supermodular in x. Then for any cumulative distribution function F on T , the function
U : X → R defined by

U(x) =

∫
u(x, t) dF (t)

is supermodular in x.

Remark 5.5. If the distribution is parameterized by θ, then this result obviously still holds.
That is, if u(x, t) is supermodular in x and {Fθ}θ∈Θ is a family of cumulative distributions,
then

U(x, θ) =

∫
u(x, t) dFθ(t)

is supermodular in x. We omit the θ in Theorem 5.4 to emphasize that this parameter plays
no role in the result.

Proof. Fix any x, x′ ∈ X. Supermodularity of u in x implies that

u(x ∧ x′, t) + u(x ∨ x′, t) ≥ u(x, t) + u(x′, t).

Since this is true for every t, integrating with respect to the distribution Fθ gives

U(x ∧ x′) + U(x ∨ x′) =
∫ [

u(x ∧ x′, t) + u(x ∨ x′, t)
]
dF (t)

≥
∫ [

u(x, t) + u(x′, t)
]
dF (t)

= U(x) + U(x′).

Thus U is supermodular in x.



5.1. Increasing Differences and FOSD 93

Corollary 5.6. Let X ⊆ Rn be a lattice, T ⊆ R, and Θ ⊆ R. Suppose u : X × T → R is
supermodular in x and has increasing differences in (x; t), and suppose {Fθ}θ∈Θ is a family
of cumulative distribution functions such that Fθ′ ≥FOSD Fθ if θ′ > θ. If U : X ×Θ → R is
defined by

U(x, θ) =

∫
u(x, t) dFθ(t),

then argmaxx∈X U(x, θ) is monotone nondecreasing in θ (in the strong set order).

Proof. Theorems 5.3 and 5.4 imply that U has increasing differences in (x; θ) and is su-
permodular in x. The monotonicity of the solution set then follows from our previous
comparative statics result (Theorem 1.19).

5.1.2 Applications

Example 5.7 (Monopolist facing uncertain demand). Suppose a monopoly faces
uncertain demand and must make a production decision prior to learning the realized demand
for its product. It does learn some information about demand prior to choosing its output.
Formally, suppose the inverse demand function P (q, t) depends on output and an unknown
parameter t. The ex-post profit of the firm is therefore

π(q, t) = qP (q, t)− C(q),

where C(q) is the cost function for the firm. Suppose the firm observes a signal θ that is
informative about the parameter t. Specifically, suppose the cumulative distribution of t
conditional on θ is Fθ. The ex-ante profit function for the firm is therefore2

Π(q, θ) =

∫ [
qP (q, t)− C(q)

]
dFθ(t).

If π has increasing differences in (q; t) and Fθ′ ≥FOSD Fθ for θ′ > θ, then the firm’s output
argmaxq≥0Π(q, θ) is nondecreasing in θ. Note that if π is differentiable, then increasing
differences is equivalent to

∂2π

∂q∂t
= Pt(q, t) + qPqt(q, t) ≥ 0,

that is, marginal revenue is nondecreasing in t. For example, one special case where this
holds is if P (q, t) = P̂ (q) + t.

2These formulas make the implicit assumption that the firm is fully committed to its production decision
q before learning the realization of t. One could consider the alternative assumption that the firm chooses
its inventory (production) q̄ but is able to sell below inventory, q < q̄, and dispose of the remaining units.
However, our simplifying assumption that the firm chooses its exact output does not seem completely un-
reasonable. For example, selling less than inventory requires some commitment by the firm not to sell any
remaining quantity at a lower price in a future period, which may not be realistic.
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5.1.3 Limitations

While the comparative statics result from Corollary 5.6 is useful in many applications, it
also has some limitations. The following example illustrates a case in which the assumptions
of this result do not hold and we do not obtain the monotone comparative statics that we
might have expected.

Example 5.8 (Investment in risky asset). Suppose an individual is allocating wealth
w between a risk-free asset with gross return Rf and a risky asset with gross return R̃. If
the individual invests α dollars in the risky asset (and the rest in the safe asset), then her
future consumption will be

(w − α)Rf + αR̃ = wRf + α(R̃−Rf ).

Suppose the individual is an expected-utility maximizer with Bernoulli utility function u(x).
The indirect utility function for the individual as a function of α is therefore

U(α) = E
[
u(wRf + α(R̃−Rf ))

]
,

where the expectation is over the realization of the random return R̃. The objective of the
individual is to choose α to maximize this value function.

One might conjecture that a first-order stochastic dominance shift in the distribution of
the risky asset would lead to an increase in the investment α in the risky asset. Unfortunately,
this is not correct as we now show. Make the following assumptions:

u(x) = min{x, 100}
w = 80

Rf = 1

R̃ =

{
2 with prob p
0 with prob 1− p,

p > 1/2.

It is useful to write the excess return of the risky asset:

R̃−Rf =

{
1 with prob p
−1 with prob 1− p.

Then, it is not difficult to show that the individual’s optimal investment is α∗ = 20, giving
consumption

wRf + α∗(R̃−Rf ) =

{
100 with prob p
60 with prob 1− p.
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Suppose that the return on the risky asset changes and is now instead

R̃ =

{
3 with prob p
0 with prob 1− p

which implies

R̃−Rf =

{
2 with prob p
−1 with prob 1− p.

Notice that this is a first-order stochastic dominance increase in the distribution of R̃. How-
ever, it is easy to see that the individual’s optimal investment now decreases to α∗ = 10,
giving consumption

wRf + α∗(R̃−Rf ) =

{
100 with prob p
70 with prob 1− p.

Note that the first-order stochastic dominance increase in the distribution of R̃ does not
decrease the expected utility of the individual (think about why this must be true for any
nondecreasing Bernoulli utility function) and in fact strictly increases her utility. However,
it does decrease the amount the individual invests in the risky asset.

In light of this example, there are two possibilities for recovering a monotone comparative
statics result. The first is to impose a stronger (more restrictive) ordering of distributions.
We will pursue this approach in the next section. The other possibility is to explore more
restrictive classes of expected utility functions for which a first-order stochastic dominance
shift in the distribution of a risky asset leads to an increase in investment. The restrictions
on utility functions needed for such results are fairly strong, and we will not pursue them
here.3

5.2 Single Crossing and Log-Supermodularity

5.2.1 Log-Supermodularity and the MLR Property

Definition 5.9. Let X ⊆ Rn be a lattice. A function h : X → R+ is log-supermodular
(log-SM) if for all x, x′ ∈ X,

h(x ∧ x′) · h(x ∨ x′) ≥ h(x) · h(x′).

To understand this terminology, note that if h is strictly positive, then it is log-SM if and
only if log(h(x)) is a supermodular function.

3One sufficient condition is that relative risk aversion be less than unity. The interested reader can consult
Gollier (2001, page 61).
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In this section, we will typically be interested in a log-supermodular function of two
parameters. Suppose T ⊆ R and Θ ⊆ R. In this case, a function h : T × Θ → R is log-SM
if for all t′ > t and θH > θL,

h(t, θL) · h(t′, θH) ≥ h(t, θH) · h(t′, θL).

If h is strictly positive, this can be rewritten as

h(t′, θH)

h(t′, θL)
≥ h(t, θH)

h(t, θL)
,

that is, h(t, θH)/h(t, θL) is nondecreasing in t for θH > θL.

In the case where h(·, θ) is a probability density function for each θ, h is log-supermodular
if and only if the family of densities {h(·, θ)}θ∈Θ has the monotone likelihood ratio
property, that is, the family respects the monotone likelihood ratio order with respect
to increases in θ. Several families of probability distributions mentioned previously exhibit
this property, including:

• The uniform distribution on [0, θ] for θ > 0.
• The normal distribution with mean θ for θ ∈ R.
• The exponential distribution with mean θ for θ > 0.
• The Poisson distribution with mean θ for θ > 0.

However, since the MLR order is more restrictive than the FOSD dominance order, not all
families of distributions that are ordered according to first-order stochastic dominance have
the MLR property. For instance, the discrete distribution described in Example 5.2 does not
have the monotone likelihood ratio property (see Example 4.13 for a related discussion).

5.2.2 Comparative Statics

The results in this section appear in various forms in a number of papers and books, in-
cluding Karlin (1968), Shannon (1995), Gollier (2001), and Athey (2002). In particular,
Theorems 5.10 and 5.12 appear in a slightly stronger form in Athey (2002, Theorem 2 and
Lemma 5).

Theorem 5.10. Suppose X ⊆ Rn is a lattice, T ⊆ R, and Θ ⊆ R. Suppose u : X × T → R
has the single crossing property in (x; t) and h : T ×Θ → R+ is log-supermodular. Then:

(1) If T is an interval and h(t, θ) > 0 for all t ∈ T and θ ∈ Θ, then U : X×Θ → R defined
by

U(x, θ) =

∫
u(x, t)h(t, θ) dt

has the single crossing property in (x; θ).
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(2) If there exists a finite set T ∗ ⊆ T such that h(t, θ) > 0 for all t ∈ T ∗ and θ ∈ Θ, then
U : X ×Θ → R defined by

U(x, θ) =
∑
t∈T ∗

u(x, t)h(t, θ)

has the single crossing property in (x; θ).4

In particular, when h(·, θ) is a probability density function, the two claims in this theorem
correspond to the two cases we considered when defining the monotone likelihood ratio order
in Section 4.2: continuous and discrete distributions. The proof of Theorem 5.10 will be based
on the following definition and result, which we will also use directly in some applications.

Definition 5.11. Suppose T ⊆ R and g : T → R. We say g has the (single variable)
single crossing property if for any t′ > t,

g(t) ≥ 0 =⇒ g(t′) ≥ 0, and
g(t) > 0 =⇒ g(t′) > 0.

Note the connection between this definition of single crossing and our prior definition. A
function u(x, t) satisfies the (multivariate) single crossing property in (x; t) if and only if for
any x′ > x the function

g(t) = u(x′, t)− u(x, t)

satisfies the (single variable) single crossing property.

Theorem 5.12. Suppose T ⊆ R and Θ ⊆ R, and suppose g : T → R has the (single
variable) single crossing property5 and h : T ×Θ → R+ is log-supermodular. Then:

(1) If T is an interval and h(t, θ) > 0 for all t ∈ T and θ ∈ Θ, then

φ(θ) =

∫
g(t)h(t, θ) dt

has the (single variable) single crossing property.
4This result also holds for countably infinite T ∗ ⊆ T , provided T ∗ is closed and the infinite series is

absolutely convergent (meaning the order in which the elements of T ∗ are enumerated does not affect the
value of the sum).

5In fact, as will be evident from the proof, a weaker condition on g is sufficient for the conclusion of this
theorem. It suffices to assume that g satisfies the weak single crossing property: g(t) > 0 implies g(t′) ≥ 0
for all t′ > t. Weak single crossing is equivalent to the requirement that either (i) g(t) > 0 for all t, (ii)
g(t) < 0 for all t, or (iii) there exists t0 such that g(t) ≤ 0 for t < t0 and g(t) ≥ 0 for t > t0.
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(2) If there exists a finite set T ∗ ⊆ T such that h(t, θ) > 0 for all t ∈ T ∗ and θ ∈ Θ, then

φ(θ) =
∑
t∈T ∗

g(t)h(t, θ)

has the (single variable) single crossing property.

Proof. We first prove claim 1. Assume that T is an interval and that h(t, θ) > 0 for all t ∈ T

and θ ∈ Θ. Since g satisfies the single crossing property, there are three cases to consider:

Case 1 — g(t) > 0 for all t: This implies φ(θ) > 0 for all θ, so the single crossing property
is trivially satisfied.

