## Problem Set \#9 Solutions

1. A function $f$ is given on the interval $[-\pi, \pi]$ and $f$ is periodic with period $2 \pi$. For each of the function below -
(a) Find the Fourier coefficients of $f$.
(b) Find the Fourier series of $f$.
(c) For what values of $x$ is $f(x)$ equal to its Fourier series?
(1) $f(x)=x^{2}$

Solution: $a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\left.\frac{1}{2 \pi} \cdot \frac{x^{3}}{\pi}\right|_{-\pi} ^{\pi}=\frac{\pi^{2}}{3}$. For $n \geq 1, a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos n x d x$, by integration by parts, this integral is $\frac{1}{\pi} \cdot \frac{4 \pi \cos (n \pi)}{n^{2}}=\left\{\begin{array}{ll}\frac{4}{n^{2}} & \text { if } n \text { even } \\ -\frac{4}{n^{2}} & \text { if } n \text { odd }\end{array} . b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin n x d x=0\right.$ since $x^{2}$ is an even function. Therefore $f(x)=\frac{\pi^{2}}{3}-4 \cos (x)+\cos (2 x)-\frac{4}{9} \cos (3)+\cdots=\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty} \frac{(-1)^{k+1} 4 \cos (k x)}{n^{2}}$. $f(x)$ is continuous for all $x$, thus $f(x)$ is equal to its Fourier series for all $x$.
(2) $f(x)= \begin{cases}0 & \text { if }-\pi \leq x<0 \\ \cos x & \text { if } 0 \leq x<\pi\end{cases}$

Solution: $a_{0}=\frac{1}{2 \pi} \cdot 0+\frac{1}{2 \pi} \int_{0}^{\pi} \cos x d x=0$. For $n \geq 1, a_{n}=0+\frac{1}{\pi} \int_{0}^{\pi} \cos x \cos n x d x=\left\{\begin{array}{ll}0 & \text { if } n>1 \\ \frac{1}{2} & \text { if } n=1\end{array}\right.$. $b_{n}=0+\frac{1}{\pi} \int_{0}^{\pi} \cos x \sin n x d x=\left\{\begin{array}{ll}0 & \text { if } n=1 \\ \frac{-n \cos (n-1) \pi+n}{n^{2}-1} & \text { if } n>1\end{array}=\left\{\begin{array}{ll}0 & \text { if } n \text { odd } \\ \frac{2 n}{n^{2}-1} & \text { if } n \text { even }\end{array}\right.\right.$. There $f(x)=\frac{1}{2} \cos (x)+\frac{4}{3} \sin (2 x)+\frac{8}{15} \sin (4 x)+\cdots=\frac{1}{2} \cos (x)+\sum_{k=1}^{\infty} \frac{4 k}{4 k^{2}-1} \sin (2 k x) . f(x)$ is equal to its Fourier series except at points $\{\cdots,-4 \pi,-2 \pi, 0,2 \pi, 4 \pi, \cdots\}$.
(3) $f(x)= \begin{cases}-1 & \text { if }-\pi \leq x<-\frac{\pi}{2} \\ 1 & \text { if }-\frac{\pi}{2} \leq x<0 \\ 0 & \text { if } 0 \leq x<\pi\end{cases}$

Solution: $a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{-\frac{\pi}{2}}-1 d x+\frac{1}{2 \pi} \int_{-\frac{\pi}{2}}^{0} 1 d x+0=0$. For $n \geq 1, a_{n}=\frac{1}{\pi} \int_{-\pi}^{-\frac{\pi}{2}}-\cos n x d x+$ $\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{0} \cos n x d x+0=\frac{1}{\pi} \cdot \frac{\sin \frac{n \pi}{2}}{n}+\frac{1}{\pi} \cdot \frac{\sin \frac{n \pi}{2}}{n}=\frac{2 \sin \frac{n \pi}{2}}{n \pi}= \begin{cases}0 & \text { if } n \text { even } \\ \frac{2}{n \pi} & \text { if } n=4 k-3 \text { for } k=1,2,3 \cdots, b_{n}= \\ -\frac{2}{n \pi} & \text { if } n=4 k-1\end{cases}$ $\frac{1}{\pi} \int_{-\pi}^{-\frac{\pi}{2}}-\sin n x d x+\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{0} \sin n x d x+0=\frac{1}{\pi} \cdot \frac{\cos \frac{n \pi}{2}-\cos n \pi}{n}+\frac{1}{\pi} \cdot \frac{\cos \frac{n \pi}{2}-1}{n}=\frac{2 \cos \frac{n \pi}{2}-\cos n \pi-1}{n \pi}=$ $\left\{\begin{array}{ll}0 & \text { if } n \text { odd } \\ 0 & \text { if } n=4 k \\ -\frac{4}{n \pi} & \text { if } n=4 k-2\end{array}\right.$ for $k=1,2,3 \cdots$. Therefore $f(x)=\frac{2}{\pi} \cos x-\frac{2}{3 \pi} \cos 3 x+\frac{2}{5 \pi} \cos 5 x-\frac{2}{7 \pi} \cos 7 x+$ $\cdots-\frac{4}{2 \pi} \sin 2 x-\frac{4}{6 \pi} \sin 6 x-\frac{4}{10 \pi} \sin 10 x-\cdots=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} 2}{(2 k-1) \pi} \cos (2 k-1) x-\frac{4}{(4 k-2) \pi} \sin (4 k-2) x$. $f(x)$ is equal to its Fourier series except at points $\left\{-\pi \pm 2 k \pi,-\frac{\pi}{2} \pm 2 k \pi, \pm 2 k \pi\right\}$ where $k=0,1,2, \cdots$ are the integers.
2. Let $f(x)$ be a function defined on $[-\pi, \pi]$. We define the even part of $f$ to be the function

