Problem Set #9 Solutions

1. A function f is given on the interval [—m, 7] and f is periodic with period 27. For each of the function below -

(a) Find the Fourier coefficients of f.
(b) Find the Fourier series of f.
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¢) For what values of x is f(x) equal to its Fourier series?
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f(x) is equal to its Fourier series except at points {—ﬂ' + 2k, —5 + 2km, +2k7} where k =0,1,2,--- are

the integers.
2. Let f(x) be a function defined on [—7,7]. We define the even part of f to be the function

f(@) + f(=2)

fe(z) := 5



Similarly, we define the odd part of f to be the function

f(z) = f(==)

folz) == 5

(a) Show that f(z) = fo(x) + fe(z).
Solution: We have
o)+ ) = LI S )y
(b) Show that f.(z) is an even function, and that f,(x) is an odd function.

Solution: We have
f(=2) + f(=(-2))
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fe(=2) =
so fe(z) is even. On the other hand,

= fe()

and so f,(z) is odd.
(c¢) Use substitution to show that
f(z)sin(kz) dz = —/ f(—x)sin(kx) dz.

Solution: Apply substitution © = —x to get

i f(—z)sin(kx) dx = B f(w) sin(—ku)(—du) = — i f(w) sin(ku) du.
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Since the above are all definite integrals, the variable w on the righthand side is a dummy variable, and
we can replace it with x to get the desired equality.
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(d) Suppose the Fourier series for f(x) is ag + Z ay, cos(kx) + Z by sin(kx). Show that the Fourier series for
k=1 k=1
folx) is

Z by sin(kx).
k=1

That is, if a, b, denote the Fourier coefficients of fo(x), show that b = br, and that a; = 0.
Solution: Since f,(z) is odd, we have that ax = 0 for all k. On the other hand, we have that the
coefficients by are given by

by = fo(z) sin(kzx) dzx

= ! M sin(kx) dx
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= % ( : f(x)sin(kx) de — : f(—z)sin(kx) dx>
_ /_ 7; f(x) sin(kz) do
= by.
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As an exercise (not to be handed in), you can also show that the Fourier series of f, () is aﬁ—Z ay, cos(kx).
k=1

3. (a) y =sin(x?), y' = 22 cos(2?). Thus
(v )? + 42y = (2z cos(x?))? + 422 (sin(z?))?
= 42%(cos®(2?) + sin?(z?))

= 422
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i. sin(wy) = 0 implies y = km, k € Z.
ii. 4> —3y? + 3y — 1 = 0 implies (y — 1)3 = 0. So the equilibrium solutions are y = 1.
iii. ¢ —1 =0 implies y =In1 = 0.
iv. No equilibrium solutions.
Plug in y = €, we have 2k%e*® + 3kek® 4 e = 0, ie. (2k% + 3k + 1) = 0. Thus 2k? + 3k +1 =0,
k=-1/2o0r —1.
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Directly check dCe

=eCe™
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Let y = Zana:", plug in the equation we will find Znanx"_l = Z €anx”, S0 ap, = anp—_1€/n, then
n=0 n=1 n=0
e n
y = Z ag (EZ') = ape. Let C' = ag and we get the same answer as (a).
n=0

d
as € — 0, the solution become y = C,which is the solution to d—y =0

Show that

/ e’ sin(kz) dx = (—1)16"’11!(;7]4:2(67r —e M)

Solution: By integration by parts with « = sin(kx) and dv = e* dx, we have

s

/ e’ sin(kx) dx = [e” sin(kz)|" . — k/ e’ cos(kx) dux.
Note that [e” sin(kz)]” .. = 0. To evaluate the integral on the righthand side, we use integration by parts
with u = cos(kz) and dv = €” dzx, we have

—k/ e” cos(kx) dx = [—ke® cos(kx)]™ . — k2/ ek sin(kx) de.
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Now,
[—ke® cos(kz)]™ . = —ke™ cos(km) + ke~ ™ cos(—km) = (=1)FF k(e — e ™)

Adding k2/ e’ sin(kx) dx to both sides gives

—T

(1+k?) /Tf e® sin(kx) dr = (—1)F 1 k(e™ —e™™).
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Dividing both sides by (1 + k?) gives the result.
We define the hyperbolic sine function to be the odd part of e*, as in Question 2:

sinhx :=
2
Using your answers for Question 2, and for part (a) of this question, write down the Fourier series F'(z)

for sinh x.
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Question 2 then gives the Fourier coefficients for the odd part of e” as ay = 0 and by, as for e”. That is,

Solution: From part (a), the coefficients by, of the Fourier series for e® is (—1)+!

F(z) = ]; T ka (e — e ™) sin(kx).

Evaluate the following:



i. F(200r)
Solution: By 27-periodicity,
F(2007) = F(0)
Since sinh(z) is continuous at 0, we have F'(z) = sinh(0) = 0 by the Fourier Convergence Theorem.
ii. F(2017)
Solution: By 2w-periodicity,
F(2017) = F(m).
At the end points of the interval [—7, 7|, we have that sinh(z) (extended 2w-periodically) is discon-
tinuous. So by the Fourier Convergence Theorem,
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iii. F(200m + 1)

Solution: By 27-periodicity,

F(200m + 1) = F(1).
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(Hint: Use the Fourier Convergence Theorem and 2m-periodicity of the Fourier series.)

Since f(z) is continuous at 1, we have that F(1) = f(1) =