Case 2 — g(t) < 0 for all t: This implies φ(θ) < 0 for all θ, so the single crossing property
is again trivially satisfied.

Case 3 — There exists t0 such that g(t) ≤ 0 for all t < t0 and g(t) ≥ 0 for all t > t0: Fix
any θH > θL. By the definition of log-SM, we have

t > t0 =⇒ h(t, θH)h(t0, θL) ≥ h(t, θL)h(t0, θH)

t < t0 =⇒ h(t, θH)h(t0, θL) ≤ h(t, θL)h(t0, θH).

Rearranging these inequalities and using the definition of t0, we have

t > t0 =⇒ h(t, θH) ≥ h(t, θL)
h(t0, θH)

h(t0, θL)
and g(t) ≥ 0

t = t0 =⇒ h(t, θH) = h(t, θL)
h(t0, θH)

h(t0, θL)

t < t0 =⇒ h(t, θH) ≤ h(t, θL)
h(t0, θH)

h(t0, θL)
and g(t) ≤ 0.

Therefore, for any t,

g(t)h(t, θH) ≥ g(t)h(t, θL)
h(t0, θH)

h(t0, θL)
.

Integrating with respect to t gives

φ(θH) =

∫
g(t)h(t, θH) dt

≥ h(t0, θH)

h(t0, θL)

∫
g(t)h(t, θL) dt =

h(t0, θH)

h(t0, θL)
φ(θL).

Since h is strictly positive, it follows that

φ(θL) ≥ 0 =⇒ φ(θH) ≥ 0

φ(θL) > 0 =⇒ φ(θH) > 0.
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Thus φ has the single crossing property.

We now prove claim 2. Assume that T ∗ ⊆ T is finite and that h(t, θ) > 0 for all t ∈ T ∗ and
θ ∈ Θ. Consider the same three cases outlined in the proof of claim 1. In case 1 (g(t) > 0 for
all t) and case 2 (g(t) < 0 for all t), single crossing of φ is again trivially satisfied. Consider
case 3, so there exists t0 ∈ T such that g(t) ≤ 0 for all t < t0 and g(t) ≥ 0 for all t > t0. Let
t∗0 be either the smallest element of T ∗ that is weakly larger than t0 or the largest element
of T ∗ that is weakly smaller than t0. Then, we have h(t∗0, θ) > 0 for all θ ∈ Θ, and the
remainder of the proof proceeds exactly as in the proof of claim 1, but with t∗0 in the place
of t0 and with sums in the place of integrals.

Proof of Theorem 5.10. We will prove claim 1. The proof of claim 2 is analogous. Fix any
x′ > x, and define g : T → R by

g(t) = u(x′, t)− u(x, t).

Since u satisfies the single crossing property in (x; t), the function g has the (single variable)
single crossing property. By Theorem 5.12, the function

φ(θ) =

∫
g(t)h(t, θ) dt = U(x′, θ)− U(x, θ)

has the (single variable) single crossing property. Since this is true for any x′ > x, the
function U has the single crossing property in (x; θ).

Corollary 5.13. Suppose X ⊆ Rn is a lattice, T ⊆ R is an interval, and Θ ⊆ R. Suppose
u : X × T → R is supermodular in x and has the single crossing property in (x; t), and
suppose h : T × Θ → R is log-supermodular and strictly positive. If U : X → R is defined
by

U(x, θ) =

∫
u(x, t)h(t, θ) dt,

then argmaxx∈X U(x, θ) is monotone nondecreasing in θ (in the strong set order).

Proof. Theorems 5.4 and 5.10 imply that U is supermodular in x and has the single crossing
property in (x; θ). The monotonicity of the solution set then follows from our previous
ordinal comparative statics result (Theorem 2.12).

Remark 5.14. Athey (2002, Lemma 4 and Theorem 1) also shows that if both u(x, t)

and h(t, θ) are log-SM, then U(x, θ) =
∫
u(x, t)h(t, θ)dt is log-SM. Note that log-SM of u

(respectively, U) implies that u (respectively, U) satisfies the single crossing property (recall
that any monotone transformation of a supermodular function satisfies the single crossing
property). These results therefore place stronger restrictions on u in order to obtain a
stronger condition on U than is needed for monotone comparative statics. However, the
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advantage of these results is that they can apply to T ⊆ Rm for m ≥ 2, whereas the results
in this section restrict to T ⊆ R.

5.2.3 Applications

Our first application revisits our previous investment example, but now considers an MLR
change in the distribution of the risky asset.

Example 5.15 (Investment problem with MLR change in risk). The setup is
similar to in Example 5.8. An individual is allocating wealth w between a risk-free asset
with gross return Rf and a risky asset with gross return R̃. If the individual invests α dollars
in the risky asset (and the rest in the safe asset), then her future consumption will be

(w − α)Rf + αR̃ = wRf + α(R̃−Rf ).

Suppose R̃ takes values on some interval T ⊆ R, and suppose the distribution of R̃ has a
density function fθ(t) that is strictly positive on this interval. In addition, suppose θ′ > θ

implies fθ′ ≥MLR fθ. This assumption is in contrast to Example 5.8, where we considered
FOSD rather than MLR changes in the distribution of the risky asset.

Suppose the individual is an expected-utility maximizer with a strictly increasing Bernoulli
utility function u(x). The indirect utility function for the individual as a function of the in-
vestment level α and the parameter θ is therefore

U(α, θ) =

∫
u(wRf + α(t−Rf ))fθ(t) dt.

The objective of the individual is to choose α to maximize this value function. Let

v(α, t) = u(wRf + α(t−Rf )),

so the value function can be written as

U(α, θ) =

∫
v(α, t)fθ(t) dt.

Notice that v(α, t) has the single-crossing property in (α; t). To see this, fix any α′ > α and
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t′ > t, and note that

v(α′, t) ≥ v(α, t) ⇐⇒ u(wRf + α′(t−Rf )) ≥ u(wRf + α(t−Rf ))

⇐⇒ α′(t−Rf ) ≥ α(t−Rf ) (since u strictly increasing)
⇐⇒ (α′ − α)(t−Rf ) ≥ 0

⇐⇒ t−Rf ≥ 0 (since α′ > α)
=⇒ t′ −Rf > 0 (since t′ > t)

⇐⇒ u(wRf + α′(t′ −Rf )) > u(wRf + α(t′ −Rf ))

⇐⇒ v(α′, t′) > v(α, t′).

Therefore, since v(α, t) has the single-crossing property in (α; t) and fθ(t) is log-supermodular,
the function U(α, θ) has the single-crossing property in (α; θ) by Theorem 5.10. In particu-
lar, this implies that the set of maximizing α are nondecreasing in θ in the strong set order
(Theorem 2.2). In the special case where u is strictly concave, there is a unique solution
α∗(θ) which is nondecreasing in θ.

The following result will be useful for our second application. The proof is straightforward,
so we omit it.

Lemma 5.16. Suppose X ⊆ R is a closed interval, Θ ⊆ R, and U : X × Θ → R is
twice differentiable with respect to x and satisfies Uxx < 0. Suppose that the problem of
choosing x to maximize this objective function has a solution for every θ, denoted x∗(θ) ∈
argmaxx∈X U(x, θ). (Note that strict concavity implies that this solution is unique.) Fix any
θ′ > θ. If U satisfies

Ux(x
∗(θ), θ) ≥ 0 =⇒ Ux(x

∗(θ), θ′) ≥ 0,

then x∗(θ′) ≥ x∗(θ).

In particular, this lemma implies that a sufficient condition for x∗(θ) to be nondecreasing
in θ is that for all x ∈ X and for all θ′ > θ,

Ux(x, θ) ≥ 0 =⇒ Ux(x, θ
′) ≥ 0.

However, as the lemma shows, we actually only need this condition to be satisfied at x =

x∗(θ). In addition, the inequality on the left must be satisfied with equality if x∗(θ) is an
interior solution, as we can only have Ux(x

∗(θ), θ) < 0 if x∗(θ) is the left boundary point of
X and Ux(x

∗(θ), θ) > 0 if x∗(θ) is the right boundary point of X.

Example 5.17 (Investment problem with change in risk aversion). The setup is
the same as in the previous example. However, suppose that the distribution of the risky
asset R̃ is fixed and has a density function f(t). We now instead explore the impact of
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changes in risk aversion. Specifically, assume that individual 1 is more risk averse than
individual 2. For this example, we assume the the Bernoulli utility functions ui of these
individuals are twice differentiable with u′i > 0 and u′′i < 0. The value function is

U(α, i) =

∫
ui(wR

f + α(t−Rf ))f(t) dt.

Note that
Uα(α, i) =

∫
u′i(wR

f + α(t−Rf ))(t−Rf )f(t) dt,

Uαα(α, i) =

∫
u′′i (wR

f + α(t−Rf ))(t−Rf )2f(t) dt < 0.

Fix any α, and let

g(t) = (t−Rf )f(t)

h(t, i) = u′i(wR
f + α(t−Rf ))

Clearly, g has the (single variable) single crossing property. The only challenge is to show
that h is log-SM. We will show that this is true provided α ≥ 0. Since h > 0, we have

h(t, i) is log-SM ⇐⇒ log(h(t, i)) is SM

⇐⇒ ∂

∂t
log(h(t, 1)) ≤ ∂

∂t
log(h(t, 2))

⇐⇒ ht(t, 1)

h(t, 1)
≤ ht(t, 2)

h(t, 2)

⇐⇒ u′′1(wR
f + α(t−Rf ))

u′1(wR
f + α(t−Rf ))

α ≤ u′′2(wR
f + α(t−Rf ))

u′2(wR
f + α(t−Rf ))

α.

If α = 0, then this condition is trivially satisfied. If α > 0, then this condition is equivalent
to

A1(wR
f + α(t−Rf )) ≥ A2(wR

f + α(t−Rf )),

where Ai(x) denotes the Arrow-Pratt coefficient of absolute risk aversion for individual i at
x (this inequality holds since individual 1 is more risk averse than individual 2). Therefore,
holding α ≥ 0 fixed,

φ(i) ≡
∫
g(t)h(t, i) dt = Uα(α, i)

has the (single variable) single crossing property by Theorem 5.12. In other words, for any
α ≥ 0,

Uα(α, 1) ≥ 0 =⇒ Uα(α, 2) ≥ 0.

Hence, by Lemma 5.16, if α∗
1 ≥ 0 then α∗

2 ≥ α∗
1.

Interestingly, if α ≤ 0, then the arguments above are reversed and we have

Uα(α, 1) ≤ 0 =⇒ Uα(α, 2) ≤ 0.
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Thus, if α∗
1 ≤ 0 (so individual 1 finds it optimal to short sell the asset), then α∗

2 ≤ α∗
1

(individual 2 finds a weakly larger short sale optimal). This has a natural economic inter-
pretation. A larger short sale implies greater exposure to risk, and individual 2 is less risk
averse and therefore more willing to bear such risk. Combining these two cases, we see that
α∗
1 = 0 if and only if α∗

2 = 0 (this can also be proved directly by using first-order conditions
to show that the sign of α∗

i is the same as the sign of E[R̃−Rf ]).

5.3 Exercises

5.1 Suppose X ⊆ Rn is a lattice, and suppose that f : X → R+ and g : X → R+

are log-supermodular. Is the function h : X → R+ defined by h(x) = f(x)g(x) log-
supermodular? Prove or provide a counterexample.

