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Abstract

Theorem A.1 from Appendix A of the main paper (Ahn, Iijima, Le Yaouanq,

and Sarver (2018)) is an extension of the characterization of comparative tempta-

tion aversion from Dekel and Lipman (2012): While their result required a finite

consumption space, our extension applies to any random Strotz representation de-

fined on any compact and metrizable consumption space C, provided the measure

in the representation has finite-dimensional support. As discussed in the paper, this

extension is important for a number of applications, including dynamic consump-

tion decisions where C is a set of infinite consumption streams. In this supplement,

we provide a proof of Theorem A.1.
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S.1 Proof of Theorem A.1 in the Main Paper

S.1.1 Sufficiency: more temptation averse =⇒ less u-aligned

The following is the relevant result from Dekel and Lipman (2012), which they proved

for the case of finite C.

Theorem S.1 (Dekel and Lipman (2012)). Suppose C has finite cardinality. Suppose

%1 and %2 have random Strotz representations (u, µ1) and (u, µ2). Then %2 is more

temptation averse than %1 if and only if µ1 �u µ2.

Proof. Theorem 4 in Dekel and Lipman (2012) establishes the equivalence of %2 being

more temptation averse than %1 and another condition on the representations that they

refer to as conditional dominance. However, they also establish that µ1 �u µ2 as an

intermediate step in their proof.1 The equivalence asserted in Theorem S.1 is also stated

explicitly in Theorem 4 of their working paper, Dekel and Lipman (2010).2 �

To prove the sufficiency part of Theorem A.1, we now show that the sufficiency direc-

tion in Theorem S.1 can be extended to any compact and metrizable space C and any

random Strotz representations (u, µ1) and (u, µ2) defined on that space, subject to our

restriction that each µi has finite-dimensional support. Our approach is to show that the

relationship between µ1 and µ2, specifically µ1 �u µ2, can be inferred from looking at the

restriction of the representations and preferences to a carefully chosen finite consumption

space C∗ ⊂ C.

The following preliminary result will be useful in the sequel. Recall that V denotes

the set of all continuous functions v : C → R, i.e., the set of all expected-utility functions.

Lemma S.1. Suppose the set {v1, . . . , vn} ⊂ V is linearly independent. Then there

exists a finite subset C∗ ⊂ C such that the set {v∗1, . . . , v∗n} is linearly independent, where

v∗i = vi|C∗ is the restriction of the function vi to C∗.

1To show that %2 being more temptation averse that %1 implies µ1 �u µ2, the relevant results in
Dekel and Lipman (2012) are the following: Lemma 3 shows that a partial order vCuv

′ used in their
paper is equivalent to our order v �u v

′ (ignoring their normalization of utility functions). Lemmas 4,
5, and 6 and the arguments on page 1296 show that for any set W that is closed under Cu (is a u-upper
set in our terminology), µ1(W ) ≥ µ2(W ).

2Dekel and Lipman (2010) impose a normalization on the set of utility functions used in their result.
However, by the uniqueness properties of the random Strotz representation established in Theorem 3
of Dekel and Lipman (2012), the probability of any u-upper set is the same for any random Strotz
representation of the same preference. Therefore, their normalization of utilities is inconsequential for
the result.
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Proof. Suppose to the contrary that for every finite B ⊂ C, the collection {v1|B, . . . , vn|B}
is linearly dependent. Then for any finite B ⊂ C, the set AB ⊂ Rn defined by

AB = {α ∈ Rn : ‖α‖ = 1 and α1v1(c) + · · ·+ αnvn(c) = 0 ∀c ∈ B}

is nonempty. Note that AB is also a closed subset of the unit ball in Rn, which is itself

compact because n is finite. Let B denote the set of all nonempty finite subsets of C.

