Problem Set \#8 Solutions

1. (a) We define the hyperbolic sine function to be

$$
\sinh (x):=\frac{e^{x}-e^{-x}}{2}
$$

i. Find the Taylor series for $\sinh (x)$ by computing the Taylor coefficients directly.

Solution: We have that $\sinh (0)=0$, while the first derivative is $\frac{e^{x}+e^{-x}}{2}$, which is 1 at 0 . Taking another derivative returns us to $\sinh (x)$. Therefore, the k-th derivative of $\sinh (x)$ at 0 is 0 if k is even, and 1 if k is odd. Therefore, the Taylor series is

$$
T(x)=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}
$$

ii. Find the Taylor series for $\sinh (x)$ using the Taylor series for e^{x}.

Solution: Recall that the Taylor series for e^{x} is

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

and so

$$
e^{-x}=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k}}{k!}
$$

Therefore

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}=\sum_{k=0}^{\infty} \frac{1-(-1)^{k}}{2 k!} x^{k}
$$

Note that $1-(-1)^{k}$ is 0 when k is even and 2 when k is odd. So the above sum is simply

$$
\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}
$$

(b) Recall that $\int e^{-x^{2}} d x$ cannot be written in terms of elementary functions.
i. Find the Taylor series for $\int_{0}^{x} e^{-t^{2}} d t$. Hint: How can you modify the Taylor series for e^{x} to get the desired series?
Solution: Since

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

we have

$$
e^{-x^{2}}=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{k!}
$$

Then integrating the power series gives

$$
\int_{0}^{x} e^{-t^{2}} d t=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1) k!}
$$

ii. Use the 5th Taylor polynomial (using part i.) to estimate $\int_{0}^{1} e^{-t^{2}} d t$.

Solution: The first few terms of the above series are

$$
x-\frac{x^{3}}{3}+\frac{x^{5}}{10}+\ldots
$$

Therefore, evaluating $T_{5}(1)$ gives

$$
1-\frac{1}{3}+\frac{1}{10}=\frac{23}{30}=0.76666 \ldots
$$

2. (a) For the following questions, approximate f by a Taylor polynomial with degree n at the number a. Use Taylor's Inequality to estimate the accuracy of the approximation $f(x) \approx T_{n}(x)$ when x lies in the given interval.
i. $f(x)=\sqrt{x}, a=4, n=2,4 \leq x \leq 4.2$

Solution: $f^{\prime}(x)=\frac{1}{2} \cdot x^{-\frac{1}{2}}, f^{\prime \prime}(x)=-\frac{1}{4} \cdot x^{-\frac{3}{2}}$. Thus $T_{2}=f(4)+f^{\prime}(4)(x-4)+\frac{f^{\prime \prime}(4)}{2!}(x-4)^{2}=$ $2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}$. In order to find R_{2}, we need $\left|f^{(3)}(x)\right|=\frac{3}{8} \cdot x^{-\frac{5}{2}} \leq \frac{3}{8} \cdot \frac{1}{32}=\frac{3}{256}$ when $4 \leq x \leq 4.2$. Thus $\left|R_{2}\right| \leq \frac{\frac{3}{256}}{3!} \cdot|0.2|^{3} \approx 1.5625 * 10^{-5}$.
ii. $f(x)=\ln (1+2 x), a=1, n=3,0.5 \leq x \leq 1.5$

Solution: $f^{\prime}(x)=\frac{2}{1+2 x}, f^{\prime \prime}(x)=\frac{-4}{(1+2 x)^{2}}, f^{(3)}(x)=\frac{16}{(1+2 x)^{3}}$. Thus $T_{3}=f(1)+f^{\prime}(1)(x-1)+$ $\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{(3)}}{3!}(x-1)^{3}=\ln 3+\frac{2}{3}(x-1)-\frac{2}{9}(x-1)^{2}+\frac{8}{81}(x-1)^{3}$. In order to find R_{3}, we need $\left|f^{(4)}\right|=\left|\frac{-96}{(1+2 x)^{4}}\right| \leq \frac{96}{2^{4}}=6$ when $0.5 \leq x \leq 1.5$. Thus $\left|R_{3}\right| \leq \frac{6}{4!} \cdot|0.5|^{4}=1.5625 * 10^{-2}$.
iii. $f(x)=x \sin x, a=0, n=4,-1 \leq x \leq 1$