5.2 Suppose a firm produces a product using capital together with the labor of a single
employee. Different potential employees have different levels of productivity, and the
firm’s output depends on the amount of capital used by the firm and the productivity
of the employee it hires (i.e., units of effective labor). The firm conducts interviews of
applicants and is able to fully learn the productivity of each applicant that it interviews;
it hires the best among the pool of applicants. Formally, suppose the firm’s production
function is

f(k, x) = kαxβ, where α, β > 0 and α + β ≤ 1.

The variable k ≥ 0 is the number of units of capital, and x ≥ 0 is the productivity of
the employee of the firm. The input and output markets are competitive, with price
p for each unit of output, wage w for the employee (independent of the productivity
of the employee), and price r for each unit of capital. If the firm operates, its profit is
therefore

π(k, x) = pf(k, x)− w − rk.

The productivity of each applicant is independently and identically distributed (iid)
according to G(x). The timing is as follows:

1. First, the firm learns how many applicants it has for the position. Let t ∈ N
denote the number of applicants. (Treat t as an exogenous parameter.)

2. Before learning the productivity of the applicants, the firm must decide how many
units of capital to purchase.

3. The firm then interviews the applicants, learns the productivity of each, and
chooses whether to hire the applicant with the highest productivity or to hire no
one and shut down it’s production operation (in this case, the cost of capital is a
loss for the firm but the wage cost is avoided).

Answer the following:

(a) Assume first that the firm must operate. That is, it does not have the option to
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shut down, and it will therefore hire the most qualified applicant. Can you say
anything about how the choice of capital k varies with the number of applicants
t? That is, is there a monotonic (increasing or decreasing) relationship between
them? If yes, prove it. If not, provide a counterexample.

(b) Assume now that the firm has the option to shut down if the best applicant is
not sufficiently productive. Does this change your answer to part (a)? Provide a
proof or a counterexample to support your answer.

(c) Assume again that the firm must operate and does not have the option to shut
down. Is it possible to find an example of a production function f(k, x) that is
nondecreasing in k and x, but for which the optimal choice of capital is nonin-
creasing in the number of applicants t?

5.3 In Exercise 4.5, we explored the concepts of decreasing absolute risk aversion (DARA)
and decreasing relative risk aversion (DRRA). In this problem, we study the implica-
tions of these concepts for a portfolio choice problem. Consider an investment problem
as in the examples from the chapter, with a riskless asset with gross return Rf and a
risky asset with gross return R̃. The individual chooses an investment α ∈ R in the
risky asset, which yields a stochastic consumption of

(w − α)Rf + αR̃ = wRf + α(R̃−Rf ).

Suppose E[R̃] > Rf . You may also assume that the distribution of R̃ has a density
function that is strictly positive on its support, and you may also assume a solution
to the portfolio problem exists. The individual has a Bernoulli utility function u that
is differentiable, strictly increasing, and strictly concave. Answer the following: (I am
not expecting you to prove anything from first principles. The goal is for you to see
how to apply the example from this chapter in a clever way that allows you to address
the issues in this problem.)

(a) Suppose that the individual exhibits decreasing absolute risk aversion (DARA).
Can we say anything about how the optimal amount that the individual will invest
in the risky asset, α, varies with initial wealth, w? Prove any relationship that
you claim.

(b) Suppose that the individual exhibits decreasing relative risk aversion (DRRA).
Can we say anything about how the optimal fraction of wealth that the individual
will invest in the risky asset, α/w, varies with initial wealth, w? Prove any
relationship that you claim.

5.4 Suppose a monopoly faces uncertain demand and must make a production decision
prior to learning the realized demand for its product. It does learn some information
about demand prior to choosing its output. Formally, suppose the inverse demand
function P (q, t) depends on output and an unknown parameter t. The ex-post profit
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of the firm is therefore
π(q, t) = qP (q, t)− c(q),

where c(q) is the cost function for the firm. Suppose the firm observes a signal θ that
is informative about the parameter t. Specifically, suppose the cumulative distribution
of t conditional on θ is Fθ. The ex-ante profit function for the firm is therefore (as-
sume that the firm is fully committed to its production decision q before learning the
realization of t):

Π(q, θ) =

∫ [
qP (q, t)− c(q)

]
dFθ(t).

Suppose Fθ′ ≥MPRR Fθ for θ′ > θ. Suppose the inverse demand function takes the
form P (q, t) = g(q) + h(t). What conditions on g and h imply that the firm’s output
argmaxq≥0Π(q, θ) is nondecreasing in θ?

5.5 Consider a monopoly choosing its price to maximize profit. Suppose the demand
function depends on the price p and a parameter t, and takes the form

D(p, t) = (a− bp+ t)α.

Assume that a, b, α > 0 are all positive constants. The firm has a constant marginal
cost c > 0 of production (assume a/b > c), and therefore has a profit function

π(p, t) = (p− c)D(p, t).

Assume that the parameter t can take any nonnegative value, t ≥ 0, and assume that
the firm can choose any price p ∈ [c, p̄], where p̄ = a/b. (We could permit p < c, but
this is clearly never optimal, so we will make the technically convenient assumption
that p must be greater than c.)

(a) For which values of α > 0 does π have increasing differences in (p; t)?
(b) For which values of α > 0 does π have the single crossing property in (p; t)?
(c) Suppose that the monopoly faces uncertain demand, which we will model as

uncertainty about the parameter t. Assume that the price p must be chosen prior
to learning the realization of t. (For example, if the monopoly publicly advertises
its price p in advance of learning demand and cannot changed it after observing
the realization of demand, then this assumption would be reasonable.) For a
cumulative distribution F of the parameter t, the ex-ante profit of the firm is
therefore

Π(p, F ) =

∫
π(p, t) dF (t).

Consider first the benchmark case of α = 1. In this case, find an explicit solution
for the ex-ante profit-maximizing price p as a function of the distribution F (as
well as the constants a, b, c). Does a first-order stochastic dominance increase in
the distribution of t lead to a (weakly) higher optimal price p?
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(d) Consider again the ex-ante profit function Π(p, F ) defined in the previous part of
the problem. For α ̸= 1, it may not be possible to find an explicit solution for the
optimal p as a function of F , but we still may be able to obtain comparative statics
in some cases. For which values of α > 0 does a first-order stochastic dominance
shift in the distribution of t lead to an increase in the optimal price p? That is,
for which α > 0 does F ≥FOSD G imply that argmaxp∈[c,p̄] Π(p, F ) is greater than
argmaxp∈[c,p̄] Π(p,G) in the strong set order? (Note: I am asking you to identify
the set of values of α for which our theorems from class can be applied to this
problem to obtain monotone comparative statics, and to carefully explain what
the relevant theorems say and why they can be applied. I am not requiring that
you provide counterexamples to show that we fail to have monotone comparative
statics for other values of α.)

(e) Consider again the ex-ante profit function Π(p, F ). For which values of α > 0

does a monotone likelihood ratio shift in the distribution of t lead to an increase
in the optimal price p? That is, for which α > 0 does F ≥MLR G imply that
argmaxp∈[c,p̄] Π(p, F ) is greater than argmaxp∈[c,p̄] Π(p,G) in the strong set order?
You can assume that F and G are continuously distributed and have density
functions that are strictly positive on R+. (Note: Again, I am asking you to
identify the set of values of α for which our theorems from class can be applied
to this problem to obtain monotone comparative statics. I am not requiring that
you provide counterexamples to show that we fail to have monotone comparative
statics for other values of α.)

5.6 Consider a two-period consumption-savings problem. Suppose the individual has the
following utility function for (x, y) ∈ R2

+:

U(x, y) = u(x) + v(y),

where u and v are nondecreasing and twice continuously differentiable functions. As-
sume the gross interest rate is normalized to unity, so the intertemporal budget con-
straint is simply x+ y = w. Suppose wealth w is random (e.g., due to uncertain future
income) and the individual chooses first-period consumption x before learning the real-
ization of w. Thus the consumer’s maximum expected utility when w has distribution
F is

V (F ) = max
x≥0

∫ (
u(x) + v(w − x)

)
dF (w).

Answer the following. In each part below, you are not required to find necessary con-
ditions, but finding a weaker sufficient condition and avoiding unnecessary conditions
will earn more points. (For example, saying u and v are constant may be correct for
some parts, but will earn zero points.)

(a) Find a sufficient condition on the shape of u and/or v so that the individual prefers
FOSD increases in the distribution of w (that is, F ≥FOSD G⇒ V (F ) ≥ V (G)).
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(b) Restrict attention for this part to degenerate lotteries over wealth (i.e., deter-
ministic w). Under what, if any, conditions on u and/or v is the optimal x
nondecreasing (in the strong set order) in w? (In other words, when is demand
for x normal?)

(c) Returning to the case of uncertain wealth, under what, if any, conditions on u

and/or v is the optimal x nondecreasing (in the strong set order) when there is a
FOSD increase in the distribution of w?

(d) Under what, if any, conditions on u and/or v is the optimal x nondecreasing (in
the strong set order) when there is a mean-preserving reduction in risk (MPRR)
in the distribution of w?

5.7 Let N = {1, . . . , n} denote a set of players in a simultaneous move game. Suppose each
player has a strategy space Si = [0, 1], and suppose T = [0, 1] is a set of parameters.
The utility of player i is given by

ui(si, s−i, t) = (1− α)ϕ(si − t) + α
∑
j ̸=i

ϕ(si − sj).

In this equation, α ∈ (0, 1) is a fixed constant, and ϕ : R → R is twice continuously
differentiable with ϕ′′ < 0 and ϕ(0) = ϕ′(0) = 0. In words, ϕ is a strictly concave
function that is everywhere below zero (ϕ(x) ≤ 0) and only attains the value zero at
x = 0. (You might recognize that the game we have just defined is a version of famous
the “beauty contest” game of Keynes.)

(a) Suppose the value of the parameter t is common knowledge. Based only on the
assumptions given so far, what can be said about how the set of Nash equilibria
of this game change in response to a change in t? Be precise, and prove any
claim that you make. If you say that nothing can be determined based on the
assumptions given so far, what additional assumptions would allow you to say
something definitive about how the set of Nash equilibria change with t?

(b) Suppose instead that the parameter t is uncertain for the players at the time
when they are choosing their strategies. Suppose the players have a common
prior (cumulative distribution function) G over t. If the prior increases with
respect to the first-order stochastic dominance order, that is, the prior changes
from G to F where F ≥FOSD G, then what can be said about how how the set
of Nash equilibria of this game change?6 Be precise, and prove any claim that
you make. If you say that a definitive prediction cannot be made based on the
assumptions given so far, what additional assumptions would allow you to say
something definitive about how the set of NE change in response to a FOSD
increase in the distribution of t?

6Intuitively, such a change in common beliefs could be the result of a public signal (meaning the signal is
observable to all of the players) that makes the players more optimistic about the distribution of t (in the
sense of FOSD). However, the exact cause of the change in beliefs from G to F is not important for solving
this problem.
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(c) As in the previous part of the problem, suppose again that the parameter t is
uncertain for the players at the time when they are choosing their strategies
and that the players have a common prior G over t. If the prior increases with
respect to the second-order stochastic dominance order, that is, the prior changes
from G to F where F ≥SOSD G, then what can be said about how the set
of Nash equilibria of this game change? Be precise, and prove any claim that
you make. If you say that a definitive prediction cannot be made based on the
assumptions given so far, what additional assumptions would allow you to say
something definitive about how the set of NE change in response to a SOSD
increase in the distribution of t?

