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ABSTRACT

In order for markerless augmented reality (AR) to reach its full
potential in educational settings it must be able to adapt to the wide
range of possible environments, devices and user cognitive states
that affect learning outcomes. Shared educational spaces, such as
classrooms, art galleries, museums, teaching hospitals and wildlife
centers present enticing opportunities in terms of specialized AR
applications, existing infrastructure to leverage, and large numbers
of AR sessions to gather data on. In this work we make feasible the
challenging concept of context-aware AR through the use of a ‘local
expert’, which learns the optimal configuration of AR algorithms
and virtual content for the specific educational space and use case
for which it is implemented. To compute insights from multiple
AR devices, enable timely responses to fast-changing user cognitive
states, and ensure the security of sensitive user data, we propose
an edge-computing architecture, in which storage and computation
related to our local expert is performed on a server on the same local
area network as the mobile AR devices.
Keywords: Markerless augmented reality, context-aware aug-
mented reality, edge computing.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented real-
ity; Computing methodologies—Artificial intelligence—Computer
vision—Scene understanding

1 INTRODUCTION

Education is an eminent use case for markerless augmented real-
ity (AR). The ability to display the otherwise invisible wherever
convenient for the user, to supplement a real-world view with rich
visuals and additional information, and create engaging, interactive
and memorable experiences carries huge potential for learning out-
comes. There are obvious settings where this can be implemented to
great benefit, from classrooms and museums to teaching hospitals
and wildlife centers. However, while these scenarios share much
in common, the context that the AR system is operating in can be
very different. Are we in a large gallery with white walls, an oper-
ating room with reflective surfaces, or in a forest, amongst moving
branches and shadows? Are the users focused medical students or
excitable elementary school children? Even within the same sce-
nario conditions are variable, as lighting, the number of concurrent
users, or the cognitive states of users change. Understanding the
context of an AR session is critical because it impacts both system
performance and how a user perceives virtual content; if we want to
optimize educational experiences it is essential that we understand
the impact of different conditions and can adapt accordingly.

We model the impact of context on an AR session by consid-
ering how the environment, the AR device, and the user interact
with one another, which we illustrate in Figure 1. We study these
interactions through existing fields of research, shown in dashed
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Figure 1: Our holistic model of an AR session. To produce high-
quality educational experiences we must consider how both the
environment and the user interact with the AR device and each other.

boxes. For example how the properties of the environment affect
the performance of AR device tracking requires experiments with
visual-inertial SLAM (Simultaneous Localization and Mapping);
how tracking performance impacts user experience requires studies
rooted in visual perception. What is beneficial about this holistic
view is that it allows us to appreciate that these relationships do
not exist in isolation, that the properties of the environment and the
current cognitive state of the user also play an important role in
perception. The latter can be detected on an AR device by analyzing
eye movements, facial expressions, or other physiological signals,
which we term cognitive context sensing. Furthermore, it reveals
previously unforeseen changes and feedback loops that may occur,
e.g., a highly textured environment that generates a large number
of map points may result in device heating, causing discomfort to
the user and them to produce an unusual motion, in turn reducing
the accuracy of device tracking. Only by considering the context
of an AR system as a whole can we understand and improve how it
functions in practice.

While a number of previous works have investigated context-
aware AR, these generally either focus on one aspect of session
context, for example the environment [19] or the user [15], or only
adapt specific elements of the system, such as the user interface [7],
tracking algorithm [17] or virtual content [21]. Our vision is closest
to that proposed in [5], in which a wide variety of human, envi-
ronmental and system factors inform changes to both device con-
figuration and virtual content. Furthermore, the vast majority of
current implementations are based on simple controllers, which
limits their effectiveness; as Grubert et al. [5] note in a survey of ex-
isting context-aware AR approaches “the context-controllers found
currently in context-aware AR are too simplistic to model or infer
detailed contexts”. One element of novelty in our work is to bring
greater intelligence to context-aware AR, by using machine learning
to predict the impact of different conditions. Even then however,
modeling and adapting to all possible scenarios and conditions re-
mains an extremely challenging problem. Our key insight is that



Figure 2: The edge computing-based architecture for our AR visual
environment rating system [18].

this is much more feasible for one specific location; a system which
aggregates and analyzes the data from multiple users in that space
to learn about the surrounding environment, how those users move
around, and how they engage with virtual content. The shared edu-
cational spaces we described above (schools, museums, hospitals)
are well suited to this specialized context-awareness because the
AR users in these locations are interacting with specific applications
and virtual content, and we can leverage data from large numbers of
users over extended periods of time.

