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ABSTRACT

Mobile Augmented Reality (AR) provides immersive experiences
by aligning virtual content (holograms) with a view of the real
world. When a user places a hologram it is usually expected that
like a real object, it remains in the same place. However, positional
errors frequently occur due to inaccurate environment mapping
and device localization, to a large extent determined by the proper-
ties of natural visual features in the scene. In this demonstration
we present Scenelt, the first visual environment rating system for
mobile AR based on predictions of hologram positional error mag-
nitude. Scenelt allows users to determine if virtual content placed
in their environment will drift noticeably out of position, without
requiring them to place that content. It shows that the severity
of positional error for a given visual environment is predictable,
and that this prediction can be calculated with sufficiently high
accuracy and low latency to be useful in mobile AR applications.
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1 INTRODUCTION

Over the past few years, mobile augmented reality (AR) apps that
do not require images or fiducial markers to position virtual content
have increasingly become standard, enabled by platforms such as
Google’s ARCore [6] and Apple’s ARKit [1]. However, these mark-
erless AR apps rely on natural visual features in the environment
that can be mapped and tracked accurately, which is not always
the case. Errors resulting from inaccurate tracking cause virtual
content (holograms) to be rendered at a different location in the
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Figure 1: Hologram drift examples in commercial AR
(ARK:it, iPhone 11, iOS 13.1.3, "Avo!" application)

real world from where they were originally placed, often termed
drift. Examples of hologram drift in the commercial AR app ‘Avo!’
are shown in Figure 1. These errors can degrade a user’s subjective
experience and her task performance in AR.

In modern mobile AR, accurate environment mapping and device
localization is dependent on Visual-Inertial SLAM (Simultaneous Lo-
calization and Mapping) [7]. The more conducive visual input data
are to accurate Visual-Inertial SLAM pose estimation, the lower the
resulting drift. Our goal is to guide users, developers and designers
of spaces that host AR toward optimal experiences, by determining
and detecting the conditions that cause virtual content positional
errors. Though this is a known issue in AR, recent works only
quantify either drift [9, 16] or environmental characteristics [2],
not both. ARKit and ARCore can identify unfavorable conditions
based on whether tracking results are unavailable or questionable,
along with possible high-level causes, but these solutions lack the
granularity required to guide users toward more suitable visual en-
vironments. Our work is the first to formally examine the relationship
between visual scene characteristics and drift magnitude.

In this demo we present Scenelt, an edge-based visual envi-
ronment rating system for mobile AR, based on predictions of
hologram positional error magnitude. An illustration of Scenelt is
shown in Figure 2. Unlike existing commercial solutions that iden-
tify challenging environments using simple indicators (e.g., light
level, number of feature points), Scenelt uses a set of custom scene
characterization metrics, and takes into account the complex inter-
actions between scene properties. As well as detecting conditions
known to cause severe degradation or loss of tracking, it demon-
strates how more subtle cases can be identified; in which sufficient
visual features are detected, but feature mismatching is likely to
occur. The nature of the design supports future work on automatic
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Figure 2: Scenelt in action: examples of good (left) and bad
(right) scene quality ratings.

improvements to AR environments, and the consideration of other
factors which affect quality of experience in AR.

2 SYSTEM DESIGN

An overview of the Scenelt system architecture is shown in Figure 3.
We implement an edge computing-based architecture to serve on-
line predictions. This architecture allows us to calculate the visual
scene characterization metrics required for accurate drift predic-
tion, a task which is too computationally expensive to perform on
a smartphone.

We identify three key sources of data in an AR application that
may be used to characterize a visual scene: the RGB images from
the rear-facing camera, the point cloud generated by the AR plat-
form, and additional data supplied by the AR platform (e.g., light
estimation, plane detection). These data are captured within the
AR application, converted to JSON format, and transferred over
a one-hop wireless local area network connection via an HTTP
POST request (constructed using a UnityWebRequest). The request
is received and handled on the edge server by a high performance
Python web framework, FastAPI [4]. This converts the data into
Python objects, from which our scene characterization metrics
(detailed below) can be computed.

RGB Image Properties. At the lowest level, we can extract informa-
tion from the overall distribution of pixel values about light level
and the distinguishable elements of a scene (Img. Brightness,
Img. Brightness RSD (Relative Standard Deviation), Contrast,
Entropy [14]). However, we should also take into account the spa-
tial organization of those pixel values (Spatial Information [19],
Laplacian Variance [5], Corners [13]). A more complex image is
generally beneficial, but this complexity should relate to discernable
features rather than chaos, measured using gradient orientation en-
tropy (GO Entropy [17]). More sophisticated image processing can
also recognize situations likely to cause pose estimation errors; we
identify repetitive textures using gradient orientation self similarity
(GO SelfSim [10]), bright, transient spots of light (Specular High-
lights [8]), metal or glass household objects that cause reflections
(Challenging Objects [11]), and mirrors (Mirrors [18]).
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Figure 3: Scenelt system architecture: Data collected about
the visual environment is sent from the AR app to the edge
server. Scenelt calculates scene characterization metrics and
the hologram drift prediction result, and the user can be no-
tified with check and cross symbols, updated plane coloring
or sound effects.