5.8 This problem concerns a variation of the Le Chatelier Principle that we studied previ-
ously. We now consider a decision maker who is forward looking and anticipates that a
change in the parameter value might occur (i.e., the exact change to the parameter is
unknown but the decision maker has beliefs about its possible future values). Formally,
consider the problem of selecting two variables x and y optimally for a given payoff
relevant parameter t. Consider a multi-period problem where t may change over time.
The variable x can respond immediately to changes in t. However, the variable y takes
time to adjust and must be chosen one period in advance, which means that the value
of t in a given period may not yet be known at the time when y must be chosen.

Specifically, suppose X ⊆ R and Y ⊆ R are compact, T ⊆ R, and f : X×Y ×T → R is
continuous and supermodular in (x, y) and has increasing differences in (x, y; t). There
are three time periods, τ = 0, 1, 2 (note the use of τ to denote time periods, to avoid
confusion with the parameter t). Suppose the that value of the parameter t is t0 in
period 0. In period 1, the value of the parameter changes to t1 and it remains at t1 in
period 2. Thus, period 1 is the only period in which the parameter value might change
(it is also possible that t1 = t0, in which case there is no change in the parameter
value). The objective of the agent is to maximize

f(x0, y0, t0) + f(x1, y1, t1) + f(x2, y2, t1).

However, the difficulty faced by the agent is that y1 must be chosen in one period in
advance (in period 0) before the realized value of the parameter t1 is learned. Specifi-
cally, the timeline of information available to the agent and the timing of her decisions
is as follows:

Period 0:

• The parameter value t0 in period 0 is known well in advance, so the agent can
choose both x0 and y0 optimally given this parameter value (y0 needs to be chosen
in advance of period 0, but t0 was also known in advance, the agent was able to
chose y0 optimally for this period).

• The agent knows in period 0 that the distribution of t1 is given by the cdf F ,
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and in period 0 she must select the next-period value y1 of y using only this
information.

Period 1:

• The agent learns the realization of t1.
• She chooses x1 optimally given this realized parameter value t1 and the value
y = y1 that she previously selected in period 0.

• The agent chooses the next-period value y2 of y for period 2.

Period 2:

• The parameter remains at t1.
• The agent chooses the value x2 of x.

The solutions to several optimization problems will be useful for describing these vari-
ables:

(xLR(t), yLR(t)) ∈ argmax
(x,y)∈X×Y

f(x, y, t),

xSR(y, t) ∈ argmax
x∈X

f(x, y, t),

yEX(F ) ∈ argmax
y∈Y

∫
f(xSR(y, t), y, t) dF (t).

For simplicity, you can assume throughout this problem that if there are multiple
solutions to any of these maximization problems, the agent chooses the solution with
the largest values of x and y. The notation “LR” stands for long run, “SR” stands for
short run, and “EX” stands for expectation. The timeline of information and decisions
given above implies that:7

y0 = yLR(t0) y1 = yEX(F ) y2 = yLR(t1)

x0 = xLR(t0) x1 = xSR(y1, t1) x2 = xLR(t1)

Answer the following:

(a) Define a function g : Y × T → R by g(y, t) = f(xSR(y, t), y, t).8 Under the
assumptions given above that f is supermodular in (x, y) and has increasing
differences in (x, y; t), prove that g has increasing differences in (y; t). (Hint: If f

7Note that this is essentially the same setup that we used to study the Le Chatelier Principle in class,
but with one important difference: In this problem, we will allow the decision maker to have beliefs F in
period 0 about what the value t1 of the parameter will be in period 1, so she can select y1 in anticipation
of these possible future changes to t. In class, we assumed that y1 = yLR(t0), which could be interpreted
as the agent having the period 0 belief that with probably 1 the parameter value would remain at the value
t0 in period 1. Thus, when we studied the Le Chatelier Principle in class, we implicitly assumed that the
change in parameter was a surprise (or probability zero event) to the agent.

8Thus g(y, t1) is the indirect utility from choosing y when the period 1 parameter is t1, given that the
value of x will then by chosen optimally given y and t1. In particular, y1 = yEX(F ) is chosen in period 0 to
maximize the expectation

∫
g(y, t1) dF (t1).
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is SM in (x, y) and has increasing differences in (x, y; t), then f is SM in (x, y, t).
You can use this fact without proving it.)

(b) Under the assumptions given above that f is supermodular in (x, y) and has
increasing differences in (x, y; t), if G ≥FOSD F then do we necessarily have
yEX(G) ≥ yEX(F )? IfG ≥MLR F then do we necessarily have yEX(G) ≥ yEX(F )?
For each of these questions, if your answer is yes, prove your claim. If no, provide
a sufficient condition that would generate monotonicity of y with respect to these
stochastic orders.

(c) Assume that yEX(G) ≥ yEX(F ) whenever G ≥FOSD F (that is, regardless of your
answer to part (b), assume now that we have imposed whatever conditions are
needed to ensure this monotonicity of yEX(F )). Fix t̄′ > t̄, suppose t0 = t̄, and
suppose the cdf F puts probability α ∈ (0, 1) on t1 = t̄ and probability 1− α on
t1 = t̄′. Answer the following based on the information provided, and provide a
careful argument in support of your answers:

i. If the realization of t1 is t̄′, what equalities or inequalities can you infer about
how y0 = yLR(t0), y1 = yEX(F ), and y2 = yLR(t1) are related, and about how
x0 = xLR(t0), x1 = xSR(y1, t1), and x2 = xLR(t1) are related?

ii. If the realization of t1 is t̄, what equalities or inequalities can you infer about
how y0 = yLR(t0), y1 = yEX(F ), and y2 = yLR(t1) are related, and about how
x0 = xLR(t0), x1 = xSR(y1, t1), and x2 = xLR(t1) are related?

(d) Discuss briefly how your results for this problem compare to the conclusions de-
rived in class when we analyzed the Le Chatelier principle. In this setting where
the agent is not completely surprised by the change in the parameter t and instead
has belief F about its future value, can we still conclude that the long-run change
in x is larger than the short-run change in x following a change in the parameter
t?
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6.1 Deterministic Signals and Partitions

To introduce concepts gradually, we begin our analysis in this section with the simple case of
deterministic signals. Then, in the following sections we develop results for the more general
case of stochastic signals. Throughout the chapter, we will restrict attention to a finite
probability space. That is, suppose that the state space Ω is finite and P is a probability
measure on Ω. It is worth emphasizing that this assumption of finite states is made solely
for expositional simplicity. Most of the results presented below extend to probability spaces
with an infinite set of states.

6.1.1 Modeling Information Using Deterministic Signals

Definition 6.1. A (deterministic) signal σ : Ω → S maps from the state space Ω to a
signal space S.

Note that we refer to the mapping σ as the signal, and we refer to s as the signal
realization.1 Given a prior P and a signal σ, let Pσ denote the resulting joint probability
distribution over Ω and S: The joint probability of state ω and signal realization s is

Pσ(ω, s) =

{
P (ω) if σ(ω) = s

0 if σ(ω) ̸= s.

The unconditional probability of observing signal realization s is the marginal of this joint
1Different authors adopt different terminology. For example, some authors refer to σ as the signal function,

information structure, or experiment. In these cases, the signal realization s might sometimes be referred to
simply as the signal.
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probability:
Pσ(s) =

∑
ω∈Ω

Pσ(ω, s) =
∑

ω:σ(ω)=s

P (ω).

The posterior probability of state ω given signal realization s is

Pσ(ω|s) =
Pσ(ω, s)

Pσ(s)
=


P (ω)∑

ω′:σ(ω′)=s P (ω
′)

if σ(ω) = s

0 if σ(ω) ̸= s,

provided Pσ(s) > 0. We will discuss posterior beliefs in more detail in later sections.

Definition 6.2. A partition of Ω is a collection E of nonempty disjoint subsets whose union
is Ω. That is,

⋃
E∈E E = Ω and for any E,E ′ ∈ E , either E = E ′ or E ∩ E ′ = ∅.

For any subset S ′ ⊆ S, the inverse image of S ′ under σ is the set

σ−1(S ′) ≡ {ω ∈ Ω : σ(ω) ∈ S ′}.

Note that the inverse image is a well-defined (but possibly empty) set even if σ is not a
bijection. That is, even if a function does not admit an inverse function, we can still define
the inverse image of sets under that function.

The partition generated by the signal σ is the collection

E = {σ−1({s}) ⊆ Ω : s ∈ S∗},

where S∗ is the range of σ. Thus if ω ∈ E ∈ E , then

E = {ω′ ∈ Ω : σ(ω′) = σ(ω)}

and hence
Pσ(ω

′|σ(ω)) = P (ω′|E).

Definition 6.3. Suppose E1 and E2 are partitions of Ω. Then E1 is finer than E2 (or,
equivalently, E2 is coarser than E1) if every element of E1 is a subset of some element of E2,
that is, for every E ∈ E1, there exists E ′ ∈ E2 such that E ⊆ E ′.

Example 6.4 (Deterministic signals). Suppose Ω = {1, 2, 3, 4, 5} and S = {a, b, c},
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and consider the following two signals:

σ1(ω) =



a if ω = 1

a if ω = 2

b if ω = 3

c if ω = 4

c if ω = 5

σ2(ω) =



c if ω = 1

c if ω = 2

c if ω = 3

a if ω = 4

a if ω = 5

We can also depict this two signals using tables:

σ1(ω)

a b c
1 x
2 x
3 x
4 x
5 x

σ2(ω)

a b c
1 x
2 x
3 x
4 x
5 x

These signals generate the partitions

E1 = {{1, 2}, {3}, {4, 5}} and E2 = {{1, 2, 3}, {4, 5}}.

Notice that E1 is finer than E2. Notice also that the information content in signal 1 is greater
than that of signal 2 in the following intuitive sense: If an individual observes signal 1, then
they can replicate signal 2 with perfect accuracy; that is, there is a mapping γ : S → S such
that σ2 = γ◦σ1. It is also worth observing that not every partition is comparable in this way.
For instance, if there is a third signal σ3 that generates that partition E3 = {{1, 2}, {3, 4, 5}},
then E1 is finer than E3, but neither E2 nor E3 is finer than the other. Thus, comparing
partitions based on which is finer induces a partial order on the set of all partitions.

We will show momentarily that the connection between one signal generating a finer
partition than another and the ability to replicate the second signal after observing the first
is not special to the previous example, but an equivalence that holds in general. First, we
introduce feasible action plans and the ex-ante expected utility that can be generated by
signals.

6.1.2 State-Contingent Action Plans

Definition 6.5. Fix a set of actions A. A state-contingent action plan λ : Ω → A is feasible
given the signal σ : Ω → S if there exists a function α : S → A such that λ = α ◦ σ, that is,
λ(ω) = α(σ(ω)) for all ω.

Equivalently, λ is feasible if σ(ω) = σ(ω′) implies λ(ω) = λ(ω′) (Exercise 6.1). Let Λσ
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denote the set of all feasible state-contingent action plans given the signal σ, so

Λσ = {λ : Ω → A : λ = α ◦ σ for some α : S → A}.

While our notation emphasizes that Λσ depends on the signal σ, keep in mind that this set
also depends on the set of available actions A.

Definition 6.6. Consider any Bayesian expected-utility maximizer with a set of actions A,
state-dependent utility function u : A × Ω → R, and a prior P on Ω. The individual’s
ex-ante expected utility from the signal σ is

max
λ∈Λσ

∑
ω∈Ω

u(λ(ω), ω)P (ω) = max
α:S→A

∑
ω∈Ω

u(α(σ(ω)), ω)P (ω).

6.1.3 Comparing Information

When is one deterministic signal more informative than another? There are several natural
ways to think about this comparison, such whether one of them: generates a finer partition,
can be used to replicate the other, induces a larger set of feasible state-contingent action
plans, or generates higher ex-ante expected utility. It turns out that all of these methods of
comparison are equivalent, as the following theorem demonstrates.