One requirement for this type of context-aware AR system is
therefore the ability to store and process large amounts of data from
multiple sources. This might lead us to consider a cloud computing-
based solution. However, one issue with that is that the context
of an AR session, in particular human cognitive states and gaze,
can change rapidly, in the order of tens of milliseconds, which
requires us to respond faster than the speed of communication with a
distant server. Furthermore, there are serious privacy concerns with
sending images of the environment that may contain other users’
faces, sensitive eye movements or other biosignal data to an external
location. It is clear that a fully context-aware AR system requires
on-site storage and computation, much closer to the AR devices
themselves.

Thankfully an emerging distributed computing architecture, edge
computing, provides the answer. By placing a dedicated server on
the same local area network as the AR devices we can achieve the
low latency and security required for context-aware AR. While the
combination of AR and edge computing has been proposed before
to facilitate computation offloading (e.g., object recognition [11]),
including systems which adapt to different network conditions [12],
our work is the first to implement and test edge-supported AR which
adapts to different environments and user states. Another benefit
of working with shared educational spaces is that this architecture
is usually relatively easy to implement, because institutions like
schools, museums and hospitals often already have the necessary
infrastructure. We envision the future of education in which AR
plays a central role, and learning experiences in any given location
are constantly being optimized for the current context by a ‘local
expert’, enabled by edge computing. In our work we bring together
the necessary expertise on both AR and edge computing to study the
impact of context on educational AR experiences, and develop and
test practical implementations of context-aware AR systems.

2 METHODOLOGY

The goals of this work are to increase understanding of how the con-
text of a markerless educational AR session impacts user experiences
and learning outcomes, and to develop and test practical implemen-
tations of context-aware AR systems in real educational settings. We
will achieve this through four phases of research, outlined below.

Figure 3: The prototype of our context-aware virtual art gallery
experience on the Magic Leap One AR headset. Additional relevant
virtual content is rendered when specific user activities are detected
using eye tracking.

2.1 Effect of the environment on hologram stability
First, we have studied how the properties of the environment and
device motion affect the performance of markerless AR systems,
and in turn the appearance of virtual content. One of the key is-
sues with markerless AR is that the spatial consistency of virtual
objects relies on visual-inertial simultaneous localization and map-
ping (VI-SLAM), which is subject to errors if visual conditions or
inertial data is challenging. These VI-SLAM errors manifest as
hologram instability, which is distracting for users and reduces their
level of engagement with the application. Indeed, we conducted an
IRB-approved online Qualtrics survey of 39 AR users, and 74% of
respondents noted that hologram instability had a significant impact
on their satisfaction with markerless AR apps. In our ongoing work,
selected elements of which we demonstrated in [18], we have devel-
oped the first prediction model for hologram stability based on visual
conditions and device motion, and implemented it using an edge
computing-based architecture, shown in Figure 2. In this way we
demonstrated how the environmental context of an AR session can
be assessed, and where appropriate used to guide the user towards
better environments and experiences.

Another possibility is supplementing the environment data gath-
ered by AR devices with data from external Internet of Things (IoT)
devices, such as cameras or light sensors, enabling us to model the
characteristics of a space over time. We have already implemented
a proof of concept system for edge-based automatic environment
improvements using IoT devices (by switching on a LIFX smart bulb
when a low light level is detected by the AR device), and we will
investigate combining these ideas into a system which automatically
maintains the optimal light conditions for AR throughout the day.
In planned work which also involves examining lighting changes,
we will test how environmental conditions affect the accuracy and
latency of spatial anchor-based localization for persistent virtual
content. As well as performing quantitative measurements of spatial
consistency errors, we will conduct user studies to better understand
their subjective impact under different conditions, such as differ-
ent screen sizes, viewing distances, virtual content properties and
background textures. We have already obtained IRB approval for
studies on user perception of AR content, for both smartphones and
headsets.

2.2 Cognitive context-based content adaptation
Secondly we have explored how cognitive context sensing can be
applied to detect the current state of the user and adapt virtual con-
tent accordingly. Specifically, in a recent paper [8] and work under
review we developed eye tracking-based activity recognition for the
scenario of an art gallery or museum, gathered training data for our
activity classifier from multiple users using an IRB-approved pro-
cess, and produced a working prototype on the Magic Leap One AR
headset (shown in Figure 3). In future work we will investigate how
cognitive attributes that affect learning outcomes, such as fatigue,
mental workload and engagement can be best measured using AR



devices, informed by research from the fields of human-computer
interaction, eye tracking and psychology. For example, a variety of
eye movement measures such as blink rate have been used to predict
fatigue [22], and studies indicate that both pupil dilation [20] and
facial expressions [16] can be good indicators of cognitive work-
load. Recent work has also explored how other physiological signals
such as electrodermal activity may be captured to aid in these tasks,
while wearing a virtual reality headset [13]. We will then experi-
ment with how these attributes can be used to inform virtual content
adjustments, for example reducing the number of virtual objects
when mental workload is high, or changing the type of content when
engagement is low.

