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PREFERENCE FOR FLEXIBILITY AND RANDOM CHOICE

BY DAVID S. AHN AND TODD SARVER1

We study a two-stage model where the agent has preferences over menus as in Dekel,
Lipman, and Rustichini (2001) in the first period and then makes random choices from
menus as in Gul and Pesendorfer (2006) in the second period. Both preference for
flexibility in the first period and strictly random choices in the second period can be,
respectively, rationalized by subjective state spaces. Our main result characterizes the
representation where the two state spaces align, so the agent correctly anticipates her
future choices. The joint representation uniquely identifies probabilities over subjective
states and magnitudes of utilities across states. We also characterize when the agent
completely overlooks some subjective states that realize at the point of choice.

KEYWORDS: Preference for flexibility, random choice, subjective state space, unfore-
seen contingencies.

1. INTRODUCTION

SINCE THE WORK OF KREPS (1979), the literature on menu choice interprets
a preference for flexibility as indicating anticipation of uncertain future tastes.
Suppose the agent is unsure whether she will prefer a salad or a steak for din-
ner. She may prefer to keep both options available to accommodate this un-
certainty. Kreps formally modeled this preference by considering the agent’s
choices among menus of options, where the chosen menu will be her choice
set at a future date. A preference for flexibility then corresponds to strictly pre-
ferring a restaurant that serves both options to a restaurant that serves only one
or the other. The resulting extensive literature focuses almost entirely on pref-
erences over menus, leaving implicit the agent’s actual choice at the restaurant
as part of the interpretation of the utility representation. On the other hand,
the actual choice provides some additional information regarding taste uncer-
tainty. For example, if we observe the agent always choosing steak whenever it
is available, then perhaps her anticipation of a future taste for salad was incor-
rect.

This paper addresses the correspondence between anticipated choices and
actual choices. Menu choice models largely suppress the second stage of choice
from the menu. Without loss of generality, they interpret the implied antic-
ipated choices as perfectly predictive of future decisions. Relaxing this inter-
pretation is potentially fruitful in modeling a variety of behaviors. For example,
within Kreps’s application of future taste contingencies, an inability to antici-
pate a subjective state at the time of menu choice might suggest that this state
is unforeseen. Within the application of temptation, an inability to anticipate
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future temptations might suggest a lack of sophistication. Testing a joint pre-
diction on anticipated and actual choices requires two kinds of behavioral data.
We use the preferences over menus to infer the decision maker’s anticipated
taste contingencies and use the random choice from menus to infer the taste
contingencies at the time of consumption. Specifically, we incorporate pref-
erences over menus using the framework and representation of Dekel, Lip-
man, and Rustichini (2001; henceforth DLR), who enriched Kreps’s domain of
choice from menus of deterministic alternatives to menus of lotteries. We then
incorporate the agent’s stochastic choice from menus using the framework and
random expected-utility representation of Gul and Pesendorfer (2006; hence-
forth GP).

Our main contribution characterizes when the anticipated choices align with
the actual choices. The novelty of the axioms is in their restrictions on behav-
ior across these domains. Two conditions are important. In the first, if the agent
strictly prefers adding an option p to a menu A (i.e., A ∪ {p} � A), then she
must choose p with strictly positive probability over the options in A. The in-
tuition for the second condition is converse. If p is chosen with strictly positive
probability over the options in A, then adding it makes the decision maker
strictly better off. However, there is a caveat to this intuition—the selection of
p might be due to a tie-breaking procedure. That is, the agent might be indif-
ferent between p and the other elements in A, but selects p after flipping a
coin. The second condition controls for tie-breaking: if the selection of p from
A∪ {p} is not due to tie-breaking, then A∪ {p} is strictly better than A alone.

When both conditions are satisfied, the decision maker correctly anticipates
all possible payoff contingencies. In the context of menu choice alone, DLR
(p. 894) add the following provision to their representation:

By assumption, we are representing an agent who cannot think of all (external) possibilities
with an agent who has a coherent view of all payoff possibilities. If the agent does foresee
the payoff possibilities, do we really have unforeseen contingencies? We remain agnostic
on this point. The key idea is that we have allowed for the possibility of unforeseen con-
tingencies by dropping the assumption of an exogenous state space and characterized the
agent’s subjective view of what might happen. Whether the agent actually fails to fore-
see any relevant situations is a different matter. It could be that our representation of the
agent is quite literally correct—that is, the agent does in fact foresee the set of future utility
possibilities and maximizes as in our representation.

By also considering choice from menus, we can assert a position on the agent’s
view of the possible taste contingencies. In fact, we can precisely characterize
whether the agent foresees the relevant situations and the representation is
“literally correct.” Conversely, we can also distinguish when the agent fails to
foresee a relevant situation.

Our second contribution is the unique identification of beliefs and utilities
achieved by our joint representation: the combined data are consistent only
with a single probability measure over subjective states and with a single state-
dependent expected utility function. This improves the identification within
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either the DLR model or the GP model alone. In DLR, the belief over subjec-
tive states and the magnitudes of utilities are not unique. In contrast, expected
utility models with objective states can uniquely identify beliefs and utilities.
This identification affords these models a clean separation of beliefs and tastes.
Such separation is lacking in the menu choice model. Alternative approaches
to identifying beliefs in the DLR model have also been considered. For ex-
ample, Sadowski (2010) enriched the DLR model with objective states, using
beliefs over objective states to calibrate beliefs over subjective states. Schenone
(2010) incorporated a monetary dimension to the prize space and assumed util-
ity for money is state invariant so as to identify beliefs. Krishna and Sadowski
(2011) used continuation values in a dynamic setting to pin down per-period
beliefs in a recursive representation. Our approach is different. We augment
the DLR model with random choice data, and the discipline of the choice data
delivers the improved identification.

Our final contributions are to the model of menu choice and the model of
random utility in themselves. The original representation of GP is not immedi-
ately comparable to DLR, as GP used a different state space and beliefs are de-
fined with respect to a nonstandard algebra.2 We format the GP representation
in a manner that enables a sensible direct comparison with the DLR represen-
tation. Even after suitable formatting, we need the respective state spaces to be
finite for analytical tractability. In the Supplemental Material (Ahn and Sarver
(2013)), we provide new theorems that characterize finite state space represen-
tations for both models. While related finite representation results exist for the
menu choice model, to our knowledge we are the first to identify appropriate
restrictions for the random choice setting.

Throughout the paper, we focus on the original interpretation of menu
choice offered by Kreps and refined by DLR. Formally, we assume a mono-
tonicity condition where larger menus are always weakly preferred to their sub-
sets. Monotonicity excludes applications such as temptation or regret, which
we hope to explore in future work.