Theorem 6.7. Suppose σ1 : Ω → S1 and σ2 : Ω → S2 are two signals (with possibly
different signal spaces). The following are equivalent:

(1) The partition E1 generated by σ1 is finer than the partition E2 generated by σ2.
(2) There exists a function γ : S1 → S2 such that σ2 = γ ◦ σ1. That is, σ2(ω) = γ(σ1(ω))

for all ω.
(3) For any set of actions A, the set of state-contingent action plans that are feasible under

σ1 contains those that are feasible under σ2. That is, Λσ2 ⊆ Λσ1 .
(4) Every Bayesian expected-utility maximizer prefers σ1 to σ2 for every possible decision

problem. That is, σ1 gives weakly higher ex-ante utility than σ2 for every A, u, and P .

Proof. (1) ⇔ (2): Exercise 6.1.

(2) ⇒ (3): Suppose λ ∈ Λσ2 . Then there exists a function α : S2 → A such that
λ = α ◦ σ2. By assumption, there exists a function γ : S1 → S2 such that σ2 = γ ◦ σ1. Let
α∗ = α ◦ γ : S1 → A. Then

α∗ ◦ σ1 = (α ◦ γ) ◦ σ1 = α ◦ (γ ◦ σ1) = α ◦ σ2 = λ,

so λ ∈ Λσ1 . Thus Λσ2 ⊆ Λσ1 .

(3) ⇒ (4): Fix any set of actions A, state-dependent utility function u : A×Ω → R, and
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prior P on Ω. By assumption, Λσ2 ⊆ Λσ1 , and therefore

max
λ∈Λσ2

∑
ω∈Ω

u(λ(ω), ω)P (ω) ≤ max
λ∈Λσ1

∑
ω∈Ω

u(λ(ω), ω)P (ω).

(4) ⇒ (2): Consider a utility function that is maximized by announcing the signal real-
ization under σ2. If σ1 performs better in this decision problem, then it must be possible to
replicate the signal realization given by σ2. Formally, let A = S2, define u by

u(s, ω) =

{
1 if s = σ2(ω)

0 if s ̸= σ2(ω),

and let P be the uniform distribution on Ω. By construction,∑
ω∈Ω

u(λ(ω), ω)P (ω) ≤ 1,

with equality if and only if λ = σ2. Note that σ2 ∈ Λσ2 and therefore

max
λ∈Λσ2

∑
ω∈Ω

u(λ(ω), ω)P (ω) = 1.

Since the individual gets (weakly) higher utility from σ1 than σ2, it must be that σ2 ∈ Λσ1 .
That is, σ2 = α ◦ σ1 for some α : S1 → S2.

6.2 Stochastic Signals

We now extend the analysis of the previous section to the general case where signal real-
izations are potentially random. For all of our results (and most of our examples), we will
continue to assume that the state space Ω is finite and that the signal space S is finite. As
noted above, the reader should keep in mind that these restrictions are made for expositional
simplicity and significant generalizations exist in the literature.

6.2.1 Modeling Information Using Stochastic Signals

For any finite set X, let

△(X) =

{
p ∈ RX

+ :
∑
x∈X

p(x) = 1

}
denote the set of all probability distributions on X. In particular, a stochastic signal will be
a mapping from states into △(S).

Definition 6.8. A (stochastic) signal σ : Ω → △(S) maps from the state space Ω to the
set of probability distributions over a signal space S.
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We will write σ(s|ω) to denote the probability of observing s when the state is ω. Note
that a deterministic signal is the special case of a stochastic signal where, for each ω ∈ Ω,
we have σ(s|ω) = 1 for some signal realization s ∈ S (the particular s may of course depend
on the state ω). Therefore, we will often refer to a stochastic signal simply as a signal in
what follows, recognizing that this encompasses deterministic signals.

Note that the information structure associated with a stochastic signal in general cannot
be modeled using a partition on Ω. However, it can be thought of as a partition on the
enlarged state space Ω∗ = Ω× S. That is,

E = {Ω× {s} : s ∈ S}.

Unfortunately, this is not particularly useful for applications (when only Ω is payoff relevant)
or for comparing information. For example, two individuals may have different stochastic
signals σ1 and σ2 with corresponding signal spaces S1 and S2. Then the enlarged state space
is Ω∗ = Ω× S1 × S2, and the partitions generated by σ1 and σ2 are

E1 = {Ω× {s1} × S2 : s1 ∈ S1} and E2 = {Ω× S1 × {s2} : s2 ∈ S2}.

In this case, neither partition is finer than the other. However, as we will explore in detail,
σ1 may still be more informative about Ω than σ2. Intuitively, if Ω is the only payoff-
relevant part of this state space, then individual 1 does not need to know individual 2’s signal
realization in order to have more information than 2 for any relevant decision problem.

Example 6.9 (Stochastic extension of deterministic example). Consider a sim-
ple stochastic extension of the deterministic signals in Example 6.4: Suppose Ω = {1, 2, 3, 4, 5}
and S = {a, b, c, d}. Suppose the signals σ1 and σ2 announce the same signal realizations as
their counterparts from the previous example with probability 0.5, and they announce signal
realization d with probability 0.5. These signals can be conveniently represented using the
following tables:

σ1(s1|ω)
a b c d

1 0.5 0.5

2 0.5 0.5

3 0.5 0.5

4 0.5 0.5

5 0.5 0.5

σ2(s2|ω)
a b c d

1 0.5 0.5

2 0.5 0.5

3 0.5 0.5

4 0.5 0.5

5 0.5 0.5

Notice that for either signal, after observing the signal realization d an individual has no
information about the state beyond their prior belief P . Also, notice that unlike in the
deterministic example, observing the realization of signal 1 does not enable an individual to
announce the realization of signal 2 with perfect accuracy. For instance, suppose the state
is ω = 1 and the first signal has realization a. This does not fully pin down the realization
of the second signal, since it could be either c or d, each with equal probability. However,
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signal 1 can be used to replicate signal 2 in a distributional sense. Specifically, suppose that
after observing the realization of signal σ1, an individual makes the following announcements:

• announce c after observing either a or b,
• announce a after observing c, and
• announce d after observing d.

These signal announcements depend only on the realization of the first signal and result in
the same distribution of signal realizations in every state ω as under signal σ2. We will see
shortly that this type of comparison of stochastic signals is the appropriate one for ranking
ex-ante expected utilities.

To formalize the notion of using one stochastic signal to replicate another, we need to first
define the composition of stochastic operators. Suppose α : X → △(Y ) and β : Y → △(Z)

are two stochastic operators. Define the composition β ◦α : X → △(Z) of these operators
by

(β ◦ α)(z|x) =
∑
y∈Y

β(z|y)α(y|x).

We now define a garbling of a signal, which can be interpreted intuitively as adding more
noise to the signal.

Definition 6.10. We say that a stochastic signal σ2 : Ω → △(S2) is a garbling of σ1 : Ω →
△(S1) (or alternatively that σ1 is Blackwell sufficient for σ2) if there exists a function
γ : S1 → △(S2) (the garbling) such that σ2 = γ ◦ σ1. That is, for all ω ∈ Ω and s2 ∈ S2,

σ2(s2|ω) =
∑
s1∈S1

γ(s2|s1)σ1(s1|ω).

In Example 6.9, the garbling used to obtain σ2 from σ1 turned out to be deterministic:
Specifically, let

γ(c|a) = γ(c|b) = γ(a|c) = γ(d|d) = 1,

and let γ take the value zero for all other combinations of s1 and s2. However, in other cases,
such as the following example, the garbling is nontrivially stochastic.

Example 6.11 (Binary state and signal spaces). Suppose Ω = {G,B} and S = {g, b},
and consider the following signals:

σ1(s1|ω)
g b

G 0.8 0.2

B 0.2 0.8

σ2(s2|ω)
g b

G 0.6 0.4

B 0.4 0.6
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We will show that signal 2 is a garbling of signal 1. Intuitively, we can obtain the second
signal from the first by announcing the same signal realization as under σ1 (g if g and b

if b) with probability 2/3 and announcing the opposite signal realization (b if g and g if b)
with probability 1/3. This garbling is summarized in the following table, where the rows
correspond to the signal realization s1 and the columns correspond to the signal realization
s2:

γ(s2|s1)
s2

g b

s1
g 2/3 1/3

b 1/3 2/3

To verify that we do in fact have σ2 = γ ◦ σ1, notice that

(γ ◦ σ1)(g|G) = γ(g|g)σ1(g|G) + γ(g|b)σ1(b|G)
= (2/3)0.8 + (1/3)0.2 = 0.6 = σ2(g|G),

and similarly for the other combinations of ω and s2 (which you should check for yourself).
Thus, σ2 is a garbling of σ1. While it may have seemed somewhat mysterious how we came up
with this garbling γ, we will explore both the geometric intuition and algebraic calculations
behind such derivations in more detail as the chapter progresses and in the exercises.

The tables used to describe the signals and the garbling in the previous example are
evocative of matrices in linear algebra, and there is indeed a formal connection. If the sets
Ω, S1, and S2 are finite (as we assume for all of the formal results of this chapter), then
signals and the garbling can be representing as matrices, and the garbling equation can be
represented using matrix multiplication. Using the signals from Example 6.11 to illustrate,
with slight abuse of notation, we can treat σ1, σ2, and γ as the following matrices:

σ1 =

[
0.8 0.2

0.2 0.8

]
, σ2 =

[
0.6 0.4

0.4 0.6

]
, γ =

[
2/3 1/3

1/3 2/3

]
.

Moreover, γ ◦ σ1 can be represented as the matrix multiplication σ1γ:

γ ◦ σ1 =
[
0.8 0.2

0.2 0.8

] [
2/3 1/3

1/3 2/3

]
=

[
0.6 0.4

0.4 0.6

]
= σ2.

In other words, the signal resulting from the garbling operation can be described using the
standard composition of stochastic transition matrices (Markov kernels).

6.2.2 State-Contingent Distributions Over Actions

The definition of state-contingent actions is roughly the same as before, except that we now
allow both the signal σ and the action α to be stochastic.
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Definition 6.12. Fix a set of actions A. A state-contingent distribution over actions λ :

Ω → △(A) is feasible given the signal σ : Ω → △(S) if there exists a distribution of actions
conditional on the signal realization α : S → △(A) such that λ = α ◦ σ. That is,

λ(a|ω) =
∑
s∈S

α(a|s)σ(s|ω).

The set of all feasible state-contingent distributions over actions is then

Λσ = {λ : Ω → △(A) : λ = α ◦ σ for some α : S → △(A)}.

While our notation emphasizes that Λσ depends on the signal σ, keep in mind that this set
also depends on the set of available actions A.

Definition 6.13. Consider a Bayesian expected-utility maximizer with a set of actions A,
state-dependent Bernoulli utility function u : A × Ω → R, and a prior P on Ω. The
individual’s ex-ante expected utility from the signal σ is

max
λ∈Λσ

∑
ω∈Ω

(∑
a∈A

u(a, ω)λ(a|ω)

)
P (ω).

Although it will generally be more convenient for our purposes to express ex-ante ex-
pected utility as a function of state-contingent action plans λ, it is of course also possible to
express utility as a function of signal-contingent action plans α using the following equivalent
formulation:

max
α:S→△(A)

∑
ω∈Ω

(∑
a∈A

∑
s∈S

u(a, ω)α(a|s)σ(s|ω)

)
P (ω).