2.3 Virtual content perception in educational scenarios

Next we will research how user perception of virtual content in
educational scenarios is impacted by environment properties and
user cognitive state, and in turn how that impacts learning. This
includes both the perception of information embedded within virtual
objects, and the perception of virtual content errors such as hologram
instability. For example, we should know if the characteristics of
a virtual animal might not be seen by the user when it appears in
certain real-world spaces, or when the user is not paying attention
to the AR application, but that type of context might be useful for
hiding temporary virtual content errors. Alternatively we could
adapt the color or dynamics of a virtual body part to make it stand
out against the current background or lighting conditions, or direct
the user’s focus towards it. We will draw from existing research
on text legibility in AR with different backgrounds, including the
automatic adaptation of text color [1, 2, 14], as well as work on
quantifying and adjusting for the color blending effects in optical
see-through AR [3, 6, 10]. Our goal is to expand the types of virtual
content that is adapted, focus on educational scenarios, and consider
how optimal content configurations can be learned and stored for a
specific environment.

To this end we will conduct user studies that test context-aware
content for education-related tasks. For example we will measure
how the speed and accuracy of reading comprehension (rather than
only text legibility) is affected when text color is altered according to
the surfaces in the environment. We will test the ability to recognize
and recall shapes, anatomical or botanical features when the original
information was presented without AR, using AR content with fixed
properties, or with adaptive AR content. We will also develop a
virtual museum experience for which we can measure user engage-
ment, information retention and overall subjective experience. For
this scenario we will test optimizing content placement to minimize
user perception of hologram stability errors or latency, and changing
types of content according to the user’s current cognitive state, for
example presenting different subject matter if we detect the user is
bored or distracted.

2.4 Edge-supported testbeds in educational settings

Finally, we will implement and test these context-aware AR systems
in real educational scenarios and settings; we have and will continue
to establish partnerships with local wildlife centers, art galleries and
museums and other institutions to aid in this. These projects will
enable us to uncover and develop creative solutions for challenges
related to environmental conditions, resource-constrained mobile
devices, multiple users and limited network bandwidth. For example,
our work with Duke Lemur Center and discussions about the diffi-
culty seeing and identifying some species motivated aspects of our
collaborative image recognition system for AR [9]. We also tested
the smartphone resource consumption of highly complex 3D mod-
els such as sculptures that might appear in art gallery or museum
settings, and found that the scale and complexity of models and
the type of shadows rendered had a significant impact on CPU and
memory usage, as well as the frame rate achieved. Possible ways

to support the demands of context-aware AR, in which multiple dif-
ferent complex models may need to be provisioned, include loading
holographic content at runtime from an edge server as we presented
in [4], or offloading some or part of the rendering to the edge server.
In future we will implement full edge-supported testbeds that allow
us to capture environment, device and user data over extended peri-
ods, and conduct in-the-wild studies of context-aware educational
AR.

3 RESULTS AND FUTURE WORK

Our work will make the following contributions:

• We have designed and implemented edge-based machine learn-
ing classifiers that receive data from mobile AR devices (e.g.,
camera images, eye tracking data) and return results describing
the current environment or user context, for example whether a
space is likely to support stable holograms, or the activity a user
is performing.

• We have developed the first predictive models for visual-inertial
SLAM performance (achieving 94% accuracy in a binary classifi-
cation of error magnitude) and hologram stability from environ-
ment characteristics and device motion.

• We are currently designing an experiment to test how environment
characteristics impact the accuracy and latency of spatial anchor-
based localization for persistent virtual content scenarios.

• We will study how levels of user attention, engagement and
fatigue can be detected using device motion, face tracking and
eye tracking, and virtual content adapted accordingly.

• We will conduct user studies on the perception of virtual content
during education-related tasks, and measure how learning and
information retention is affected by virtual content configurations.

• We will implement edge computing context-aware AR systems in
at least two real-world educational scenarios, including a virtual
art gallery on campus and a wildlife center educational app, and
collect user feedback on their experiences.
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