$$
f_{e}(x):=\frac{f(x)+f(-x)}{2}
$$

Similarly, we define the odd part of $f$ to be the function

$$
f_{o}(x):=\frac{f(x)-f(-x)}{2}
$$

(a) Show that $f(x)=f_{o}(x)+f_{e}(x)$.

Solution: We have

$$
f_{o}(x)+f_{e}(x)=\frac{f(x)-f(-x)}{2}+\frac{f(x)+f(-x)}{2}=f(x)
$$

(b) Show that $f_{e}(x)$ is an even function, and that $f_{o}(x)$ is an odd function.

Solution: We have

$$
f_{e}(-x)=\frac{f(-x)+f(-(-x))}{2}=f_{e}(x)
$$

so $f_{e}(x)$ is even. On the other hand,

$$
f_{o}(-x)=\frac{f(-x)-f(-(-x))}{2}=-\frac{f(x)-f(-x)}{2}=-f_{o}(x),
$$

and so $f_{o}(x)$ is odd.
(c) Use substitution to show that

$$
\int_{-\pi}^{\pi} f(x) \sin (k x) d x=-\int_{-\pi}^{\pi} f(-x) \sin (k x) d x
$$

Solution: Apply substitution $u=-x$ to get

$$
\int_{-\pi}^{\pi} f(-x) \sin (k x) d x=\int_{\pi}^{-\pi} f(u) \sin (-k u)(-d u)=-\int_{-\pi}^{\pi} f(u) \sin (k u) d u .
$$

Since the above are all definite integrals, the variable $u$ on the righthand side is a dummy variable, and we can replace it with $x$ to get the desired equality.
(d) Suppose the Fourier series for $f(x)$ is $a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k x)+\sum_{k=1}^{\infty} b_{k} \sin (k x)$. Show that the Fourier series for $f_{o}(x)$ is

$$
\sum_{k=1}^{\infty} b_{k} \sin (k x)
$$

That is, if $\tilde{a}_{k}, \tilde{b}_{k}$ denote the Fourier coefficients of $f_{o}(x)$, show that $\tilde{b}_{k}=b_{k}$, and that $\tilde{a}_{k}=0$.
Solution: Since $f_{o}(x)$ is odd, we have that $\tilde{a}_{k}=0$ for all $k$. On the other hand, we have that the coefficients $\tilde{b}_{k}$ are given by

$$
\begin{aligned}
\tilde{b}_{k} & =\int_{-\pi}^{\pi} f_{o}(x) \sin (k x) d x \\
& =\int_{-\pi}^{\pi} \frac{f(x)-f(-x)}{2} \sin (k x) d x \\
& =\frac{1}{2}\left(\int_{-\pi}^{\pi} f(x) \sin (k x) d x-\int_{-\pi}^{\pi} f(-x) \sin (k x) d x\right) \\
& =\int_{-\pi}^{\pi} f(x) \sin (k x) d x \\
& =b_{k}
\end{aligned}
$$

As an exercise (not to be handed in), you can also show that the Fourier series of $f_{a}(x)$ is $a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k x)$.
3. (a) $y=\sin \left(x^{2}\right), y^{\prime}=2 x \cos \left(x^{2}\right)$. Thus

$$
\begin{aligned}
\left(y^{\prime}\right)^{2}+4 x^{2} y^{2} & =\left(2 x \cos \left(x^{2}\right)\right)^{2}+4 x^{2}\left(\sin \left(x^{2}\right)\right)^{2} \\
& =4 x^{2}\left(\cos ^{2}\left(x^{2}\right)+\sin ^{2}\left(x^{2}\right)\right) \\
& =4 x^{2}
\end{aligned}
$$