For any B1, . . . , Bk ∈ B, we have

AB1 ∩ · · · ∩ ABk
= AB1∪···∪Bk

6= ∅,

since B1 ∪ · · · ∪ Bk is finite and hence also in B. Thus the collection {AB}B∈B has the

finite intersection property. Since these sets are closed subsets of a compact set, this

implies
⋂

B∈B AB 6= ∅. However, since⋂
B∈B

AB = {α ∈ Rn : ‖α‖ = 1 and α1v1(c) + · · ·+ αnvn(c) = 0 ∀c ∈ C},

this implies the set {v1, . . . , vn} is linearly dependent, a contradiction. �

Since µ1 and µ2 have finite-dimensional support, there exists a finite set of expected-

utility functions {v1, . . . , vn} ⊂ V such that supp(µi) ⊂ span({v1, . . . , vn}) for i = 1, 2.

Consider the set of function {u,1, v1, . . . , vn}, where 1 denotes the constant function

with 1(c) = 1 for all c ∈ C. Without loss of generality, assume that this set of functions

is linearly independent. Otherwise, we can sequentially remove the functions vi until

we obtain a linearly independent set.3 To simplify notation in what follows, let Vs ≡
span({u,1, v1, . . . , vn}) ⊂ V . Thus µ1(Vs) = µ2(Vs) = 1.

Take C∗ as in Lemma S.1 for the set {u,1, v1, . . . , vn}. Let V∗ denote the set of

all continuous real-valued functions on C∗ and let V∗s ≡ span({u∗,1∗, v∗1, . . . , v∗n}) ⊂ V∗,
where u∗ = u|C∗ , 1∗ = 1|C∗ , and v∗i = vi|C∗ . Note that each of the functions u∗, v∗1, . . . , v

∗
n

must be nontrivial (i.e., not constant) since function 1∗ together with these functions

forms a linearly independent set.

Lemma S.2. Define a function g : Vs → V∗s by g(v) = v|C∗, and define a measure µ∗i on

V∗ by µ∗i (E) = µi(g
−1(E)) for any measurable set E ⊂ V∗ for i = 1, 2.4

3Note that the set {u,1} must be linearly independent since u assumed to be nontrivial (i.e., not
constant). Moreover, if span{u,1} = span{u,1, v1, . . . , vn}, then the support of the measures in the
random Strotz representations (u, µi) must assign all probability to the set of affine transformations of
u. In this case, the representations reduce to time-consistent expected-utility maximization, and we have
µ1 ≈ µ2. Except in this trivial case, the linearly independent set of expected-utility functions whose
span contains the support of µi must contain u, 1, and at least some of the vi functions.

4In the definition of µ∗i , we are implicitly treating g as a function from Vs into V∗. We could
equivalently define µ∗i by µ∗i (E) = µi(g

−1(E ∩ V∗s )).
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1. The function g is a homeomorphism. That is, g is bijection and both g and its

inverse function g−1 are continuous.

2. For any measurable set E ⊂ V, µi(E) = µ∗i (g(E ∩ Vs)).

3. For any proper u-upper set U in V (i.e., U ( V), the set U∗ = g(U ∩ Vs) is a

u∗-upper set in V∗.

4. Let %∗i denote the restriction of %i to sets of lotteries with support in C∗, which we

can identify with the set K(∆(C∗)). Then (u∗, µ∗i ) is a random Strotz representation

for %∗i for i = 1, 2.

Proof. (1): This is a standard application of the fundamental theorem of linear algebra

for finite-dimensional vector spaces. Note that g is a linear function from the linear

space Vs with basis vectors {u,1, v1, . . . , vn} to the linear space V∗s with basis vectors

{u∗,1∗, v∗1, . . . , v∗n}. Since g maps each basis vector for Vs to the corresponding basis

vector for V∗s and the number of basis vectors is the same for each space, g is a bijection.