2. THE MODEL

Let Z be a finite set of alternatives containing at least two elements. Let
Δ(Z) denote the set of all probability distributions on Z, endowed with the
Euclidean metric d. We generally use p�q, and r to denote arbitrary lotteries
in Δ(Z). Let A denote the set of all nonempty, finite subsets of Δ(Z), endowed
with the Hausdorff metric:

dh(A�B)= max
{

max
p∈A

min
q∈B

d(p�q)�max
q∈B

min
p∈A

d(p�q)
}
�

2Gul and Pesendorfer (2006) considered the minimal algebra on utility vectors that separates
utility vectors that have different maximizers for some menu. As a result, their algebra does not
separate a utility vector from its affine transformations.
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Elements of A are called menus, with generic menus denoted A�B, and C .
Consider an individual who makes choices in two periods. In period 1, she

chooses a menu A. In period 2, she makes a stochastic choice out of the menu
A. As a result, her behavior is represented by two primitives corresponding
to her choices in the two periods. To represent her preferences over menus
in period 1, the first primitive is a binary relation � over A. To represent her
stochastic choices in period 2, the second primitive is a function that associates
each menu with a probability distribution over its elements. To describe the
second primitive formally, we need to introduce some additional notation.

Let Δ(Δ(Z)) denote the set of all simple probability distributions on Δ(Z).
Let λA ∈ Δ(Δ(Z)) denote the individual’s random choice behavior in period
2 when facing the menu A. The term λA(B) denotes the probability that the
individual chooses a lottery in the set B ∈ A when facing menu A ∈ A. To
respect feasibility, only available lotteries can be chosen with strictly positive
probability, so λA(A)= 1 for any menu A ∈ A.

DEFINITION 1: A random choice rule (RCR) is a function λ : A → Δ(Δ(Z))
such that λA(A)= 1 for any menu A ∈ A.

Note that expected-utility functions on Δ(Z) are equivalent to vectors in
R

Z , by associating each expected-utility function with its values for sure out-
comes. The following notation will be useful in the sequel. For any menu A ∈ A
and expected-utility function u ∈ R

Z , let M(A�u) denote the maximizers of u
in A:

M(A�u)=
{
p ∈ A :u(p)= max

q∈A
u(q)

}
�

We take the pair (��λ) as primitive. In the next two subsections, we formally
introduce the DLR representation for � and the GP representation for λ.

2.1. Preference Over Menus: The DLR Representation

We will assume that preferences over menus comply with the canonical DLR
representation with a finite subjective state space.

DEFINITION 2: A DLR representation of � is a triple (S�U�μ), where S is a
finite state space, U :S×Δ(Z)→ R is a state-dependent expected-utility func-
tion, and μ is a probability distribution on S, such that the following statements
hold:

(i) A � B if and only if V (A)≥ V (B), where V : A → R is defined by

V (A)=
∑
s∈S

μ(s)max
p∈A

Us(p)�(1)



PREFERENCE FOR FLEXIBILITY AND RANDOM CHOICE 345

(ii) Nonredundancy. For any two distinct states s� s′ ∈ S, Us and U ′
s do not

represent the same von Neumann–Morgenstern (vNM) preference on Δ(Z).
(iii) Minimality. μ(s) > 0 and Us is nonconstant for all s ∈ S.

The standard interpretation of Equation (1) is the following. In period 1,
when the individual looks ahead to period 2, she anticipates that a subjective
state s ∈ S will realize. She believes that the probability of each state is given
by μ. If a particular state s ∈ S realizes, then her expected-utility function over
Δ(Z) will be Us. She also anticipates that she will make a choice out of the
menu A in period 2 after learning the realized state, selecting an alternative
in A that maximizes her utility Us conditional on each state s ∈ S. The value
V (A) in Equation (1) is her ex ante expected utility of menu A in period 1,
before learning the period 2 state.

2.2. Random Choice Rule: The GP Representation

Taking the interpretation given for the DLR representation one step further,
suppose that the individual’s subjective model (S�U�μ) about the distribution
of her second period tastes is correct. Suppose also that A is a menu such
that Us has a unique maximizer in A for each s ∈ S. Then, for any p ∈ A, the
probability that the individual chooses p from A in period 2 is the probability
of the event that Us is maximized by p in A. That is, if we let λA denote the
stochastic choices of this individual from menu A, then

λA(p)= μ
({
s ∈ S :p ∈M(A�Us)

})
�

Note that if there exists a state s for which there is more than one maxi-
mizer of Us in A, then the state-dependent utility function does not lead to a
unique choice conditional on s. Hence, the DLR representation (S�U�μ) is
not enough to determine a unique stochastic choice over the menu A. We will
follow Gul and Pesendorfer (2006) and address this problem by assuming that
in the case of indifferences, the individual uses a tie-breaking rule to chose
a lottery in M(A�Us). To formalize the notion of a tie-breaker, we need to
introduce some additional notation.

Let the set of normalized (nonconstant) expected-utility functions on Δ(Z) be

U =
{
u ∈ R

Z :
∑
z∈Z

uz = 0�
∑
z∈Z

u2
z = 1

}
�

and endow U with its relative topology in R
Z . Let BU denote the Borel σ-

algebra of U , and let Δf(U) denote the set of all finitely additive probability
measures over (U�BU). Given a state s, we will model the tie-breaking condi-
tional on s as a probability distribution τs ∈ Δf(U).3 The interpretation is that

3The modeling choice that τs is a probability distribution over normalized expected-utility
functions U instead of all expected utility functions R

Z is without loss of generality.
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the individual will choose a maximizer p ∈ M(A�Us) with the probability that
the tie-breaking distribution draws a utility function u ∈ U such that p maxi-
mizes the realized tie-breaker u on M(A�Us).

DEFINITION 3: Given a finite state space S, a tie-breaking rule for S is a func-
tion τ :S → Δf(U) satisfying the following regularity condition for all A ∈ A
and p ∈ A:

τs
({
u ∈ U :u(p) > u(q)�∀q ∈ A \ {p}})

= τs
({

u ∈ U :u(p)= max
q∈A

u(q)
})

�

The regularity condition in the above definition ensures that the tie-breaking
rule does not itself lead to ties with positive probability. The following repre-
sentation corresponds to a special case of the tie-breaker representation from
Gul and Pesendorfer (2006, Supplemental Material), where the state space is
finite.

DEFINITION 4: A GP representation of λ is a quadruple (S�U�μ�τ), where
S is a finite state space, U :S ×Δ(Z) → R is a state-dependent utility function,
μ is a probability distribution on S, and τ is a tie-breaking rule over S such that
the following statements hold:

(i) For every A ∈ A and p ∈A,

λA(p)=
∑
s∈S

μ(s)τs
({
u ∈ U :p ∈M

(
M(A�Us)�u

)})
�(2)

(ii) Nonredundancy. For any two distinct states s� s′ ∈ S, Us and U ′
s do not

represent the same vNM preference on Δ(Z).
(iii) Minimality. μ(s) > 0 and Us is nonconstant for all s ∈ S.

Equation (2) formalizes the two-stage maximization procedure described
earlier. In the event that the realized utility Us admits multiple maximizers
M(A�Us), the agent uses a tie-breaker u given by the tie-breaking distribution
τs. The total probability of choice is thus the joint probability, summed over all
possible states, of p surviving both stages: first being optimal for the realized
utility Us and then being optimal for the realized tie-breaker u.