Note that because expected utility is linear in α, it is easy to see that there will always be a
maximizer involving deterministic α (this may still result in random λ due to the stochastic
signal). In this sense, we could restrict attention to deterministic α : S → A. However,
taking α : S → △(A) will be technically convenient for the analysis because it ensures that
the set Λσ is convex (this will be used in the proof of Blackwell’s theorem below).

After presenting Blackwell’s theorem in the next subsection, we will revisit Example 6.11
in Section 6.3 and compare both the sets of feasible state-contingent distributions of actions
and the ex-ante expected utilities for the two signals for given A, u, and P .

6.2.3 Comparing Information and Blackwell’s Theorem

We now present our main result for the comparison of stochastic signals.

Theorem 6.14 (Blackwell (1951, 1953)). Suppose σ1 : Ω → △(S1) and σ2 : Ω → △(S2)
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are two stochastic signals. The following are equivalent:

(1) σ2 is a garbling of σ1.
(2) For any set of actions A, the set of state-contingent distributions over actions that are

feasible under σ1 contains those that are feasible under σ2. That is, Λσ2 ⊆ Λσ1 .
(3) Every Bayesian expected-utility maximizer prefers σ1 to σ2 for any possible decision

problem. That is, σ1 gives weakly higher ex-ante utility than σ2 for every A, u, and P .

While the classical proofs of Blackwell’s theorem are quite involved, we provide a very
simple proof that was developed by de Oliveira (2018). Graphical intuition for some parts
of this proof, in particular for (2) ⇔ (3), will be provided using examples in Section 6.3.

Proof. (1) ⇒ (2): Suppose λ ∈ Λσ2 . Then there exists α : S2 → △(A) such that λ = α ◦ σ2.
By assumption, there exists a garbling γ : S1 → △(S2) such that σ2 = γ ◦ σ1. Let α∗ =

α ◦ γ : S1 → △(A). Then

α∗ ◦ σ1 = (α ◦ γ) ◦ σ1 = α ◦ (γ ◦ σ1) = α ◦ σ2 = λ.

The key step in this equation is using the associative property of our composition operation
to obtain (α ◦ γ) ◦ σ1 = α ◦ (γ ◦ σ1). To verify this equality, note that

((α ◦ γ) ◦ σ1)(a|ω) =
∑
s1∈S1

(∑
s2∈S2

α(a|s2)γ(s2|s1)

)
︸ ︷︷ ︸

(α◦γ)(a|s1)

σ1(s1|ω)

=
∑
s2∈S2

α(a|s2)

(∑
s1∈S1

γ(s2|s1)σ1(s1|ω)

)
︸ ︷︷ ︸

(γ◦σ1)(s2|ω)

= (α ◦ (γ ◦ σ1))(a|ω).

Thus, λ ∈ Λσ1 . Since λ ∈ Λσ2 was arbitrary, we have shown that Λσ2 ⊆ Λσ1 .

(2) ⇒ (1): Let A = S2. Then, σ2 ∈ Λσ2 . Since Λσ2 ⊆ Λσ1 , it must be that σ2 ∈ Λσ1 . That
is, σ2 = α ◦ σ1 for some α : S1 → △(S2).

(2) ⇒ (3): Fix any set of actions A, state-dependent utility function u : A×Ω → R, and
prior P on Ω. By assumption, Λσ2 ⊆ Λσ1 , and therefore

max
λ∈Λσ2

∑
ω∈Ω

(∑
a∈A

u(a, ω)λ(a|ω)

)
P (ω) ≤ max

λ∈Λσ1

∑
ω∈Ω

(∑
a∈A

u(a, ω)λ(a|ω)

)
P (ω).

(3) ⇒ (2): We will prove this by contrapositive. That is, we will show that if (2) fails
then (3) fails. Thus, suppose that (2) is not true, so there exists a set of actions A such
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that Λσ2 ̸⊆ Λσ1 . Fix some λ∗ ∈ Λσ2 such that λ∗ /∈ Λσ1 . Note that we can think of λ∗ as an
element of the Euclidean space RA×Ω (that is, the real-valued vectors that have coordinates
indexed by (ω, a)), and similarly Λσ1 is a subset of RA×Ω. Note that Λσ1 is convex (can
you show why?) and compact (why?). Therefore, the separating hyperplane theorem implies
that there exists a vector u ∈ RA×Ω such that∑

ω∈Ω
a∈A

u(a, ω)λ(a|ω) <
∑
ω∈Ω
a∈A

u(a, ω)λ∗(a|ω) ∀λ ∈ Λσ1 .

Let P be the uniform distribution on Ω, so that P (ω) = 1/|Ω| for all ω. Then, we have

max
λ∈Λσ1

∑
ω∈Ω

(∑
a∈A

u(a, ω)λ(a|ω)

)
P (ω) <

∑
ω∈Ω

(∑
a∈A

u(a, ω)λ∗(a|ω)

)
P (ω)

≤ max
λ∈Λσ2

∑
ω∈Ω

(∑
a∈A

u(a, ω)λ(a|ω)

)
P (ω),

and hence (3) fails. This completes the proof.

Definition 6.15. If any of the conditions in Theorem 6.14 hold, we say that σ1 is Blackwell
more informative (or simply more informative) than σ2.

6.3 Additional Examples

The following examples illustrate Blackwell’s theorem. Note in these examples that the prior
P is not needed when describing garblings. This is because the Blackwell comparison of the
informativeness of information structures (signals) does not depend on the prior.

6.3.1 Binary State and Signal Spaces

We now revisit our previous example involving binary state and signal spaces to illustrate
the connection between the first two conditions in Theorem 6.14.

Example 6.16 (Depicting state-contingent actions graphically). Continuing
Example 6.11, suppose there are two actions A = {x, y}. For example, x could be high
investment in a project and y could be low investment. In this simple binary state, signal,
and action space environment, we can depict the sets of feasible state-contingent distributions
over actions Λσ1 and Λσ2 as subset of R2. That is, since for any λ we have

λ(y|G) = 1− λ(x|G) and λ(y|B) = 1− λ(x|B),

a state-contingent distribution is completely pinned down by the values λ(x|G) and λ(x|B).
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The following tables illustrate these values for each of the four deterministic signal-contingent
action plans α given the signals σ1 and σ2:

Signal σ1 Signal σ2
λ(x|G) λ(x|B) λ(x|G) λ(x|B)

α(x|g) = 0, α(x|b) = 0 0 0 0 0

α(x|g) = 1, α(x|b) = 0 0.8 0.2 0.6 0.4

α(x|g) = 0, α(x|b) = 1 0.2 0.8 0.4 0.6

α(x|g) = 1, α(x|b) = 1 1 1 1 1

For example, for signal σ1, the λ resulting from choosing x after signal realization g (i.e.,
α(x|g) = 1) and choosing y after signal realization b (i.e., α(x|b) = 0) can be represented using
the vector (0.8, 0.2). What about other, non-deterministic signal-contingent distributions
over actions? Any α : S → △(A) must be a convex combination of the four deterministic
functions α listed above, and therefore the resulting state-contingent distribution of actions
λ is simply the convex combination (using the same weights) of the entries in the table. In
other words, the set Λσi

is just the convex combination of the four extreme points listed in
the table. This allows us to easily calculate and depict the sets Λσ1 and Λσ2 graphically, as
illustrated in Figure 6.1a. It is immediate that Λσ2 ⊆ Λσ1 .
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(a) State-contingent distributions over actions
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Figure 6.1: Illustration of comparable signals in Examples 6.16 and 6.17.

To better understand the third condition in Theorem 6.14, it is helpful to be able to depict
ex-ante expected utility graphically. We now continue the previous example and introduce
utility functions.

Example 6.17 (Depicting expected-utility functions graphically). Continuing
Example 6.16, suppose that P (G) = P (B) = 0.5. Note that this assumption is made for
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simplicity only and is not crucial for any of the analysis to follow (check for yourself what
would be different and convince yourself that there are no substantive changes). Then, for
any state-contingent distribution over actions λ, we have

2
∑
ω∈Ω

∑
a∈A

u(a, ω)λ(a|ω)P (ω) =
∑
ω∈Ω

∑
a∈A

u(a, ω)λ(a|ω)

= u(x,G)λ(x|G) + u(y,G)(1− λ(x|G)) + u(x,B)λ(x|B) + u(y,B)(1− λ(x|B))

=
[
u(x,G)− u(y,G)

]
λ(x|G) +

[
u(x,B)− u(y,B)

]
λ(x|B) + u(y,G) + u(y,B).

The last two terms in this equation do not depend on λ, so the ranking of any two state-
contingent distributions λ and λ′ is determined entirely by the utility differences between
action x and y in states G and B. For example, suppose x corresponds to high investment
in a project and y to low. Then, if high investment is better than low only in the good state
G, then we would have

u(x,G)− u(y,G) > 0 and u(x,B)− u(y,B) < 0.

Moreover, the vector given by these two utility differences is precisely the gradient of the ex-
ante expected-utility function, and it is therefore normal to the (linear) indifference curves
in the space of action plans λ. Indifference curves for one such utility function, and the
resulting optimal state-contingent distributions over actions from Λσ1 and Λσ2 are illustrated
in Figure 6.1b.

In the previous example, signal 1 was more informative than signal 2. We next consider
an example where signals are not Blackwell comparable.

Example 6.18 (Incomparable signals). Suppose again that Ω = {G,B} and S =

{g, b}, but consider the following signals:

σ1(s1|ω)
g b

G 1 0

B 0.3 0.7

σ2(s2|ω)
g b

G 0.7 0.3

B 0 1

We will show that neither of these signals is more informative than the other in the sense of
Blackwell. In light of Theorem 6.14, there are a number of ways to demonstrate this. For
instance, we could try to show that neither is a garbling of the other. However, building
on the graphical intuition developed in the previous examples, we instead show that there
exists a set of actions A such that the sets of state-contingent distributions over actions for
these signals are not nested; that is, neither is a subset of the other. Again let A = {x, y}
and recall that the sets Λσ1 and Λσ2 can be represented as subsets of R2. In particular, each
set is the convex hull of the vectors given by the rows in its table below:
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Signal σ1 Signal σ2
λ(x|G) λ(x|B) λ(x|G) λ(x|B)

α(x|g) = 0, α(x|b) = 0 0 0 0 0

α(x|g) = 1, α(x|b) = 0 1 0.3 0.7 0

α(x|g) = 0, α(x|b) = 1 0 0.7 0.3 1

α(x|g) = 1, α(x|b) = 1 1 1 1 1

Figure 6.2 depicts these sets Λσ1 and Λσ2 graphically. It is easy to see that neither is a subset
of the other, and hence condition 2 of Theorem 6.14 fails. Thus, neither signal is Blackwell
more informative than the other. Continuing our analysis, we can also demonstrate that
there is a decision problem where σ1 is preferred and another decision problem where σ2 is
preferred. In other words, we will illustrate that condition 3 in Theorem 6.14 fails, which
provides some intuition for why 3 ⇒ 2 in this theorem (by showing that whenever condition 2
fails then condition 3 also fails). Take the vector (1, 0.3), which is contained in Λσ1 but not
in Λσ2 . By the separating hyperplane theorem, there exists a hyperplane that separates
this point from the set Λσ2 . Since hyperplanes correspond to the indifference curves of ex-
ante expected-utility preferences (as we observed in Example 6.17), this means that there
is a utility function and prior such that signal 1 is preferred to signal 2, as illustrated in
Figure 6.2a. Similarly, we can find another decision problem (utility function) where signal 2
is preferred to signal 1, as illustrated in Figure 6.2b.
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Figure 6.2: Illustration of incomparable signals in Example 6.18.