Since any linear function between finite-dimensional spaces is continuous, both g and g−1

are continuous.5

(2): Fix any measurable set E ⊂ V . Then

µi(E) = µi(E ∩ Vs) = µi(g
−1(g(E ∩ Vs))) = µ∗i (g(E ∩ Vs)),

where the first equality follows from µi(Vs) = 1, the second follows from g−1(g(E∩Vs)) =

E ∩ Vs (which holds because g is a bijection), and the third follows from the definition

of µ∗i .

(3): First observe that for any v, v′ ∈ Vs,

v ≈ v′ ⇐⇒ v = av′ + b1 for some a > 0, b ∈ R
⇐⇒ g(v) = ag(v′) + b1 for some a > 0, b ∈ R
⇐⇒ g(v) ≈ g(v′).

(S.1)

Now fix any proper u-upper set U in V , and let U∗ = g(U ∩ Vs). To see that U∗ is

a u∗-upper set, fix any v∗ ∈ U∗ and v∗′ ∈ V∗ with v∗′ �u∗ v
∗. We need to show that

v∗′ ∈ U∗. Let v = g−1(v∗) ∈ U ∩ Vs. Note that we cannot have v∗ ≈ −u∗, as this would

imply by Equation (S.1) that v ≈ g−1(−u∗) = −u, which would in turn imply by the

5A more detailed argument is as follows: Define h : Rn+2 → Vs by h(α) = α1v1+ · · ·+αnvn+αn+1u+
αn+21 and define h∗ : Rn+2 → V∗s by h∗(α) = α1v

∗
1 + · · · + αnv

∗
n + αn+1u

∗ + αn+21
∗. By the linear

independence of these sets of functions, both h and h∗ are bijections. It is trivial that both functions are
continuous, and by Aliprantis and Border (2006, Corollary 5.24) both h−1 and h∗−1 are also continuous.
Note that g = h∗ ◦ h−1 and g−1 = h ◦ h∗−1, and hence these functions are continuous.
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definition of a u-upper set that U = V , contradicting our assumption that U is a proper

subset of V . Therefore, there exists some α ∈ [0, 1] such that

v∗′ ≈ αu∗ + (1− α)v∗.

Thus there exist a > 0 and b ∈ R such that

v∗′ = aαu∗ + a(1− α)v∗ + b1∗.

Let

v′ = aαu+ a(1− α)v + b1.

Clearly v′ ∈ Vs. Moreover, since v′ �u v we have v′ ∈ U . Thus v′ ∈ U ∩Vs, which implies

v∗′ = g(v′) ∈ U∗.

(4): We can treat a lottery p ∈ ∆(C∗) as a measure defined only on the space C∗, or

we treat this as a lottery in ∆(C) that assigns probability zero to the set C \ C∗. Thus

we will abuse notation slightly and evaluate the lotteries p ∈ ∆(C∗) using both functions

in V∗ and functions in V . Note that for any v ∈ Vs, v(p) = v∗(p) for v∗ = g(v) ∈ V∗s .

Therefore, for any x ∈ K(∆(C∗)),

U∗i (x) =

∫
V∗

max
p∈Bv∗ (x)

u∗(p) dµ∗i (v
∗)

=

∫
V∗s

max
p∈Bv∗ (x)

u∗(p) d(µi ◦ g−1)(v∗) (definition of µ∗i )

=

∫
Vs

max
p∈Bg(v)(x)

u∗(p) dµi(v) (change of variables)

=

∫
Vs

max
p∈Bv(x)

u(p) dµi(v)

= Ui(x).

Thus U∗i is the restriction of Ui to K(∆(C∗)). Also, note that µ∗i is nontrivial (i.e., assigns

probability zero to the set of constant functions) since

µ∗i ({α1∗ : α ∈ R}) = µi(g
−1({α1∗ : α ∈ R})) = µi({α1 : α ∈ R}) = 0,

by the nontriviality of µi. Hence (u∗, µ∗i ) is a random Strotz representation of %∗i . �

We now prove that µ1 �u µ2. By assumption, %2 is more temptation averse than %1.