2.3. Putting the DLR and GP Representations Together

We now introduce our desired joint representation. The decision maker has
a prior μ over a subjective state space S of taste contingencies, and U describes
the dependence of expected utilities on subjective states. It is essential that the
same state space, belief, and utilities can be used to represent both the prefer-
ence � and the random choice rule λ. In this case, the decision maker perfectly
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predicts the random choices she will make in the second stage and how much
utility these choices will provide. She correspondingly evaluates menus in the
first stage according to these correct predictions.

DEFINITION 5: A DLR-GP representation of (��λ) is a quadruple (S�U�
μ�τ), where (S�U�μ) is a DLR representation of � and (S�U�μ�τ) is a GP
representation of λ.

An arbitrary pair of menu preferences and a random choice rule will not gen-
erally admit a DLR-GP representation, even if � and λ themselves admit DLR
and GP representations, respectively. A single unified DLR-GP representation
requires that the behaviors be consistent. Specifically, some restrictions must
be placed across the DLR and the GP setting, connecting the inferences re-
garding anticipation from the menu choice stage with the inferences regarding
actualized taste contingencies from the random choice stage.

AXIOM 1: If A∪ {p} �A, then λA∪{p}(p) > 0.

Axiom 1 requires that if adding the lottery p makes a menu A more appeal-
ing, then p must have some chance of being chosen from the menu A ∪ {p}.
So, potential flexibility that she will never exercise does not leave the decision
maker any better off. This means that availability of options is welfare increas-
ing in only an instrumental sense; availability per se is not desirable.

Now consider the following condition.

AXIOM 1∗—Consequentialism: If λA = λB, then A ∼ B.

Consequentialism implies that the agent only cares about the distribution of
choices that are induced by a menu. For example, options outside the support
of λA that are never chosen are irrelevant. Some applications of menu choice
are at odds with this assumption. For example, in the model of temptation by
Gul and Pesendorfer (2001), tempting but unchosen elements can make the
agent worse off by forcing her to exert self-control.

Consequentialism relates to classic choice axioms such as independence of
irrelevant alternatives or the weak axiom of revealed preference. A standard
revealed-preference interpretation of these axioms is that the dominated or
unchosen options in a menu cannot alter the preference for or the enjoyment
of chosen options. In some environments, such as those with temptations, this
interpretation is suspect. Here, consequentialism brings this implicit hedonic
inference out in the open: the menu choice stage captures the effect of the
overall menu, and consequentialism suppresses any influence outside the di-
rect experience of choice.

PROPOSITION 1: Suppose � satisfies weak order and DLR monotonicity (i.e.,
A � B whenever A ⊂ B), and λ satisfies GP monotonicity (i.e., λA(p) ≥ λB(p)
whenever p ∈ A⊂ B). Then Axiom 1 and consequentialism are equivalent.
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In particular, since DLR monotonicity and GP monotonicity are necessary
for the assumed DLR and GP representations, consequentialism and Axiom 1
are identical in our environment.

The converse of Axiom 1 is that λA∪{p}(p) > 0 implies A∪{p} �A. In words,
if there is a chance that an option is chosen from a menu, then removing that
option leaves the decision maker strictly worse off. This condition might ap-
pear natural at first glance, but in fact is overly restrictive. It overlooks the
tie-breaking rule that adjudicates among multiple maximizers. For example,
suppose z and z′ are copies of the same object, so the decision maker will cer-
tainly be indifferent between them. That is, Us(z) = Ut(z

′) for all states s� t.
However, the tie-breaking rule τ randomizes between them whenever both
are optimal elements of the menu. In this case, z′ might be chosen from the
menu {z� z′}, but its removal leaves the decision maker no worse off since she
is indifferent between the options.

The hypothesis that λA∪{p}(p) > 0 must therefore be strengthened to ensure
that the selection of p from A ∪ {p} is not an artifact of tie-breaking. Specif-
ically, we must ensure that p is not redundant in the sense of indifference.
Given the implied continuity of the expected utility functions Us, we can test
whether p is redundant by perturbing A and p. If p is strictly preferred to
elements of A in some state s, then this preference is maintained in neighbor-
hoods about p and A. So not only is p chosen with positive probability when
added to the menu A, but any q close to p is chosen with positive probability
when added to any menu B close to A. Then the selection of p is not an ar-
tifact of the tie-breaking rule, and its addition to A leaves the decision maker
strictly better off.

AXIOM 2: For any A and p /∈ A, if there exists ε > 0 such that λB∪{q}(q) > 0
whenever d(p�q) < ε and dh(A�B) < ε, then A∪ {p} �A.

The following is our main representation result.

THEOREM 1: Suppose � has a DLR representation and λ has a GP representa-
tion. Then the pair (��λ) satisfies Axioms 1 and 2 if and only if it has a DLR-GP
representation.4

To illustrate the intuition for Theorem 1, suppose � has a DLR representa-
tion (S1�U1�μ1) and λ has a GP representation (S2�U2�μ2� τ2). The first key
step in the proof consists of showing that Axiom 1 is equivalent to the following

4Instead of assuming the preference and random choice rule, respectively, admit DLR and
GP representations, we could list the basic axioms that characterize these representations. In the
Supplemental Material, we verify that slight modifications of the original axioms from Dekel,
Lipman, and Rustichini (2001) and Gul and Pesendorfer (2006) are equivalent to our versions of
the DLR and GP representations.
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condition: For each U1
s1

in the DLR representation of �, there is a correspond-
ing U2

s2 in the GP representation of λ that is a positive affine transformation of
U1

s1
. Similarly, Axiom 2 is necessary and sufficient for each U2

s2 in the GP rep-
resentation to have a corresponding positive affine transformation U1

s1 in the
DLR representation.5 Therefore, these axioms together imply that, subject to
relabeling of the states, it is without loss of generality to assume the represen-
tations share a common state space S1 = S2 = S such that U1

s and U2
s represent

the same expected-utility preference for all s ∈ S.
To represent the RCR λ, we construct a DLR-GP representation that uses

the probability measure μ2 and tie-breaking rule τ2 from the GP repre-
sentation. Then considering the latitude permitted in the uniqueness of the
DLR representation, we can appropriately adjust the magnitudes of the state-
dependent utility functions in the DLR representation so that the correspond-
ing measure is now identical to the measure from the GP representation.
Formally, to use μ2 and represent the preference �, we need to construct
a state-dependent utility function U that satisfies μ2(s)Us(p) = μ1(s)U1

s (p)

for all p ∈ Δ(Z). In other words, we define Us(p) = μ1(s)

μ2(s)
U1

s (p). This implies
(S�U�μ2) is a DLR representation for �. Also, since each Us is an affine
transformation of U1

s , which is itself an affine transformation of U2
s , the tuple

(S�U�μ2� τ2) is a GP representation for λ. Thus, we have constructed a DLR-
GP representation for the pair (��λ). For additional details, see the complete
proof in Appendix A.3.