(b) i. $\sin (\pi y)=0$ implies $y=k \pi, k \in \mathbb{Z}$.
ii. $y^{3}-3 y^{2}+3 y-1=0$ implies $(y-1)^{3}=0$. So the equilibrium solutions are $y=1$.
iii. $e^{y}-1=0$ implies $y=\ln 1=0$.
iv. No equilibrium solutions.
(c) Plug in $y=e^{k x}$, we have $2 k^{2} e^{k x}+3 k e^{k x}+e^{k x}=0$, i.e. $\left(2 k^{2}+3 k+1\right) e^{k x}=0$. Thus $2 k^{2}+3 k+1=0$, $k=-1 / 2$ or -1 .
4. (a) Directly check $\frac{d C e^{\epsilon x}}{d x}=\epsilon C e^{\epsilon x}$
(b) Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$, plug in the equation we will find $\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty} \epsilon a_{n} x^{n}$, so $a_{n}=a_{n-1} \epsilon / n$, then $y=\sum_{n=0}^{\infty} a_{0} \frac{(\epsilon x)^{n}}{n!}=a_{0} e^{\epsilon t}$. Let $C=a_{0}$ and we get the same answer as (a).
(c) as $\epsilon \rightarrow 0$, the solution become $y=C$, which is the solution to $\frac{d y}{d x}=0$
5. (a) Show that

$$
\int_{-\pi}^{\pi} e^{x} \sin (k x) d x=(-1)^{k+1} \frac{k}{1+k^{2}}\left(e^{\pi}-e^{-\pi}\right)
$$

Solution: By integration by parts with $u=\sin (k x)$ and $d v=e^{x} d x$, we have

$$
\int_{-\pi}^{\pi} e^{x} \sin (k x) d x=\left[e^{x} \sin (k x)\right]_{-\pi}^{\pi}-k \int_{-\pi}^{\pi} e^{x} \cos (k x) d x .
$$

Note that $\left[e^{x} \sin (k x)\right]_{-\pi}^{\pi}=0$. To evaluate the integral on the righthand side, we use integration by parts with $u=\cos (k x)$ and $d v=e^{x} d x$, we have

$$
-k \int_{-\pi}^{\pi} e^{x} \cos (k x) d x=\left[-k e^{x} \cos (k x)\right]_{-\pi}^{\pi}-k^{2} \int_{-\pi}^{\pi} e^{k} \sin (k x) d x .
$$

Now,

$$
\left[-k e^{x} \cos (k x)\right]_{-\pi}^{\pi}=-k e^{\pi} \cos (k \pi)+k e^{-\pi} \cos (-k \pi)=(-1)^{k+1} k\left(e^{\pi}-e^{-\pi}\right)
$$

Adding $k^{2} \int_{-\pi}^{\pi} e^{x} \sin (k x) d x$ to both sides gives

$$
\left(1+k^{2}\right) \int_{-\pi}^{\pi} e^{x} \sin (k x) d x=(-1)^{k+1} k\left(e^{\pi}-e^{-\pi}\right) .
$$

Dividing both sides by $\left(1+k^{2}\right)$ gives the result.
(b) We define the hyperbolic sine function to be the odd part of $e^{x}$, as in Question 2:

$$
\sinh x:=\frac{e^{x}-e^{-x}}{2} .
$$

Using your answers for Question 2, and for part (a) of this question, write down the Fourier series $F(x)$ for $\sinh x$.
Solution: From part (a), the coefficients $b_{k}$ of the Fourier series for $e^{x}$ is $(-1)^{k+1} \frac{k}{1+k^{2}}\left(e^{\pi}-e^{-\pi}\right)$. Question 2 then gives the Fourier coefficients for the odd part of $e^{x}$ as $a_{k}=0$ and $b_{k}$ as for $e^{x}$. That is,

$$
F(x)=\sum_{k=1}^{\infty} \frac{k}{1+k^{2}}\left(e^{\pi}-e^{-\pi}\right) \sin (k x) .
$$

(c) Evaluate the following:
i. $F(200 \pi)$

Solution: By $2 \pi$-periodicity,

$$
F(200 \pi)=F(0)
$$

Since $\sinh (x)$ is continuous at 0 , we have $F(x)=\sinh (0)=0$ by the Fourier Convergence Theorem. ii. $F(201 \pi)$

Solution: By $2 \pi$-periodicity,

$$
F(201 \pi)=F(\pi)
$$

At the end points of the interval $[-\pi, \pi]$, we have that $\sinh (x)$ (extended $2 \pi$-periodically) is discontinuous. So by the Fourier Convergence Theorem,

$$
F(\pi)=\frac{1}{2}\left(\lim _{x \rightarrow \pi^{-}} f(x)+\lim _{x \rightarrow \pi^{+}} f(x)\right)=\frac{1}{2}\left(\frac{e^{\pi}-e^{-\pi}}{2}+\frac{e^{-\pi}-e^{\pi}}{2}\right)=0
$$

iii. $F(200 \pi+1)$

Solution: By $2 \pi$-periodicity,

$$
F(200 \pi+1)=F(1)
$$

Since $f(x)$ is continuous at 1 , we have that $F(1)=f(1)=\frac{e^{1}-e^{-1}}{2}$.
(Hint: Use the Fourier Convergence Theorem and $2 \pi$-periodicity of the Fourier series.)