Thus for any menu x and lottery p, {p} �1 x implies {p} �2 x. This implies a fortiori

that the same condition must hold for lotteries and menus of lotteries with support in

C∗, and hence %∗2 is more temptation averse than %∗1, where %∗i is defined as in part 4
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of Lemma S.2. Since C∗ is finite and (u∗, µ∗i ) represents %∗i for i = 1, 2, Theorem S.1

implies that µ∗1 �u∗ µ
∗
2.

Now fix any u-upper set U in V . If U = V , then trivially µ1(U) = µ2(U) = 1.

Otherwise, by part 3 of Lemma S.2, g(U ∩ Vs) is a u∗-upper set in V∗ and therefore

µ1(U) = µ∗1(g(U ∩ Vs)) ≥ µ∗2(g(U ∩ Vs)) = µ2(U),

where the equalities follow from part 2 of Lemma S.2 and the inequality follows from

µ∗1 �u∗ µ
∗
2. Since this is true for any u-upper set U , conclude that µ1 �u µ2.

S.1.2 Necessity: less u-aligned =⇒ more temptation averse

In this section we prove that the more temptation averse comparative is implied by

µ1 �u µ2. It is worth noting that the proof of this direction does not rely on the

assumption that these measures have finite-dimensional support.

The following preliminary result will be useful.

Lemma S.3. Let u, v, v′ be expected-utility functions defined on ∆(C), and suppose v �u

v′. Then for any menu x,

max
p∈Bv(x)

u(p) ≥ max
q∈Bv′ (x)

u(q).

Proof. If v′ ≈ −u, then for any menu x,

max
q∈Bv′ (x)

u(q) = min
q∈x

u(q) ≤ u(p), ∀p ∈ x.

In particular,

max
q∈Bv′ (x)

u(q) ≤ max
p∈Bv(x)

u(p).

If we do not have v′ ≈ −u, then v �u v
′ implies v ≈ αu + (1− α)v′ for some α ∈ [0, 1].

First, consider α = 0. In this case, v ≈ v′. Therefore Bv(x) = Bv′(x), which implies

max
p∈Bv(x)

u(p) = max
q∈Bv′ (x)

u(q).

Finally, consider the case of α > 0. Note that for any menu x and any p ∈ Bv(x) and

q ∈ Bv′(x),

αu(p) + (1− α)v′(p) ≥ αu(q) + (1− α)v′(q) and v′(q) ≥ v′(p).
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Since α > 0, these inequalities imply u(p) ≥ u(q). Therefore,

max
p∈Bv(x)

u(p) ≥ max
q∈Bv′ (x)

u(q),

as claimed. �

Suppose (u, µ1) and (u, µ2) are random Strotz representations of %1 and %2, and

suppose µ1 �u µ2. Fix any menu x, and let [a, b] = u(x). Define fx : V → [a, b] by

fx(v) = max
p∈Bv(x)

u(p).

By Lemma S.3, v �u v
′ implies fx(v) ≥ fx(v′). Therefore, for any α ∈ [a, b] and v �u v

′,

v′ ∈ f−1x ([α, b]) ⇐⇒ fx(v′) ≥ α =⇒ fx(v) ≥ α ⇐⇒ v ∈ f−1x ([α, b]).

Thus f−1x ([α, b]) is a u-upper set. Therefore,

µ1(f
−1
x ([α, b])) ≥ µ2(f

−1
x ([α, b])).

Define distributions ηxi ≡ µi ◦ f−1x on [a, b] for i = 1, 2. By the preceding arguments, ηx1
first-order stochastically dominates ηx2 . Therefore, by the change of variables formula,

U1(x) =

∫
V
fx(v) dµ1(v) =

∫ b

a

α dηx1 (α) ≥
∫ b

a

α dηx2 (α) =

∫
V
fx(v) dµ2(v) = U2(x).

Since this is true for every x, and using the fact that U1({p}) = U2({p}) for any lottery

p, it follows immediately that %2 is more temptation averse than %1.
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