Point Cloud Properties. Next, we can extract information from
the 3D point cloud generated by the AR platform while mapping
the scene. From this we calculate Feature Point Count, Feature
Point Density, Mean Depth, Feature Point Proximity, and how
evenly distributed the points are across the mapped space (Spatial
Heterogeneity [12]). We hypothesize that dense, evenly spread
point clouds, with higher numbers of points and a low mean depth
will decrease drift, and vice versa.

AR Platform Data. Finally, the AR platform itself (e.g., ARCore,
ARKit) may provide useful data on light estimation and detected
planes. We can extract measures of light level (Brightness) and
appearance (Color Temperature), extreme values of either we
expect to indicate challenging conditions. Estimates of Main Light
Intensity and Light Direction are sometimes provided; a high
horizontal component of the light direction vector, combined with
high light intensity, may result in shadows and dynamic (unreliable)
feature points. More planes (Plane Count) should aid accurate
positional tracking, but a window (Window Count, ARKit only)
may impede it, as the feature points within that plane are often
unreliable.

Drift Prediction Algorithm. To inform the design of our drift pre-
diction algorithm we developed a custom AR app for both ARKit
and ARCore (using Unity’s AR Foundation framework [15]), that
can gather scene data and measure drift. Keeping device move-
ment as similar as possible across trials, we collected data for 141
diverse scenes in 13 rooms (6.6m%-40.4m?), in 6 residential or of-
fice buildings, using both ARCore and ARKit. Drawing inspiration
from indoor datasets such as Matterport3D [3], we constructed
a wide range of conditions, including a flashlight-lit basement, a
brick accent wall, and a living room at sunset. ARKit scenes were
captured using an iPhone 11 and ARCore scenes using a Google
Pixel 3a or Nokia 7.1. We observe that for normal indoor conditions
drift magnitude is determined by a complex interaction between scene
properties, rather than a single metric such as brightness or feature
point count.

Due to this complex interaction between variables, we use ma-
chine learning to predict the amount of drift in a scene. To meet our
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end goal of interpretability (to inform users how to improve their
scenes) with a limited number of data points, we use a decision
tree. For data gathered on ARKit, we train a binary classifier using
scikit-learn, to predict if a scene is ‘Good’ (drift < 3cm) or ‘Bad’
(drift > 3cm). This classification boundary is based on both the
distribution of drift values and our own observations on how drift
magnitude impacts user experience. We use an 80/20 train/test split
and to limit overfitting set the max tree depth to 5. We achieve
82.6% accuracy and an F1 score of 82.4% for our classifier. Future
work will include more sophisticated feature selection techniques
to gain further insights and improve performance.

Once Scenelt has calculated the prediction result, FastAPI returns
the result to the app via an HTTP RESPONSE over the same wireless
connection, and the app user interface is updated accordingly. Over
10 trials in unseen visual environments (not part of our dataset), we
classify 8 correctly and achieve a mean end-to-end system latency
of 1.74 seconds.

3 INTERACTIVE DEMONSTRATION

The demonstration utilizes the same architecture as in Figure 3.
It is performed using an iPhone 11 running iOS 13.1.3 and ARKit
3, and an AR application built with Unity 2019.3.9f1. Scenelt runs
on a high-end desktop computer with an Intel i7-9000 3GHz CPU
and Intel UHD Graphics 630 GPU. A video of the demonstration is
available online.!

As the user moves around, ARKit generates a map of the en-
vironment in the form of a sparse 3D point cloud. When a plane
is detected in the environment, it is represented by a transparent
hologram with a black border. The presence of a plane allows the
user to attach a hologram to the real-world surface. When the user
presses the ‘Rate Scene’ button, the application captures the cur-
rent RGB camera image and the point cloud, as well as the lighting
estimation and plane detection data gathered by ARKit.

These data are transferred to the edge server, and Scenelt calcu-
lates the prediction result based on these inputs. For subsequent
rating requests the image- and lighting-based metrics are averaged
across the session, while the most recent point cloud and plane de-
tection data are used each time. If Scenelt returns a positive rating
to the app (indicating a prediction of low drift), the AR applica-
tion user interface is updated to show a green check symbol. The
user can then place their virtual content (in the demo a Mondrian
painting) on the plane using the ‘Place Hologram’ button, with
confidence that it will not move significantly out of position.

On the other hand, if Scenelt returns a negative rating, the user
interface is updated to show a red cross symbol. This indicates that

HotMobile *21, February 24-26, 2021, Virtual, United Kingdom

drift of 3cm or over is predicted to occur, and if the user places the
hologram at this time then this can be observed. In future work
we plan to instruct the user how to improve the quality of a bad
scene, or automatically do so using IoT devices available in the
environment, to adjust lighting conditions or display additional
textures.

Uhttps://sites.duke.edu/timscargill/sceneit- prototype/
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