We now discuss the identification of beliefs and utilities in the model. By it-
self, either the DLR or the GP model leaves some feature of its representation
open to a degree of freedom. The DLR representation does not uniquely iden-
tify either the belief over subjective states or the magnitudes of utilities across
states. The nature of nonuniqueness is similar to the nonuniqueness of the
prior in the general Anscombe–Aumann expected-utility model (where utility
is permitted to be state-dependent). Preferences over menus cannot distin-
guish whether a subjective state is important because it is very likely to realize,
so μ(s) is large, or because the utilities of the options are very different in that
state, so ‖Us‖ is large.

The GP representation affords sharper identification of the belief μ over
subjective states. In the random choice model, the belief μ is unique (up to
relabeling). On the other hand, the utilities Us remain identified only up to
a state-dependent affine transformation, so there is no restriction on scalings
across states. Hence, the magnitudes of utility differences cannot be compared
across subjective states. This precludes ex ante welfare analysis, since it is not

5In other words, if we identify each subjective state with its corresponding ex post preference,
Axiom 1 ensures that the DLR state space can be embedded in the GP state space. Conversely,
Axiom 2 ensures that the GP state space can be embedded in the DLR state space.
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possible to determine whether adding a sometimes-chosen alternative at the
expense of another increases or decreases the agent’s expected utility.

By considering both models, we identify a unique belief and a unique set of
state-dependent utilities that are consistent with the joint data. As an analogy
to our approach, the standard identification of the prior over objective states
in the Anscombe–Aumann model privileges the normalization of beliefs where
utilities are constant across states. Here, we privilege the normalization of first-
stage beliefs that aligns with the statistical choices in the second stage. This
normalization is arguably even more compelling since it hinges on a physical
benchmark of observed choices, rather than an artificial benchmark such as
state independence.

THEOREM 2: Two DLR-GP representations (S1�U1�μ1� τ1) and (S2�U2�
μ2� τ2) represent the same pair (��λ) if and only if there exists a bijection
π :S1 → S2, a scalar α > 0, and a function β :S1 → R such that the following
equalities hold:

(a) U1
s1(p)= αU2

π(s1)
(p)+β(s1) for all p ∈ Δ(Z) and s1 ∈ S1.

(b) μ1(s1)= μ2(π(s1)) for all s1 ∈ S1.
(c) τ1

s1(E)= τ2
π(s1)

(E) for the set E = {u ∈ U :p ∈M(M(A�U1
s1)�u)} for every

s1 ∈ S1, A ∈ A, and p ∈A.

By considering both stages of choice, Theorem 2 provides strictly sharper
identification of the utilities and beliefs than either the DLR or GP represen-
tation alone. This is possible since the DLR-GP representation uses the same
belief and utility function to represent choice in both stages. The probability is
pinned down from the random choice data due to the uniqueness of the belief
in the GP model. And once we pin down the belief in the DLR model, the
magnitudes of utilities across states are also identified. In contrast, for either
the DLR or the GP representation in isolation, the utility Us can be trans-
formed by a state-dependent scale factor αs. The scaling is not uniform across
states, and hence neither the DLR nor the GP representation can distinguish
the differences in utilities across states. In the joint representation, the trans-
formation must be uniform across states, since α does not depend on s. Thus,
a statement such as “the additional utility for z above z′ is greater in state s
than in state t” is now meaningful. Such comparisons allow for counterfactual
comparative statics in ex post welfare, after the state is realized. For example, a
social planner can assess the welfare implications of removing an option from
a menu, even after the agent’s taste contingency is realized.

3. UNFORESEEN CONTINGENCIES

As mentioned in the Introduction, a leading motivation for studying menu
choice in general and preference for flexibility in particular is to generate a
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decision-theoretic model of unforeseen contingencies. One interpretation of
the subjective state space in the DLR representation is as the agent’s personal
view of the relevant uncertainty, summarized as payoff information, in a situa-
tion where her understanding of the world is otherwise incomplete. However,
as the quotation from DLR suggested, while the representation can accommo-
date a decision maker who rationally resolves her incomplete understanding, it
remains unclear how to test whether her understanding was in fact incomplete.

A fundamental difficulty with such an austere revealed-preference approach
is that the agent cannot reveal completely unforeseen contingencies precisely
because they are unforeseen to her. The power of the model is substantially
improved by equipping the analysis with some additional information. On the
other hand, simply assuming an exogenous “correct” state space might seem
heavy-handed and runs into the objections that motivated the subjective ap-
proach in the first place. Instead, we use actual choices from menus to allow
inference about the complete set of states. This at least allows us to verify
whether the agent anticipates all of the relevant taste contingencies.

DEFINITION 6: An unforeseen contingencies representation of (��λ) is a quin-
tuple (S�T�U�μ�τ), where S ⊆ T , (S�U |S�μ|S) is a DLR representation of �
and (T�U�μ�τ) is a GP representation of λ.

To interpret, the representation allows for the possibility that the agent over-
looks some of the relevant taste contingencies, namely those in T \ S. How-
ever, her likelihood assessments among the foreseen contingencies are con-
sistent with their actual frequencies, since the conditional probability μ|S rep-
resents her beliefs at the menu choice stage over the anticipated subjective
states in S. This representation therefore captures a specific type of unfore-
seen contingencies—completely unforeseen contingencies. The contingencies in
S are perfectly foreseen, whereas those in T \ S are completely unforeseen.6

THEOREM 3: Suppose � has a DLR representation and λ has a GP represen-
tation. Then the pair (��λ) satisfies Axiom 1 if and only if it has an unforeseen
contingencies representation.

In view of Proposition 1, consequentialism and an unforeseen contingencies
representation are equivalent.

The following result summarizes the uniqueness properties of the unfore-
seen contingencies representation. Since the subjective state spaces are not
perfectly aligned, we lose some identification for states in T \ S.

6More realistically, an agent might have a partial sense that her understanding at the menu
choice stage is incomplete, which suggests a more subtle relationship between the state spaces in
the DLR and GP representations. However, a full discussion of how to model partially unforeseen
contingencies is beyond our scope.
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THEOREM 4: Two unforeseen contingencies representations (S1�T 1�U1�μ1�
τ1) and (S2�T 2�U2�μ2� τ2) represent the same pair (��λ) if and only if there
exists a bijection π :T 1 → T 2, a scalar ᾱ > 0, and functions α :T 1 \ S1 → (0�∞)
and β :T 1 → R such that the following equalities hold:

(a) U1
s1(p)= ᾱU2

π(s1)
(p)+β(s1) for all p ∈ Δ(Z) and s1 ∈ S1, and π(S1)= S2.

(b) U1
t1
(p)= α(t1)U2

π(t1)
(p)+β(t1) for all p ∈ Δ(Z) and t1 ∈ T 1 \ S1.

(c) μ1(t1) = μ2(π(t1)) for all t1 ∈ T 1.
(d) τ1

t1
(E)= τ2

π(t1)
(E) for the set E = {u ∈ U :p ∈ M(M(A�U1

t1
)�u)} for every

t1 ∈ T 1, A ∈ A, and p ∈ A.

