Problem Set #9 Solutions

- 1. A function f is given on the interval $[-\pi,\pi]$ and f is periodic with period 2π . For each of the function below -
 - (a) Find the Fourier coefficients of f.
 - (b) Find the Fourier series of f.
 - (c) For what values of x is f(x) equal to its Fourier series?
 - (1) $f(x) = x^2$ **Solution:** $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{1}{2\pi} \cdot \frac{x^3}{\pi} \Big|_{-\pi}^{\pi} = \frac{\pi^2}{3}$. For $n \ge 1, a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx \, dx$, by integration by parts, this integral is $\frac{1}{\pi} \cdot \frac{4\pi \cos(n\pi)}{n^2} = \begin{cases} \frac{4}{n^2} & \text{if } n \text{ even} \\ -\frac{4}{n^2} & \text{if } n \text{ odd} \end{cases}$. $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \sin nx \, dx = 0 \text{ since } x^2 \text{ is an}$ even function. Therefore $f(x) = \frac{\pi^2}{3} - 4\cos(x) + \cos(2x) - \frac{4}{9}\cos(3) + \dots = \frac{\pi^2}{3} + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}4\cos(kx)}{n^2}$. f(x) is continuous for all x, thus f(x) is equal to its Fourier series for all x. $(2) \quad f(x) = \begin{cases} 0 & \text{if } -\pi \le x < 0\\ \cos x & \text{if } 0 \le x < \pi \end{cases}$

Solution: $a_0 = \frac{1}{2\pi} \cdot 0 + \frac{1}{2\pi} \int_0^\pi \cos x \, dx = 0$. For $n \ge 1$, $a_n = 0 + \frac{1}{\pi} \int_0^\pi \cos x \cos nx \, dx = \begin{cases} 0 & \text{if } n > 1 \\ \frac{1}{2} & \text{if } n = 1 \end{cases}$. $b_n = 0 + \frac{1}{\pi} \int_0^{\pi} \cos x \sin nx \, dx = \begin{cases} 0 & \text{if } n = 1 \\ \frac{-n \cos (n-1)\pi + n}{n^2 - 1} & \text{if } n > 1 \end{cases} = \begin{cases} 0 & \text{if } n \text{ odd} \\ \frac{2n}{n^2 - 1} & \text{if } n \text{ even} \end{cases}$ There $f(x) = \frac{1}{2}\cos(x) + \frac{4}{3}\sin(2x) + \frac{8}{15}\sin(4x) + \dots = \frac{1}{2}\cos(x) + \sum_{k=1}^{\infty}\frac{4k}{4k^2 - 1}\sin(2kx).$ f(x) is equal to its Fourier series except at points $\{\cdots, -4\pi, -2\pi, 0, 2\pi, 4\pi, \cdots\}$ (3) $f(x) = \begin{cases} -1 & \text{if } -\pi \le x < -\frac{\pi}{2} \\ 1 & \text{if } -\frac{\pi}{2} \le x < 0 \\ 0 & \text{if } 0 \le x < \pi \end{cases}$ Solution: $a_0 = \frac{1}{2\pi} \int_{-\pi}^{-\frac{\pi}{2}} -1 \ dx + \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{0} 1 \ dx + 0 = 0.$ For $n \ge 1$, $a_n = \frac{1}{\pi} \int_{-\pi}^{-\frac{\pi}{2}} -\cos nx \ dx + \frac{1}{2\pi} \int_{-\pi}^{0} 1 \ dx + 0 = 0.$ $\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{0} \cos nx \, dx + 0 = \frac{1}{\pi} \cdot \frac{\sin \frac{n\pi}{2}}{n} + \frac{1}{\pi} \cdot \frac{\sin \frac{n\pi}{2}}{n} = \frac{2 \sin \frac{n\pi}{2}}{n\pi} = \begin{cases} 0 & \text{if } n \text{ even} \\ \frac{2}{n\pi} & \text{if } n = 4k - 3 \text{ for } k = 1, 2, 3 \cdots . b_n = \frac{2}{n\pi} & \text{if } n = 4k - 1 \end{cases}$ $\frac{1}{\pi} \int_{-\pi}^{-\frac{\pi}{2}} -\sin nx \, dx + \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{0} \sin nx \, dx + 0 = \frac{1}{\pi} \cdot \frac{\cos \frac{n\pi}{2} - \cos n\pi}{n} + \frac{1}{\pi} \cdot \frac{\cos \frac{n\pi}{2} - 1}{n} = \frac{2\cos \frac{n\pi}{2} - \cos n\pi - 1}{n\pi} = \frac{2\cos \frac{n\pi}{2} - \cos n\pi - 1}{n\pi} = \frac{1}{\pi} \cdot \frac{\cos \frac{n\pi}{2} - \cos n\pi}{n\pi} = \frac{1}{\pi} \cdot \frac{\cos \frac{n\pi}{2} - \cos \frac{n\pi}{2} - \cos \frac{n\pi}{2}}{n\pi} = \frac{1}{\pi} \cdot \frac{\cos \frac{n\pi}{2} - \cos \frac{n\pi}{2}}{n\pi} = \frac{1}{\pi} \cdot \frac{1}$ $\begin{cases} 0 & \text{if } n \text{ odd} \\ 0 & \text{if } n = 4k \\ -\frac{4}{\pi} & \text{if } n = 4k - 2 \end{cases} \text{ for } k = 1, 2, 3 \cdots \text{. Therefore } f(x) = \frac{2}{\pi} \cos x - \frac{2}{3\pi} \cos 3x + \frac{2}{5\pi} \cos 5x - \frac{2}{7\pi} \cos 7x + \frac{2}{5\pi} \cos 7x + \frac{2}$ $\cdots - \frac{4}{2\pi} \sin 2x - \frac{4}{6\pi} \sin 6x - \frac{4}{10\pi} \sin 10x - \cdots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} 2}{(2k-1)\pi} \cos (2k-1)x - \frac{4}{(4k-2)\pi} \sin (4k-2)x.$ f(x) is equal to its Fourier series except at points $\{-\pi \pm 2k\pi, -\frac{\pi}{2} \pm 2k\pi, \pm 2k\pi\}$ where $k = 0, 1, 2, \cdots$ are the integers.