The following example generalizes the signals introduced in Example 6.11 and describes
the garbling used to obtain the second signal from the first. Note that our approach to
graphing the set of feasible state-contingent action plans in the previous examples can also
be used to graph the set of all garblings of a given signal in the case of binary state and
signal spaces. Give this a try in the following example.
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Example 6.19. Suppose Ω = {G,B} and S = {g, b}, and consider the signals σi : Ω →
△(S) for i = 1, 2 defined by

σ1(s1|ω)
g b

G ϕ1 1− ϕ1

B 1− ϕ1 ϕ1

σ2(s2|ω)
g b

G ϕ2 1− ϕ2

B 1− ϕ2 ϕ2

If 1/2 < ϕ2 < ϕ1, then 1 can replicate 2’s signal distribution conditional on ω:

• Let α = ϕ2+ϕ1−1
2ϕ1−1

∈ (1/2, 1). For example, if ϕ1 = 1, then α = ϕ2.
• When 1 sees signal realization g, announce g with probability γ(g|g) = α and b with

probability γ(b|g) = 1− α.
• When 1 sees signal realization b, announce b with probability γ(b|b) = α and g with

probability γ(g|b) = 1− α.

Note that 1’s announcement has the same distribution as 2’s signal conditional on both
states, G and B:

γ(g|g)σ1(g|G) + γ(g|b)σ1(b|G) = αϕ1 + (1− α)(1− ϕ1) = ϕ2 = σ2(g|G)
γ(g|g)σ1(g|B) + γ(g|b)σ1(b|B) = α(1− ϕ1) + (1− α)ϕ1 = 1− ϕ2 = σ2(g|B).

Thus, σ2 is a garbling of σ1. As we showed early in the chapter, we can also describe these
signals and the garbling using matrices:

σ1 =

[
ϕ1 1− ϕ1

1− ϕ1 ϕ1

]
, σ2 =

[
ϕ2 1− ϕ2

1− ϕ2 ϕ2

]
, γ =

[
α 1− α

1− α α

]
.

Recall that γ ◦ σ1 can be represented as the matrix multiplication σ1γ, and hence:

γ ◦ σ1 =
[

ϕ1 1− ϕ1

1− ϕ1 ϕ1

] [
α 1− α

1− α α

]
=

[
ϕ2 1− ϕ2

1− ϕ2 ϕ2

]
= σ2.

6.3.2 Location Experiments

The next two examples involve infinite signal spaces S. Although we only stated the defini-
tion of a garbling and proved the equivalence of different conditions corresponding to better
informativeness in the case of finite signal spaces, the definitions and results can be extended
to these more general environments.

Example 6.20 (Location experiment—Normal errors). Assume:

• Ω ⊆ R (no need to specify prior)
• S1 = S2 = R
• 1 observes s1 = ω + ε1 for ε1 ∼ N(0, η21)
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• 2 observes s2 = ω + ε2 for ε2 ∼ N(0, η22)

• If η1 ≤ η2, then 1 has better information: Conditional on ω, s2 is distributed the same
as s1 + ε for ε ∼ N(0, η22 − η21), since s1 + ε = ω + ε1 + ε and ε1 + ε ∼ N(0, η22).

Example 6.21 (Location experiment—Uniform errors). Assume:

• Ω ⊆ R (no need to specify prior)
• S1 = S2 = R
• 1 observes s1 = ω + ε1 for ε1 ∼ U(−ρ1, ρ1)
• 2 observes s2 = ω + ε2 for ε2 ∼ U(−ρ2, ρ2)
• If ρ1 = 1/2 and ρ2 = 1, then 1 has better information: Conditional on ω, s2 is

distributed the same as s1 + ε where ε = (−1/2, 0.5; 1/2, 0.5).
• However, it can be shown that if ρ1 < ρ2 < 2ρ1, then it is impossible for 1 to replicate

2’s signal distribution conditional on ω.
• Thus, ordering information by requiring that 1 can replicate 2’s signal distribution is

quite restrictive.

Example 6.21 demonstrates that our intuitions about when one signal is (Blackwell) more
informative than another might be incorrect or misleading. In particular, by Theorem 6.14,
if ρ1 < ρ2 < 2ρ1 then there is some expected-utility maximizer who prefers signal σ2 to σ1
despite the smaller variance of the noise in signal σ1.

However, Lehmann (1988) observed that if we further restrict the class of utility functions
that individuals might have, then signal σ1 in Example 6.21 will be preferred to σ2 whenever
ρ1 < ρ2. In other words, if we don’t require that all expected-utility maximizers prefer σ1 to
σ2, and instead only require this preference for a certain subclass of utility functions, then we
are able to compare more signals. The so-called Lehmann information order therefore
extends the Blackwell information order to permit the comparison of more information struc-
tures (signals). The interested reader is referred to the original work of Lehmann (1988), as
well as the nice application of the Lehmann information order in Quah and Strulovici (2009).

6.4 Exercises

6.1 In this exercise, you are asked to prove the missing parts of the proof of Theorem 6.7,
the result that characterizes different equivalent representations of σ1 : Ω → S1 being
more informative than σ2 : Ω → S2.

(a) Prove (2) ⇒ (1). That is, prove that if there exists a function γ : S1 → S2 such
that σ2 = γ ◦ σ1, then the partition E1 generated by σ1 is finer than the partition
E2 generated by σ2.

(b) Before proving the other missing part of the proof, first prove the following: If



128 Chapter 6. Modeling and Comparing Information

f : Ω → X and g : Ω → Y satisfy

f(ω) = f(ω′) =⇒ g(ω) = g(ω′), ∀ω, ω′ ∈ Ω,

then there exists h : X → Y such that g = h ◦ f . This will be useful for the
next part of the problem, but also verifies the claim in the notes about the two
equivalent ways of defining a feasible state-contingent action plan.

(c) Prove (1) ⇒ (2). That is, prove that if the partition E1 generated by σ1 is finer
than the partition E2 generated by σ2, then there exists a function γ : S1 → S2

such that σ2 = γ ◦ σ1. (Hint: Use part (b).)

6.2 Suppose there are two states, Ω = {G,B}. In each of the following parts of this
problem, you will be given a pair of signals σ1 : Ω → △(S1) and σ2 : Ω → △(S2), and
you will be asked to determine which is Blackwell more informative than the other, or
if the two signals are not ranked (that is, neither is Blackwell more informative than
the other). If you claim that one of the signals is more informative than the other,
describe the garbling (e.g., using a table) of that signal that yields the other signal. In
other words, if you claim that σ1 is more informative than σ2, then construct a garbling
γ : S1 → △(S2) such that σ2 = γ ◦ σ1. Or, if you claim that σ2 is more informative
than σ1, then construct a garbling γ : S2 → △(S1) such that σ1 = γ ◦ s2. If you claim
that neither is more informative than the other, then explain carefully (but briefly)
why this is the case.

(a) Suppose S1 = {g, b} and S2 = {g, b, n}, and suppose σ1 and σ2 are defined as
follows:

σ1(s1|ω)
g b

G 0.8 0.2

B 0.2 0.8

σ2(s2|ω)
g b n

G 0.6 0 0.4

B 0 0.6 0.4

(b) Suppose S1 = {g, b} and S2 = {g, b, n}, and suppose σ1 and σ2 are defined as
follows:

σ1(s1|ω)
g b

G 0.6 0.4

B 0.4 0.6

σ2(s2|ω)
g b n

G 0.3 0.2 0.5

B 0.2 0.3 0.5

(c) Suppose S1 = S2 = {g, b}, and suppose σ1 and σ2 are defined as follows:
σ1(s1|ω)
g b

G 0.8 0.2

B 0.4 0.6

σ2(s2|ω)
g b

G 0.6 0.4

B 0.3 0.7

6.3 Suppose there are two states, Ω = {G,B}. Consider three stochastic signals σi : Ω →
△(S) for i = 1, 2, 3 where S = {g, b, n}. Each of these signals depends on a parameter
ηi ∈ [0, 1] and is defined as follows:



6.4. Exercises 129

σi(si|ω)
g b n

G ηi 0 1− ηi
B 0 ηi 1− ηi

Answer the following.

(a) What relationship between η1 and η2 ensures that σ1 is Blackwell more informative
than σ2? Verify whatever relationship between η1 and η2 you claim is sufficient
by constructing a garbling γ : S → △(S) of σ1 that gives σ2. That is, provide
the values of γ(s2|s1) (e.g., in a table) and verify that applying this garbling to
σ1 yields σ2. (Note: You are not required to prove that your asserted relationship
between η1 and η2 is necessary for σ1 to be more informative than σ2; that is,
you do not need to prove that σ1 is not more informative than σ2 when your
condition is violated. However, finding the weakest possible sufficient condition
and avoiding unnecessary restrictions will earn more points.)

(b) Consider a fourth stochastic signal that is obtained by observing the signal real-
izations of both σ2 and σ3 (and assume that the realizations of these two signals
are independent once we condition on the state ω). Intuitively, if we think of these
stochastic signals as the information held by different individuals, then individual
4 gets to observe the information of both individuals 2 and 3. Formally, σ4 : Ω →
△(S2) gives the probability of signal realizations of the form s4 = (s2, s3) ∈ S2 for
each ω ∈ Ω, and is defined by σ4((s2, s3)|ω) = σ2(s2|ω)σ3(s3|ω) (we simply take
the product of the probabilities for the two signal realizations since we assumed
that they are independent once we condition on ω). If η1 = η2 = η3, is σ4 more
informative than σ1? If so, show there is a garbling γ : S2 → △(S) of σ4 that
gives σ1; that is, provide the values of γ(s1|(s2, s3)) and show that applying this
garbling to σ4 yields σ1. If not, provide a careful explanation of why σ4 is not
more informative than σ1.

(c) Consider again the stochastic signal σ4 defined in the previous part of the ques-
tion. However, now relax the assumption that η1 = η2 = η3, and instead allow all
three parameters take any values η1, η2, η3 ∈ [0, 1] (possibly all different or some
the same—we are not assuming anything at this point). Given η2 and η3, deter-
mine the maximum value of η1 (as a function of η2 and η3) such that σ4 is more
informative than σ1. In particular, is it possible to have η1 > η2 and η1 > η3?
For this maximum value of η1, show there is a garbling γ : S2 → △(S) of σ4 that
gives σ1. That is, provide the values of γ(s1|(s2, s3)) and show that applying this
garbling to σ4 yields σ1. (Note: You are not required to prove that your asserted
maximum value of η1 is the largest possible given η2 and η3; that is, you do not
need to prove that σ4 is not more informative than σ1 when η1 is above this value.
However, finding the largest possible value of η1 will earn more points.)
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7.1 Distributions Over Posteriors

7.1.1 Modeling Information Using Distributions Over Posteriors

In this section, we again restrict attention to finite state and signal spaces. Given a prior
P over Ω and a stochastic signal σ : Ω → △(S), the joint probability of state ω and signal
realization s is

Pσ(ω, s) = P (ω)σ(s|ω).

The unconditional probability of observing signal realization s is

Pσ(s) =
∑
ω∈Ω

Pσ(ω, s) =
∑
ω∈Ω

P (ω)σ(s|ω).

The posterior probability distribution obtained by Bayesian updating after observing a signal
realization s is given by

Pσ(ω|s) =
Pσ(ω, s)

Pσ(s)
=

P (ω)σ(s|ω)∑
ω′ P (ω′)σ(s|ω′)

whenever Pσ(s) > 0.

Lemma 7.1. For a given prior P and a signal σ : Ω → △(S), Bayesian updating results in
a unique distribution over posteriors µ ∈ △(△(Ω)). Moreover, µ satisfies the condition:∫

△(Ω)

p dµ(p) = P. (7.1)

Equation (7.1) is sometimes called the Bayesian plausibility condition. It states that
beliefs are a Martingale: The expectation of posterior beliefs under the measure µ is precisely
the prior.