The identification of beliefs and utilities on S, the set of anticipated sub-
jective states, is unique. On the set T \ S of overlooked subjective states, the
probabilities are still uniquely identified by the GP stage of random choice,
but the magnitudes of utility differences are unidentified because there is no
relevant menu preference with which to compare.

One potential limitation of developing a decision-theoretic foundation for
unforeseen contingencies is the observability of the primitive. A standard crit-
icism of any exercise in the elicitation of preferences is the large number of
observations required to verify that the posited axioms are satisfied. Our appli-
cation to unforeseen contingencies arguably sharpens this criticism: the agent
should learn about a contingency after it realizes, and hence preferences over
menus may not be stationary over time. While it is important to keep this pos-
sible issue in mind when interpreting Theorems 3 and 4, this problem seems
endemic to any choice-based model of unforeseen contingencies.

On a final note, one could consider the opposite relation, where the antici-
pated state space S in the first stage is a superset of the state space T realized
at the point of choice in the second stage. Such behavior suggests a pure pref-
erence for freedom of choice, since the agent may desire additional options
that she never actually chooses.7 It is easy to show that Axiom 2 characterizes
this set containment where S ⊇ T . We leave additional analysis of the resulting
representation as a question for future work.

APPENDIX: PROOFS

A.1. A Preliminary Result

The following lemma shows that for any finite set of (nonconstant) expected-
utility functions F , there is a finite set of lotteries A such that each utility func-
tion in F has a unique maximizer in A, and, moreover, two utility functions
share the same maximizer in A if and only if they represent the same prefer-
ence over lotteries. It will be used in the proofs of both the representation and
uniqueness results.

7Barberà, Bossert, and Pattanaik (2004) nicely summarized the literature on preference for
freedom of choice.
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LEMMA 1: Fix any finite set F of nonconstant expected-utility functions on
Δ(Z).8 Then there exists A ∈ A such that the following statements hold:

(i) For each u ∈ F , there is a lottery p ∈ A such that u(p) > u(q) for all
q ∈A \ {p}.

(ii) If any two u�v ∈ F share the same maximizer in A, then they represent the
same expected-utility preference: If for some p ∈ A, u(p)≥ u(q) and v(p) ≥ v(q)
for all q ∈ A, then there exists α> 0 and β ∈ R such that u(r) = αv(r)+β for all
r ∈ Δ(Z).

PROOF: Fix any δ ∈ (0� 1
|Z|), let p̄ = ( 1

|Z| � � � � �
1

|Z|) denote the uniform distri-
bution, and let Cδ(p̄) ≡ {p ∈ Δ(Z) :‖p − p̄‖ ≤ δ}. Consider first any u ∈ U .
That is, suppose u ∈ R

Z satisfies
∑

z∈Z uz = 0 and ‖u‖ = 1. By the Cauchy–
Schwarz inequality, for any p ∈ Cδ(p̄),

u ·p = u · (p− p̄)≤ ‖u‖ · ‖p− p̄‖ ≤ δ�

with equality if and only if p− p̄ = αu for some α> 0 and ‖p− p̄‖ = δ. These
two conditions uniquely identify the lottery pu = p̄ + δu and, therefore, δ =
u(pu) > u(q) for all q ∈ Cδ(p̄) \ {pu}.9

Now consider a finite set F as in the statement of the lemma. For each u ∈ F ,
there exists a unique û ∈ U that represents the same expected-utility prefer-
ence as u. Formally, representing expected-utility functions as vectors in R

Z

and letting 1 = (1� � � � �1) denote the unit vector, the function û is given by

û=
u−

(
1

|Z|
∑
z∈Z

uz

)
1

∥∥∥∥u−
(

1
|Z|

∑
z∈Z

uz

)
1
∥∥∥∥
�(3)

By construction, û is well defined and in U for any nonconstant u ∈ R
Z , and

since û is simply an affine transformation of u, it represents the same expected-
utility preference. Therefore, take pu = p̄ + δû. By the preceding arguments
and the fact that u and û represent the same preference over lotteries, u(pu) >
u(q) for all q ∈ Cδ(p̄) \ {pu}. Define pu in this manner for each u ∈ F , and let
A = {pu :u ∈ F}. Then, for any u ∈ F , u(pu) > u(q) for all q ∈A\{pu}, proving
part (i).

For part (ii), suppose that for some u�v ∈ F and p ∈ A, u(p) ≥ u(q) and
v(p) ≥ v(q) for all q ∈ A. Then, by the definition of A, it must be that p =
pu = pv. By the definition of pu and pv, this implies u and v are both positive
affine transformations of p− p̄. Q.E.D.

8That is, F is a finite subset of {u ∈ R
Z :uz �= uz′ for some z� z′ ∈Z}.

9Note that pu ∈ Cδ(p̄). First, since
∑

z∈Z uz = 0, we have
∑

z∈Z p
u
z = ∑

z∈Z p̄z = 1. Second,
since |pu

z − p̄z| ≤ ‖pu − p̄‖ = δ < 1
|Z| , we have pu

z ≥ 0 for all z ∈Z.



354 D. S. AHN AND T. SARVER

A.2. Proof of Proposition 1

First suppose Axiom 1 holds. Let λA = λB. Let C denote the common sup-
port of these two measures. By GP monotonicity, λC = λA = λB. Enumerate
the finite set A \ C as {p1� � � � �pn}. GP monotonicity implies λC∪{p1}(C) ≥
λA(C) = 1, and hence λC∪{p1}(p1) = 0. Considering the contrapositive of Ax-
iom 1, C � C ∪ {p1}. By DLR monotonicity, this forces C ∼ C ∪ {p1}. Proceed-
ing inductively, we conclude

C ∼ C ∪ {p1} ∼ C ∪ {p1} ∪ {p2} ∼ · · · ∼ C ∪ {p1� � � � �pn} =A�

Similarly, C ∼ B. Hence A ∼ B by transitivity.
Now suppose consequentialism holds. Let λA∪{p}(p)= 0. By GP monotonic-

ity, λA∪{p} = λA. But by consequentialism, A ∪ {p} ∼ {A}, that is, it cannot be
that A∪ {p} �A. This demonstrates that Axiom 1 holds contrapositively.

A.3. Proof of Theorem 1

The following result summarizes the key implications of Axioms 1 and 2 that
will then be used to prove Theorem 1. We write U1

s1 ≈ U2
s2 to indicate that U1

s1

is a positive affine transformation of U2
s2 .

PROPOSITION 2: Suppose � has a DLR representation (S1�U1�μ1) and λ has
a GP representation (S2�U2�μ2� τ2).

(i) The pair (��λ) satisfies Axiom 1 if and only if for every s1 ∈ S1, there exists
s2 ∈ S2 such that U1

s1 ≈U2
s2 .

(ii) The pair (��λ) satisfies Axiom 2 if and only if for every s2 ∈ S2, there exists
s1 ∈ S1 such that U1

s1 ≈U2
s2 .