2. Let f(x) be a function defined on $[-\pi,\pi]$. We define the *even part* of f to be the function

$$f_e(x) := \frac{f(x) + f(-x)}{2}$$

Similarly, we define the odd part of f to be the function

$$f_o(x) := \frac{f(x) - f(-x)}{2}$$

(a) Show that $f(x) = f_o(x) + f_e(x)$. Solution: We have

$$f_o(x) + f_e(x) = \frac{f(x) - f(-x)}{2} + \frac{f(x) + f(-x)}{2} = f(x).$$

(b) Show that $f_e(x)$ is an even function, and that $f_o(x)$ is an odd function. Solution: We have

$$f_e(-x) = \frac{f(-x) + f(-(-x))}{2} = f_e(x)$$

so $f_e(x)$ is even. On the other hand,

$$f_o(-x) = \frac{f(-x) - f(-(-x))}{2} = -\frac{f(x) - f(-x)}{2} = -f_o(x),$$

and so $f_o(x)$ is odd.

(c) Use substitution to show that

$$\int_{-\pi}^{\pi} f(x) \sin(kx) \, dx = -\int_{-\pi}^{\pi} f(-x) \sin(kx) \, dx$$

Solution: Apply substitution u = -x to get

$$\int_{-\pi}^{\pi} f(-x)\sin(kx)\,dx = \int_{\pi}^{-\pi} f(u)\sin(-ku)(-du) = -\int_{-\pi}^{\pi} f(u)\sin(ku)\,du$$

Since the above are all definite integrals, the variable u on the righthand side is a dummy variable, and we can replace it with x to get the desired equality.

(d) Suppose the Fourier series for f(x) is $a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + \sum_{k=1}^{\infty} b_k \sin(kx)$. Show that the Fourier series for $f_o(x)$ is

$$\sum_{k=1}^{\infty} b_k \sin(kx).$$

That is, if \tilde{a}_k, \tilde{b}_k denote the Fourier coefficients of $f_o(x)$, show that $\tilde{b}_k = b_k$, and that $\tilde{a}_k = 0$. **Solution:** Since $f_o(x)$ is odd, we have that $\tilde{a}_k = 0$ for all k. On the other hand, we have that the coefficients \tilde{b}_k are given by

$$\begin{split} \tilde{b}_k &= \int_{-\pi}^{\pi} f_o(x) \sin(kx) \, dx \\ &= \int_{-\pi}^{\pi} \frac{f(x) - f(-x)}{2} \sin(kx) \, dx \\ &= \frac{1}{2} \left(\int_{-\pi}^{\pi} f(x) \sin(kx) \, dx - \int_{-\pi}^{\pi} f(-x) \sin(kx) \, dx \right) \\ &= \int_{-\pi}^{\pi} f(x) \sin(kx) \, dx \\ &= b_k. \end{split}$$

As an exercise (not to be handed in), you can also show that the Fourier series of $f_a(x)$ is $a_0 + \sum_{k=1}^{\infty} a_k \cos(kx)$.