Proof. Given a prior P and a signal σ : Ω → △(S), we can construct a distribution over
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posteriors as follows: First, let

S∗ = {s ∈ S : Pσ(s) > 0}

denote the set of signal realizations that occur with positive probability. For each s ∈ S∗,
let ps denote the posterior probability distribution obtained through Bayesian updating
following this signal realization. That is, ps is defined by

ps(ω) = Pσ(ω|s) =
P (ω)σ(s|ω)∑
ω′ P (ω′)σ(s|ω′)

∀ω ∈ Ω.

Define a distribution over posteriors µ ∈ △(△(Ω)) by

µ(p) =
∑
s∈S∗

Pσ(s)1ps(p)

for any p ∈ △(Ω), where 1ps(p) is the indicator function that takes value 1 if ps = p and
takes value zero otherwise. In words, the probability that µ assigns to the posterior p is
the probability under Pσ of observing a signal realization s that results in posterior belief p.
Since multiple signal realizations could result in the same posterior belief, we must sum over
all s that give posterior ps = p in order to calculate that total probability of p. Note that
since S∗ is finite, µ has finite support.1 Finally, we verify that Equation (7.1) holds. For any
ω ∈ Ω,2 ∑

p∈△(Ω)

p(ω)µ(p) =
∑

p∈△(Ω)

p(ω)
∑
s∈S∗

Pσ(s)1ps(p)

=
∑
s∈S∗

∑
p∈△(Ω)

p(ω)Pσ(s)1ps(p) =
∑
s∈S∗

ps(ω)Pσ(s)

=
∑
s∈S∗

Pσ(ω|s)Pσ(s) =
∑
s∈S∗

Pσ(ω, s) = P (ω).

This completes the proof.

As the proof of Lemma 7.1 shows, finiteness of the set S implies that µ has finite support,
meaning that only finitely many posteriors p are assigned positive probability. This allows
us to write expectations over posteriors as sums rather than integrals.

The following result shows that there is a convenient expression for ex-ante expected
utility in terms of the distribution over posteriors generated by a signal.

Lemma 7.2. Fix any set of actions A, utility function u : A× Ω → R, and prior P . Then,
1In other words, if we enumerate the finite set of signal realizations that occur with positive probability

as S∗ = {s1, . . . , sn} for some n ∈ N, then we have µ ∈ △({ps1 , . . . , psn}).
2Although the set △(Ω) is infinite, we can still write the sum over p ∈ △(Ω) in what follows, since these

terms are equal to zero for all but finitely many p given that µ has finite support.
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the ex-ante expected utility from a signal σ can be expressed in terms of the resulting
distribution over posteriors µ as follows:

∑
p∈△(Ω)

µ(p)

(
max
a∈A

∑
ω∈Ω

u(a, ω)p(ω)

)
.

Proof. This result follows from simple algebraic manipulations of the formula for ex-ante
expected utility:

max
α:S→△(A)

∑
ω∈Ω

∑
s∈S

∑
a∈A

u(a, ω)α(a|s)σ(s|ω)P (ω)

= max
α:S→△(A)

∑
ω∈Ω

∑
s∈S∗

∑
a∈A

u(a, ω)α(a|s)Pσ(ω|s)Pσ(s)

=
∑
s∈S∗

Pσ(s) max
β∈△(A)

∑
ω∈Ω

∑
a∈A

u(a, ω)β(a)Pσ(ω|s)

=
∑
s∈S∗

Pσ(s)max
a∈A

∑
ω∈Ω

u(a, ω)ps(ω)

=
∑

p∈△(Ω)

µ(p) max
a∈A

∑
ω∈Ω

u(a, ω)p(ω).

Note that the second-to-last equality switches from maximizing over lotteries β ∈ △(A) to
maximizing over deterministic actions a ∈ A. This equality holds because of the linearity of
the objective function in β.

The following result is in some sense a converse to Lemma 7.1. Given a distribution over
posteriors µ, we can construct a prior P , signal space S, and signal σ that together generate
µ. Although this claim is true in general, we will focus on the case of measures µ with finite
support since we are restricting attention to finite signal spaces S.

Lemma 7.3. Given a distribution over posteriors µ ∈ △(△(Ω)) with finite support, there
exists a prior P and signal σ : Ω → △(S) that generate µ by Bayesian updating.

Proof. Since µ has finite support, we can enumerate the elements of its support as {p1, . . . , pn}
for some n. Let the signal space be S = {1, . . . , n}. Define a prior P by

P (ω) =
∑
s∈S

ps(ω)µ(ps)

and define σ : Ω → △(S) by

σ(s|ω) = ps(ω)µ(ps)∑
s′∈S ps′(ω)µ(ps′)

.
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Given these definitions of P and σ, we have

Pσ(ω, s) = σ(s|ω)P (ω) = ps(ω)µ(ps).

This implies that the probability of observing signal realization s is

Pσ(s) =
∑
ω∈Ω

Pσ(ω, s) =
∑
ω∈Ω

ps(ω)µ(ps) = µ(ps)

and the posterior belief following signal realization s is

Pσ(ω|s) =
Pσ(ω, s)

Pσ(s)
= ps(ω).

Thus, the distribution over posteriors generated by P and σ is precisely µ.

Note that multiple signals σ could lead to the same distribution over posteriors µ. In this
sense, distributions over posteriors serve as a canonical representation of information struc-
tures: They capture all of the payoff-relevant information associated with the information
structure. Blackwell (1951, 1953) referred to the induced distribution over posteriors as the
standard measure of an experiment. Not surprisingly, distributions over posteriors have
become the prevailing modeling device for information structures in economics recently, for
example, in the literatures on information design and Bayesian persuasion.

7.1.2 Comparing Information Using Distributions Over Posteriors

Definition 7.4. Given two distributions over posteriors µ1, µ2 ∈ △(△(Ω)), we say that µ1

dominates µ2 in the convex order if∫
△(Ω)

φ(p) dµ1(p) ≥
∫
△(Ω)

φ(p) dµ2(p)

for all convex functions φ : △(△(Ω)) → R.

Of course, given our focus on distributions over posteriors with finite support in this
section, we can write this condition using sums instead of integrals:∑

p∈△(Ω)

φ(p)µ1(p) ≥
∑

p∈△(Ω)

φ(p)µ2(p).

Intuitively, the convex order relates to the ex-ante expected utility in a decision problem (see
the formula in Lemma 7.2) since

φ(p) = max
a∈A

∑
ω∈Ω

u(a, ω)p(ω)
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is a convex function of p.

The following result adds a fourth condition to our previous characterization theorem for
the Blackwell information order. We only state the equivalence of our new condition with the
garbling condition on signals, but clearly via the equivalences established in Theorem 6.14,
condition (2) below is equivalent to all of the conditions listed in that theorem.

Theorem 7.5 (Blackwell (1951, 1953)). Suppose σ1 : Ω → △(S1) and σ2 : Ω → △(S2)

are two stochastic signals and fix any prior P with full support (i.e., P (ω) > 0 for all ω ∈ Ω).
The following are equivalent:

(1) σ2 is a garbling of σ1.
(2) If µ1 and µ2 are the distributions over posteriors generated by P and the signals σ1

and σ2, respectively, then µ1 dominates µ2 in the convex order.

7.2 MLR Property of Signals and Posteriors

In this section, we explore the implications of the monotone likelihood ratio property of
signals. Note that this section is not about comparing information. Rather it is focused
connecting properties of a single signal with properties of the resulting posterior beliefs
conditional on signal realizations.

Suppose Ω, S ⊆ R. Thinking of a stochastic signal σ : Ω → △(S) as a family of probability
distributions {σ(·|ω)}ω∈Ω over S that is indexed by the state ω, the MLR property is defined
just as in the previous chapters.

Definition 7.6. A signal σ : Ω → △(S) has the monotone likelihood ratio property if
ω′ > ω implies σ(·|ω′) ≥MLR σ(·|ω). More explicitly, ω′ > ω and s′ > s implies

σ(s′|ω′)σ(s|ω) ≥ σ(s|ω′)σ(s′|ω). (7.2)

If all of the terms in Equation (7.2) are strictly positive, it can of course be written as

σ(s′|ω′)

σ(s′|ω)
≥ σ(s|ω′)

σ(s|ω)
.

Lemma 7.7. Suppose Ω, S ⊆ R and the stochastic signal σ : Ω → △(S) has the monotone
likelihood ratio property. Then, for any prior P over Ω, the posterior probability distributions
over Ω have the monotone likelihood ratio property in the signal, that is, if s′ > s and
Pσ(s), Pσ(s

′) > 0 then Pσ(·|s′) ≥MLR Pσ(·|s).3
3We are restricting attentions to signal realizations s, s′ ∈ S that are reached with positive probability to
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Proof. Fix any ω′ > ω and s′ > s. Multiplying both sides of Equation (7.2) by P (ω′)P (ω)

gives
Pσ(s

′, ω′)Pσ(s, ω) ≥ Pσ(s, ω
′)Pσ(s

′, ω).

Dividing both sides by Pσ(s
′)Pσ(s) (recall that we are restricting attention to s, s′ for which

these are strictly positive) gives

Pσ(ω
′|s′)Pσ(ω|s) ≥ Pσ(ω

′|s)Pσ(ω|s′).

Thus {Pσ(·|s)}s∈S has the MLR property.

Since Pσ(·|s′) ≥MLR Pσ(·|s) implies Pσ(·|s′) ≥FOSD Pσ(·|s) (see Lemma 4.14), this result
tells us in particular that higher signal realizations lead to first-order stochastic dominance
increases in the posterior distribution over states, for every possible prior P . It turns out
that the converse is also true.

Theorem 7.8 (Milgrom (1981)). Suppose Ω, S ⊆ R, and consider a stochastic signal
σ : Ω → △(S). Then the following are equivalent:

(1) σ has the monotone likelihood ratio property.
(2) For any prior P , if s′ > s and Pσ(s), Pσ(s

′) > 0 then Pσ(·|s′) ≥FOSD Pσ(·|s).

Proof. (1) ⇒ (2): As observed already, this follows from Lemmas 7.7 and 4.14.

(2) ⇒ (1): Fix any ω′ > ω and s′ > s. Take the prior P such that P (ω) = P (ω′) = 0.5.
If Pσ(s) = 0 then it must be that σ(s|ω) = σ(s|ω′) = 0, in which case Equation (7.2) is
trivially satisfied. Likewise, if Pσ(s

′) = 0 then σ(s′|ω) = σ(s′|ω′) = 0. The remaining case
is Pσ(s), Pσ(s

′) > 0. In this case, since the support of Pσ(·|s) and Pσ(·|s′) contains only two
states, ω and ω′, condition (2) requires that Pσ(ω

′|s′) ≥ Pσ(ω
′|s) and Pσ(ω|s′) ≤ Pσ(ω|s).

Thus
Pσ(ω

′|s′)Pσ(ω|s) ≥ Pσ(ω
′|s)Pσ(ω|s′).

Multiplying both sides by Pσ(s)Pσ(s
′) gives

Pσ(ω
′, s′)Pσ(ω, s) ≥ Pσ(ω

′, s)Pσ(ω, s
′).

Dividing both sides by P (ω)P (ω′) = 1/4 gives

σ(s′|ω′)σ(s|ω) ≥ σ(s|ω′)σ(s′|ω).

This completes the proof.

ensure that the posteriors conditional these signal realizations are uniquely defined.
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