PROOF: Part (i)—only if. Suppose (��λ) satisfies Axiom 1. Consider the
set of utility functions F = {U1

s1 : s1 ∈ S1} ∪ {U2
s2 : s2 ∈ S2} and take A ∈ A as

described in Lemma 1. Fix any s1 ∈ S1. By part (i) of Lemma 1, there exists
p ∈ A such that U1

s1(p) > U1
s1(q) for all q ∈ A \ {p}. Therefore, the defini-

tion of the DLR representation implies A � A \ {p}, which by Axiom 1 im-
plies λA(p) > 0. By the definition of the GP representation, this requires that
U2

s2(p) = maxq∈AU2
s2(q) for some s2 ∈ S2. By part (ii) of Lemma 1, this implies

U1
s1 ≈U2

s2 .
Part (i)—if. Suppose for every s1 ∈ S1 there exists s2 ∈ S2 such that U1

s1 ≈U2
s2 .

To see that Axiom 1 is satisfied, fix any A ∈ A and p ∈ Δ(Z) such that A∪{p} �
A. Thus, U1

s1(p) > maxq∈AU1
s1(q) for some s1 ∈ S1. Take s2 ∈ S2 such that U1

s1 ≈
U2

s2 . Then U2
s2(p) > maxq∈AU2

s2(q). The definition of the GP representation
therefore implies λA∪{p}(p)≥ μ2(s2) > 0.

Part (ii)—only if. Suppose (��λ) satisfies Axiom 2. Consider the set of utility
functions F = {U1

s1 : s1 ∈ S1} ∪ {U2
s2 : s2 ∈ S2} and take A ∈ A as described in
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Lemma 1. Fix any s2 ∈ S2. By part (i) of Lemma 1, there exists p ∈ A such that
U2

s2(p) >U2
s2(q) for all q ∈ A \ {p}. Since A is finite and U2

s2 is continuous, this
implies there exists ε > 0 such that U2

s2(r) > U2
s2(q

′) whenever d(p� r) < ε and
d(q�q′) < ε for q ∈A \ {p}.

Fix any r and B such that d(p� r) < ε and dh(A \ {p}�B) < ε. Then, by the
definition of the Hausdorff metric, for any q′ ∈ B, there exists q ∈A \ {p} such
that d(q�q′) < ε. Hence, U2

s2(r) > U2
s2(q

′) for all q′ ∈ B. The definition of the
GP representation then implies λB∪{r}(r) ≥ μ2(s2) > 0. Since this is true for
any r and B satisfying d(p� r) < ε and dh(A \ {p}�B) < ε, Axiom 2 implies
A � A \ {p}. By the definition of the DLR representation, this requires that
U1

s1(p) = maxq∈AU1
s1(q) for some s1 ∈ S1. By part (ii) of Lemma 1, this implies

U1
s1 ≈ U2

s2 .
Part (ii)—if. Suppose for every s2 ∈ S2 there exists s1 ∈ S1 such that U1

s1 ≈U2
s2 .

To see that Axiom 2 is satisfied, fix any A ∈ A, p /∈ A, and ε > 0 such that
λB∪{q}(q) > 0 whenever d(p�q) < ε and dh(A�B) < ε. To show that A∪ {p} �
A, it suffices to show there exists s1 ∈ S1 such that U1

s1(p) > maxq∈AU1
s1(q).

Given the assumed relationship between the DLR and GP representations,
this can be established by showing there exists s2 ∈ S2 such that U2

s2(p) >

maxq∈AU2
s2(q).

We establish this inequality by showing there is a contradiction if U2
s2(p) ≤

maxq∈AU2
s2(q) for all s2 ∈ S2. Intuitively, if this weak inequality holds for all s2,

then p and A can be perturbed slightly to make the inequality strict for all
s2, contradicting the assumption that λB∪{q}(q) > 0 whenever d(p�q) < ε and
dh(A�B) < ε. Formally, for each s2 ∈ S2, let qs2 ∈ A be such that U2

s2(q
s2
) =

maxq∈AU2
s2(q) and let rs2 ∈ Δ(Z) be such that U2

s2(r
s2
) = maxr∈Δ(Z) U

2
s2(r). Fix

any α ∈ (0� ε/
√|Z|) and let B = A ∪ {αrs2 + (1 − α)qs2 : s2 ∈ S2}. Since for all

s2 ∈ S2,

∥∥(
αrs

2 + (1 − α)qs2) − qs2∥∥ = α
∥∥rs2 − qs2∥∥ ≤ α

√|Z| < ε�

it follows that dh(A�B) < ε. Let q = αp̄ + (1 − α)p, where p̄ = ( 1
|Z| � � � � �

1
|Z|)

denotes the uniform distribution. Then d(p�q) < ε. Since each U2
s2 is noncon-

stant, we have U2
s2(p̄) < U2

s2(r
s2
) for all s2 ∈ S2, and hence

U2
s2(q) = αU2

s2(p̄)+ (1 − α)U2
s2(p)

< αU2
s2

(
rs

2) + (1 − α)U2
s2

(
qs2)

= U2
s2

(
αrs

2 + (1 − α)qs2) = max
r∈B

U2
s2(r)�

This implies λB∪{q}(q) = 0, a contradiction. Q.E.D.
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We now move to proving Theorem 1. Suppose (��λ) has a DLR-GP rep-
resentation (S�U�μ�τ). By definition, this implies (S�U�μ) is a DLR repre-
sentation for � and (S�U�μ�τ) is a GP representation for λ. Proposition 2
therefore implies that the pair (��λ) satisfies Axioms 1 and 2.

Conversely, suppose � has a DLR representation (S1�U1�μ1) and λ has a
GP representation (S2�U2�μ2� τ2), and suppose the pair (��λ) satisfies Ax-
ioms 1 and 2. By Proposition 2, for each s1 ∈ S1, there exists s2 ∈ S2 such that
U1

s1 ≈ U2
s2 , and for each s2 ∈ S2, there exists s1 ∈ S1 such that U1

s1 ≈ U2
s2 . To-

gether with the nonredundancy assumptions in the DLR and GP representa-
tions, these conditions are sufficient for there to exist a bijection π :S1 → S2

such that U1
s1 ≈U2

π(s1)
for all s1 ∈ S2. Therefore, subject to relabeling, it is with-

out loss of generality to assume that S1 = S2 = S for some finite state space S,
and U1

s ≈ U2
s for all s ∈ S.

For each s ∈ S, define Us :Δ(Z) → R by Us(p) = μ1(s)

μ2(s)
U1

s (p) for p ∈ Δ(Z).
Since μ2(s) > 0 for all s ∈ S, these functions are well defined. Also, since
μ1(s) > 0 for all s ∈ S, each Us is nonconstant. Therefore, U inherits the nonre-
dundancy property from U1. Finally, let μ = μ2 and τ = τ2. We claim that
(S�U�μ�τ) is a DLR-GP representation for (��λ). The tuple (S�U�μ) is a
DLR representation for � since

∑
s∈S

μ(s)max
p∈A

Us(p) =
∑
s∈S

μ2(s)max
p∈A

(
μ1(s)

μ2(s)
U1

s (p)

)

=
∑
s∈S

μ1(s)max
p∈A

U1
s (p)�

The tuple (S�U�μ�τ) is a GP representation for λ since

λA(p) =
∑
s∈S

μ2(s)τ2
s

({
u ∈ U :p ∈M

(
M

(
A�U2

s

)
�u

)})

=
∑
s∈S

μ(s)τs
({
u ∈ U :p ∈ M

(
M(A�Us)�u

)})
�

where the last equality follows because Us ≈ U1
s ≈ U2

s implies M(A�Us) =
M(A�U2

s ). This completes the sufficiency part of the proof. Q.E.D.