3. (a) $y = \sin(x^2), y' = 2x\cos(x^2)$. Thus

$$(y')^{2} + 4x^{2}y^{2} = (2x\cos(x^{2}))^{2} + 4x^{2}(\sin(x^{2}))^{2}$$
$$= 4x^{2}(\cos^{2}(x^{2}) + \sin^{2}(x^{2}))$$
$$= 4x^{2}.$$

- (b) i. $\sin(\pi y) = 0$ implies $y = k\pi, k \in \mathbb{Z}$. ii. $y^3 - 3y^2 + 3y - 1 = 0$ implies $(y - 1)^3 = 0$. So the equilibrium solutions are y = 1. iii. $e^y - 1 = 0$ implies $y = \ln 1 = 0$. iv. No equilibrium solutions.
- (c) Plug in $y = e^{kx}$, we have $2k^2e^{kx} + 3ke^{kx} + e^{kx} = 0$, i.e. $(2k^2 + 3k + 1)e^{kx} = 0$. Thus $2k^2 + 3k + 1 = 0$, k = -1/2 or -1.
- 4. (a) Directly check $\frac{dCe^{\epsilon x}}{dx} = \epsilon Ce^{\epsilon x}$
 - (b) Let $y = \sum_{n=0}^{\infty} a_n x^n$, plug in the equation we will find $\sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} \epsilon a_n x^n$, so $a_n = a_{n-1}\epsilon/n$, then $y = \sum_{n=0}^{\infty} a_0 \frac{(\epsilon x)^n}{n!} = a_0 e^{\epsilon t}$. Let $C = a_0$ and we get the same answer as (a).
 - (c) as $\epsilon \to 0$, the solution become y = C, which is the solution to $\frac{dy}{dx} = 0$
- 5. (a) Show that

$$\int_{-\pi}^{\pi} e^x \sin(kx) \, dx = (-1)^{k+1} \frac{k}{1+k^2} (e^{\pi} - e^{-\pi})$$

Solution: By integration by parts with $u = \sin(kx)$ and $dv = e^x dx$, we have

$$\int_{-\pi}^{\pi} e^x \sin(kx) \, dx = [e^x \sin(kx)]_{-\pi}^{\pi} - k \int_{-\pi}^{\pi} e^x \cos(kx) \, dx$$

Note that $[e^x \sin(kx)]_{-\pi}^{\pi} = 0$. To evaluate the integral on the righthand side, we use integration by parts with $u = \cos(kx)$ and $dv = e^x dx$, we have

$$-k \int_{-\pi}^{\pi} e^x \cos(kx) \, dx = \left[-ke^x \cos(kx)\right]_{-\pi}^{\pi} - k^2 \int_{-\pi}^{\pi} e^k \sin(kx) \, dx.$$

Now,

$$[-ke^x\cos(kx)]_{-\pi}^{\pi} = -ke^{\pi}\cos(k\pi) + ke^{-\pi}\cos(-k\pi) = (-1)^{k+1}k(e^{\pi} - e^{-\pi})^{k+1}k(e^{\pi} - e^{-\pi})^{k+1}k$$

Adding $k^2 \int_{-\pi}^{\pi} e^x \sin(kx) dx$ to both sides gives

$$(1+k^2)\int_{-\pi}^{\pi} e^x \sin(kx) \, dx = (-1)^{k+1} k(e^{\pi} - e^{-\pi}).$$

Dividing both sides by $(1 + k^2)$ gives the result.

(b) We define the hyperbolic sine function to be the odd part of e^x , as in Question 2:

$$\sinh x := \frac{e^x - e^{-x}}{2}$$

Using your answers for Question 2, and for part (a) of this question, write down the Fourier series F(x) for $\sinh x$.

Solution: From part (a), the coefficients b_k of the Fourier series for e^x is $(-1)^{k+1} \frac{k}{1+k^2}(e^{\pi}-e^{-\pi})$. Question 2 then gives the Fourier coefficients for the odd part of e^x as $a_k = 0$ and b_k as for e^x . That is,

$$F(x) = \sum_{k=1}^{\infty} \frac{k}{1+k^2} (e^{\pi} - e^{-\pi}) \sin(kx).$$

(c) Evaluate the following:

i. $F(200\pi)$ Solution: By 2π -periodicity,

$$F(200\pi) = F(0)$$

Since $\sinh(x)$ is continuous at 0, we have $F(x) = \sinh(0) = 0$ by the Fourier Convergence Theorem. ii. $F(201\pi)$

Solution: By 2π -periodicity,

$$F(201\pi) = F(\pi).$$

At the end points of the interval $[-\pi,\pi]$, we have that $\sinh(x)$ (extended 2π -periodically) is discontinuous. So by the Fourier Convergence Theorem,

$$F(\pi) = \frac{1}{2} \left(\lim_{x \to \pi^{-}} f(x) + \lim_{x \to \pi^{+}} f(x) \right) = \frac{1}{2} \left(\frac{e^{\pi} - e^{-\pi}}{2} + \frac{e^{-\pi} - e^{\pi}}{2} \right) = 0.$$

iii. $F(200\pi + 1)$

Solution: By 2π -periodicity,

$$F(200\pi + 1) = F(1).$$

Since f(x) is continuous at 1, we have that $F(1) = f(1) = \frac{e^1 - e^{-1}}{2}$.

(Hint: Use the Fourier Convergence Theorem and 2π -periodicity of the Fourier series.)