Solution: $f^{\prime}(x)=x \sin x, f^{\prime \prime}(x)=2 \cos x-x \sin x, f^{(3)}(x)=-3 \sin x-x \cos x, f^{(4)}(x)=-4 \cos x+$ $x \sin x$. Thus $T_{4}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}=0+0+x^{2}+0-\frac{1}{6} x^{4}=x^{2}-\frac{1}{6} x^{4}$. In order to find R_{4}, We need $f^{(5)}=5 \sin x+x \cos x \leq 5 \sin 1+\cos 1$ when $-1 \leq x \leq 1$. Thus $\left|R_{4}\right| \leq \frac{(5 \sin 1+\cos 1)}{5!} \cdot|1|^{5} \approx 0.03956$
(b) Let T_{n} be the nth degree Taylor Polynomial for e^{x}. What n should be used to estimate $e^{0.1}$ to within 0.00001 ? How many terms are there in the T_{n} of your choice?

Solution: $f^{(n)}(x)=e^{x}$ for all n. Thus for $0 \leq x \leq 0.1$ we have $\left|R_{n}\right| \leq \frac{e^{0.1}}{n!} \cdot|0.1|^{n+1}<0.00001$. Try plugging in different values of n we get $\left|R_{2}\right| \leq 0.0001842$ and $\left|R_{3}\right| \leq 4.605 * 10^{-6}$. Thus $n=3$. Since it's a degree 3 Taylor Polynomial, there are 4 terms including the constant term.
3. (a) By the Taylor series of $\cos x, e^{x}$, we know that

$$
\begin{aligned}
1-\cos x & =\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots \\
1+x-e^{x} & =-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}-\frac{x^{4}}{4!}-\ldots
\end{aligned}
$$

Thus we know that

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-e^{x}}=\lim _{x \rightarrow 0} \frac{\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots}{-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}-\frac{x^{4}}{4!}-\ldots}=\lim _{x \rightarrow 0} \frac{\frac{1}{2!}-\frac{x^{2}}{4!}+\frac{x^{4}}{6!}-\ldots}{-\frac{1}{2!}-\frac{x}{3!}-\frac{x^{2}}{4!}-\ldots}=-1
$$

(b) By the Taylor series of e^{x}, we know that

$$
\begin{aligned}
x^{2} e^{-x^{2}} & =x^{2}\left(1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\ldots\right) \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+2}}{k!}
\end{aligned}
$$

So the antiderivative of $x^{2} e^{-x^{2}}$ has a power series expression reading as

$$
\int x^{2} e^{-x^{2}} \mathrm{~d} x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+3}}{(2 k+3) k!}+C
$$

By FTC, we have

$$
\int_{0}^{0.5} x^{2} e^{-x^{2}} \mathrm{~d} x=\left.\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+3}}{(2 k+3) k!}\right|_{x=0.5}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+3) \cdot k!\cdot 2^{2 k+3}}
$$

Denote the sum of the series as S. Notice that this is an alternating series with decreasing terms having limit 0 , we know that

$$
\left|S-S_{n}\right| \leq b_{n+1}=\frac{1}{(2 n+3) \cdot n!\cdot 2^{2 n+3}}
$$

We need to find the least n such that the term on the R.H.S is less than 0.001 . One can tell that $n=2$ is good enough. So

$$
S \approx S_{2}=\frac{1}{24}-\frac{1}{160}=\frac{17}{480}=0.0354167
$$

(c) Notice that $e^{-x}=1-x+x^{2} / 2-x^{3} / 3!+\ldots$, so

$$
1-\ln 2+\frac{(\ln 2)^{2}}{2!}-\frac{(\ln 2)^{3}}{3!}+\ldots=e^{-\ln 2}=\frac{1}{2}
$$

4. (a) We know $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, taking the derivatives and we get $\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}$, and then we get $\frac{x^{2}}{(1-x)^{2}}=x^{2} * \frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n+1}$.
(b) We know $\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$, so $x \arctan \left(x^{3}\right)=x\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+3}}{2 n+1}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+4}}{2 n+1}$
5.