A.4. Proof of Theorem 2

The next two propositions describe the uniqueness properties of the DLR
and GP representations, respectively. Combining the two results yields the as-
serted uniqueness properties of the DLR-GP representation.

PROPOSITION 3: Two DLR representations (S1�U1�μ1) and (S2�U2�μ2) rep-
resent the same preference if and only if there exists a bijection π :S1 → S2, a con-
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stant c > 0, and functions α :S1 → (0�∞) and β :S1 → R such that the following
equalities hold:

(a) U1
s1(p)= α(s1)U2

π(s1)
(p)+β(s1) for all p ∈ Δ(Z) and s1 ∈ S1.

(b) μ1(s1) = c
α(s1)

μ2(π(s1)) for all s1 ∈ S1.10

PROPOSITION 4: Two GP representations (S1�U1�μ1� τ1) and (S2�U2�μ2� τ2)
represent the same RCR if and only if there exists a bijection π :S1 → S2 and
functions α :S1 → (0�∞) and β :S1 → R such that the following equalities hold:

(a) U1
s1(p)= α(s1)U2

π(s1)
(p)+β(s1) for all p ∈ Δ(Z) and s1 ∈ S1.

(b) μ1(s1) = μ2(π(s1)) for all s1 ∈ S1.
(c) τ1

s1(E)= τ2
π(s1)

(E) for the set E = {u ∈ U :p ∈ M(M(A�U1
s1)�u)} for every

s1 ∈ S1, A ∈ A, and p ∈A.

Theorem 2 follows directly from Propositions 3 and 4. Briefly, the unique-
ness of the probability measure in the DLR-GP representation follows from
condition (b) of Proposition 4. Using this fact together with condition (b) of
Proposition 3 implies that the state-dependent scalar multiple α(s1) in condi-
tion (a) of Proposition 3 must in fact be constant (state-independent).

PROOF OF PROPOSITION 3: Fix two DLR representations (S1�U1�μ1) and
(S2�U2�μ2). It is easy to see that conditions (a) and (b) imply these represent
the same preference.

Conversely, suppose (S1�U1�μ1) and (S2�U2�μ2) represent the same pref-
erence. Define the set of normalized expected-utility functions U as above. For
i = 1�2 and any si ∈ Si, since Ui

si
is nonconstant, there exists ai

si
> 0, bi

si
∈ R,

and ui
si

∈ U such that Ui
si
(p) = ai

si
ui
si
(p) + bi

si
for all p ∈ Δ(Z) (see Equation

(3) for a formal description of the mapping from Ui
si

to ui
si

). Define probability
measures ηi for i = 1�2 with finite support on U by

ηi
(
ui
si

) = μi(si)ai
si

āi
� si ∈ Si�

where āi = ∑
si∈Si μ

i(si)ai
si

. Notice that for i = 1�2,

∑
si∈Si

μi
(
si

)
max
p∈A

Ui
si
(p) =

∑
si∈Si

μi
(
si

)
ai
si

max
p∈A

ui
si
(p)+

∑
si∈Si

μi
(
si

)
bi
si

= āi

∫
U

max
p∈A

u(p)ηi(du)+
∑
si∈Si

μi
(
si
)
bi
si
�

10Since μ1 and μ2 are probability measures, it follows that c = ∑
s1∈S1 α(s1)μ1(s1).
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and hence

A� B ⇐⇒
∫

U
max
p∈A

u(p)ηi(du)≥
∫

U
max
p∈B

u(p)ηi(du)�

Thus, both η1 and η2 represent � in the sense of Theorem S1 in the Sup-
plemental Material, so the uniqueness part of that theorem implies η1 = η2.
In particular, supp(η1) = supp(η2), which (together with the nonredundancy
of U1 and U2 and the strict positivity of μ1 and μ2) implies there exists a bijec-
tion π :S1 → S2 such that u1

s1 = u2
π(s1)

for all s1 ∈ S1. Thus, letting c = ā1/ā2 and
α(s1)= a1

s1/a
2
π(s1)

for s1 ∈ S1 yields condition (b):

μ1
(
s1

) = ā1

a1
s1

η1
(
u1
s1

) = ā1

a1
s1

η2
(
u2
π(s1)

)

= ā1

a1
s1

a2
π(s1)

ā2
μ2

(
π

(
s1

)) = c

α(s1)
μ2

(
π

(
s1

))
�

Letting β(s1)= b1
s1 − (a1

s1/a
2
π(s1)

)b2
π(s1)

for s1 ∈ S1 yields condition (a):

α
(
s1

)
U2

π(s1)
(p)+β

(
s1

)

= a1
s1

a2
π(s1)

[
a2
π(s1)

u2
π(s1)

(p)+ b2
π(s1)

] +
[
b1
s1 − a1

s1

a2
π(s1)

b2
π(s1)

]

= a1
s1u

1
s1(p)+ b1

s1 =U1
s1(p)� Q.E.D.

PROOF OF PROPOSITION 4: Fix two GP representations (S1�U1�μ1� τ1) and
(S2�U2�μ2� τ2). To see that conditions (a)–(c) imply that these represent the
same RCR, first note that (a) implies M(A�U1

s1)= M(A�U2
π(s1)

) for every A ∈
A and s1 ∈ S1. Therefore, by (b) and (c), for any A ∈ A and p ∈ A,

∑
s1∈S1

μ1
(
s1

)
τ1
s1

({
u ∈ U :p ∈M

(
M

(
A�U1

s1

)
�u

)})

=
∑
s1∈S1

μ2
(
π

(
s1

))
τ2
π(s1)

({
u ∈ U :p ∈ M

(
M

(
A�U1

s1

)
�u

)})

=
∑
s1∈S1

μ2
(
π

(
s1

))
τ2
π(s1)

({
u ∈ U :p ∈ M

(
M

(
A�U2

π(s1)

)
�u

)})

