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Problem Set #8 Solutions

(a) We define the hyperbolic sine function to be
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Find the Taylor series for sinh(z) by computing the Taylor coefficients directly.
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Solution: We have that sinh(0) = 0, while the first derivative is %, which is 1 at 0. Taking

sinh(z) :=

another derivative returns us to sinh(z). Therefore, the k-th derivative of sinh(z) at 0 is 0 if & is even,
and 1 if £ is odd. Therefore, the Taylor series is
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= (2k + 1)!
Find the Taylor series for sinh(z) using the Taylor series for .

Solution: Recall that the Taylor series for e” is
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sinh(z) =
k=0
Note that 1 — (—1)* is 0 when k is even and 2 when k is odd. So the above sum is simply
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(b) Recall that / e~ dz cannot be written in terms of elementary functions.
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Find the Taylor series for / et dt. Hint: How can you modify the Taylor series for e” to get the
0

desired series?
Solution: Since

we have

Then integrating the power series gives
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Use the 5th Taylor polynomial (using part i.) to estimate / e dt.
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Solution: The first few terms of the above series are
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Therefore, evaluating T5(1) gives
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(a) For the following questions, approximate f by a Taylor polynomial with degree n at the number a. Use

(b) Let T;, be the nth degree Taylor Polynomial for e®

Taylor’s Inequality to estimate the accuracy of the approximation f(z)

~ T, (x) when z lies in the given

interval.
i f(z)=Vr,a=4,n=24<z<42
. / 1 -1 1 -2 ’ f”(4) 2
Solution: f'(z) = 7% 2 f(x) = -7 Thus Tp = f(4) + f'(4)(x — 4) + 51 (x —4)° =
1 1 I
2+ Z(xfél) 64(:L'74)231H order to find Ry, we need |f® (z)| = g a3 < % "33 = % when
4 <2 <42 Thus |Ry| < ?—f -10.2® &~ 1.5625 % 107,
ii. f(x)zln(1—|—2x),a—1 n=305<z<15
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Solution: f’ " = _ ® 7Th T3 = f(1 "1 -1
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iii. f(z)=zsinz,a=0n=4,-1<z<1
Solution: f'(z) = zsinz, f’(z) = 2cosz — wsinz, f (z) = —3sinz — zcosz, f* (x) = —4cosz +
an 3 (0 @0 1 1
zsinz. Thus Ty = f(0)+ f/(0)z + f2( )x / 3'( )x3+f 4'( ) 4:0+0+m2+0—6m4:x2 6964

In order to find R4, We need f(5) = bsinz + zcosx < Hsinl + cosl when —1 < x < 1. Thus

5sin 1l 1
IR4| < (sm5$s) - |1]° ~ 0.03956

. What n should be used to estimate %! to within

0.000017 How many terms are there in the T}, of your choice?

0.1

Solution: f(™(z) = e® for all n. Thus for 0 < z < 0.1 we have |R,| < e— 0.1]"*! < 0.00001. Try

plugging in different values of n we get |Rg| < 0.0001842 and |R3| < 4.605 10_6 Thus n = 3. Since it’s
a degree 3 Taylor Polynomial, there are 4 terms including the constant term.

By the Taylor series of cos x, e*

By the Taylor series of e®

, we know that
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Thus we know that
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, we know that
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So the antiderivative of z2e~%" has a power series expression reading as
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By FTC, we have
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Denote the sum of the series as S. Notice that this is an alternating series with decreasing terms having
limit 0, we know that
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We need to find the least n such that the term on the R.H.S is less than 0.001. One can tell that n = 2 is
good enough. So
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(c) Notice that e™® =1 —x +22/2 —23/31 + ..., s0
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4. (a) We know 7
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