=
∑
s2∈S2

μ2
(
s2

)
τ2
s2

({
u ∈ U :p ∈ M

(
M

(
A�U2

s2

)
�u

)})
�

and hence both represent the same RCR.
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Conversely, suppose (S1�U1�μ1� τ1) and (S2�U2�μ2� τ2) represent the same
RCR λ. To simplify notation, we write U1

s1 ≈U2
s2 to indicate that U1

s1 is a positive
affine transformation of U2

s2 . To establish condition (a), we first show that for
every s1 ∈ S1, there exists s2 ∈ S2 such that U1

s1 ≈ U2
s2 . Consider the set of util-

ity functions F = {U1
s1 : s1 ∈ S1} ∪ {U2

s2 : s2 ∈ S2} and take A ∈ A as described in
Lemma 1. Fix any s1 ∈ S1. By part (i) of Lemma 1, there exists p ∈ A such that
U1

s1(p) > U1
s1(q) for all q ∈ A \ {p}. Therefore, M(A�U1

s1) = {p} and hence
the definition of the GP representation implies λA(p) ≥ μ1(s1) > 0. Since
(S2�U2�μ2� τ2) represents the same RCR λ, it must be that p ∈ M(A�U2

s2) for
some s2 ∈ S2. By part (ii) of Lemma 1, this implies U1

s1 ≈ U2
s2 . Since s1 was ar-

bitrary, we have established that for every s1 ∈ S1, there exists s2 ∈ S2 such that
U1

s1 ≈ U2
s2 . An identical argument shows that for every s2 ∈ S2, there exists s1 ∈

S1 such that U1
s1 ≈ U2

s2 . Given the nonredundancy requirement in the GP repre-
sentation, this is sufficient to imply there exists a bijection π :S1 → S2 and func-
tions α :S1 → (0�∞) and β :S1 → R such that U1

s1(p)= α(s1)U2
π(s1)

(p)+β(s1)

for all p ∈ Δ(Z) and s1 ∈ S1.
To establish condition (b), take A as above and fix any s1 ∈ S1. As previ-

ously argued, part (i) of Lemma 1 implies that there exists p ∈ A such that
M(A�U1

s1) = M(A�U2
π(s1)

) = {p}. Moreover, since U1
s̄1 represents a different

expected-utility preference that U1
s1 for all s̄1 �= s1, part (ii) of Lemma 1 im-

plies p /∈ M(A�U1
s̄1) = M(A�U2

π(s̄1)
) for all s̄1 �= s1. Therefore, λA(p) = μ1(s1)

and λA(p) = μ2(π(s1)). Since s1 ∈ S1 was arbitrary, conclude that μ1(s1) =
μ2(π(s1)) for all s1 ∈ S1.

To establish condition (c), again take A as above, and fix any s1 ∈ S1,
B ∈ A, and p ∈ B. As above, Lemma 1 implies there exists q ∈ A such
that M(A�U1

s1) = M(A�U2
π(s1)

) = {q} and q /∈ M(A�U1
s̄1) = M(A�U2

π(s̄1)
) for

s̄1 �= s1. For α ∈ (0�1), define Cα = (αB + (1 − α){q}) ∪ (A \ {q}). By continu-
ity, for α ∈ (0�1) sufficiently small, we have

M
(
Cα�U

1
s1

) =M
(
Cα�U

2
π(s1)

) =M
(
αB + (1 − α){q}�U1

s1

)

and

αp+ (1 − α)q /∈M
(
Cα�U

1
s̄1

) = M
(
Cα�U

2
π(s̄1)

) ∀s̄1 �= s1�

Therefore,

λCα
(
αp+ (1 − α)q

)
=

∑
s̄1∈S1

μ1
(
s̄1

)
τ1
s̄1

({
u ∈ U :αp+ (1 − α)q ∈M

(
M

(
Cα�U

1
s̄1

)
�u

)})

= μ1
(
s1

)
τ1
s1

({
u ∈ U :αp+ (1 − α)q ∈ M

(
M

(
Cα�U

1
s1

)
�u

)})
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= μ1
(
s1

)
τ1
s1

({
u ∈ U :αp+ (1 − α)q

∈ M
(
M

(
αB + (1 − α){q}�U1

s1

)
�u

)})
= μ1

(
s1

)
τ1
s1

({
u ∈ U :p ∈ M

(
M

(
B�U1

s1

)
�u

)})
�

Similarly,

λCα
(
αp+ (1 − α)q

)
= μ2

(
π

(
s1

))
τ2
π(s1)

({
u ∈ U :p ∈ M

(
M

(
B�U1

s1

)
�u

)})
�

Since μ1(s1)= μ2(π(s1)) by our previous arguments, this implies

τ1
s1

({
u ∈ U :p ∈ M

(
M

(
B�U1

s1

)
�u

)})
= τ2

π(s1)

({
u ∈ U :p ∈M

(
M

(
B�U1

s1

)
�u

)})
�

Since s1 ∈ S1, B ∈ A, and p ∈ B were arbitrary, this completes the proof.
Q.E.D.

A.5. Proof of Theorem 3

The arguments here parallel those used in the proof of Theorem 1. The
necessity of Axiom 1 follows directly from part (i) of Proposition 2.

Conversely, suppose � has a DLR representation (S1�U1�μ1) and λ has a
GP representation (S2�U2�μ2� τ2), and suppose the pair (��λ) satisfies Ax-
iom 1. By part (i) of Proposition 2, for each s1 ∈ S1, there exist s2 ∈ S2 such
that U1

s1 ≈ U2
s2 . Together with the nonredundancy assumption in the DLR rep-

resentation, this is sufficient for there to exist an injection π :S1 → S2 such that
U1

s1 ≈ U2
π(s1)

for all s1 ∈ S2. Therefore, subject to relabeling, it is without loss of
generality to assume that S1 ⊂ S2 and U1

s1 ≈U2
s1 for all s1 ∈ S1.

Let S = S1 and T = S2. For each t ∈ T \ S, define Ut :Δ(Z) → R by
Ut(p)=U2

t (p) for p ∈ Δ(Z). For each s ∈ S, define Us :Δ(Z) → R by Us(p)=
μ1(s)

μ2(s)
U1

s (p). Since μ2(s) > 0 for all s ∈ S, these functions are well defined. Also,
since μ1(s) > 0 for all s ∈ S, each Us is nonconstant. Therefore, Ut ≈ U2

t for all
t ∈ T , so U inherits the nonredundancy property from U2. Finally, let μ = μ2

and τ = τ2. We claim that (S�T�U�μ�τ) is an unforeseen contingencies rep-
resentation for (��λ). The tuple (S�U |S�μ|S) is a DLR representation for �
since

∑
s∈S

μ(s)

μ(S)
max
p∈A

Us(p) =
∑
s∈S

μ2(s)

μ2(S)
max
p∈A

(
μ1(s)

μ2(s)
U1

s (p)

)

= 1
μ2(S)

∑
s∈S

μ1(s)max
p∈A

U1
s (p)�
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The tuple (T�U�μ�τ) is a GP representation for λ since

λA(p) =
∑
t∈T

μ2(t)τ2
t

({
u ∈ U :p ∈ M

(
M

(
A�U2

t

)
�u

)})

=
∑
t∈T

μ(t)τt
({
u ∈ U :p ∈ M

(
M(A�Ut)�u

)})
�

where the last equality follows because Ut ≈ U2
t implies M(A�Ut) = M(A�

U2
t ). This completes the sufficiency part of the proof. Q.E.D.

A.6. Proof of Theorem 4

Conditions (b)–(d) follow directly from Proposition 4. Having established
the uniqueness of the probability measure, condition (a) then follows from
Proposition 3. Q.E.D.
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