
Problem Set #8

Submit your answers on a separate sheet on the day assigned by your instructor. You must explain all answers.
You may (and, in fact, are encouraged) to work with your peers on problem sets, but your final answers must be

your own. Please write an acknowledgement for anyone who provides you help.

1. (a) We define the hyperbolic sine function to be

sinh(x) :=
ex − e−x

2
.

i. Find the Taylor series for sinh(x) by computing the Taylor coefficients directly.

ii. Find the Taylor series for sinh(x) using the Taylor series for ex.

(b) Recall that

∫
e−x

2

dx cannot be written in terms of elementary functions.

i. Find the Taylor series for

∫ x

0

e−t
2

dt. Hint: How can you modify the Taylor series for ex to get the

desired series?

ii. Use the 5th Taylor polynomial (using part i.) to estimate

∫ 1

0

e−t
2

dt.

2. (a) For the following questions, approximate f by a Taylor polynomial with degree n at the number a. Use
Taylor’s Inequality to estimate the accuracy of the approximation f(x) ≈ Tn(x) when x lies in the given
interval.

i. f(x) =
√
x, a = 4, n = 2, 4 ≤ x ≤ 4.2

ii. f(x) = ln(1 + 2x), a = 1, n = 3, 0.5 ≤ x ≤ 1.5

iii. f(x) = x sinx, a = 0, n = 4,−1 ≤ x ≤ 1

(b) Let Tn be the nth degree Taylor Polynomial for ex. What n should be used to estimate e0.1 to within
0.00001? How many terms are there in the Tn of your choice?

3. Taylor series is helpful when computing limits, approximating definite integrals and summing series.

(a) Find lim
x→0

1− cosx

1 + x− ex
.

(b) Approximate

∫ 0.5

0

x2e−x
2

dx so that the error of your approximationg is less than 0.001.

(c) Find 1− ln 2 +
(ln 2)2

2!
− (ln 2)3

3!
+ ....

4. Find a power series representation, centered at x = 0, for each of the following:

(a)
x2

(1− x)2

(b) x arctan(x3)

5. Newton’s method for approximating a root, say r, of the equation f(x) = 0 is an iterative method that generates
a sequence of points {xn}∞n=1 such that xn → r as n → ∞ under certain assumptions on f . The algorithm is
designed as following: given xn, xn+1 is computed by

xn+1 = xn −
f(xn)

f ′(xn)
. (1)

(a) Intuitively understand why the algorithm works. Let f(x) = x2 − 2. Obviously we know the two

roots of f(x) = 0 are
√

2 and −
√

2. We start our algorithm at x1 = 1.

i. Rewrite the algorithm in a form of fixed point problem, i.e. xn+1 = g(xn) given that f(x) = x2 − 2.
What is g?

ii. Compute x2, x3, x4.

iii. How many decimal places is x4 accurate to?
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(b) Tentatively prove that the algorithm works. From (a) we see that even with only 3 iterations, one
can have a fairly accurate approximation of the root. Now we work on general equation f(x) = 0, not
necessarily x2 − 2 = 0. Suppose that there exists K > 0 such that |f ′(x)| ≥ K for any x, also given that
the sequence {xn} produced by this method has a limit r. Prove that f(r) = 0 by passing the limit on
both sides of (1).

(c) Rigorously complete the proof by the theory of Taylor series. (b) tells you that under some
hypothesis, the limit of xn has to be a root of f(x) = 0. Now we will prove this convergence does hold
and it is also a rapid one. Recall that r is a root of f(x) = 0, i.e. f(r) = 0.

i. Prove that the algorithm can be written in the following way:

f ′(xn)(xn+1 − r) = f ′(xn)(xn − r)− f(xn). (2)

ii. Suppose that f ′′(x) exists on an interval I containing r, xn, xn+1 and |f ′′(x)| ≤M , |f ′(x)| ≥ K for all
x ∈ I. Use the Taylor Remainder theorem (for function f at a = xn) to prove that the R.H.S. (right
hand side) of (2) can be bounded by |xn − r|2, or more precisely,

|f ′(xn)(xn − r)− f(xn)| ≤ M

2
|xn − r|2. (3)

iii. Notice that under the same assumption of (ii), we know that the L.H.S. (left hand side) of (2) is lower
bounded by K|xn+1 − r|, i.e.

|f ′(xn)(xn+1 − r)| ≥ K|xn+1 − r| (4)

due to the lower bound of f ′. Prove that

|xn+1 − r| ≤ M

2K
|xn − r|2

by plugging (3) and (4) into (2). This estimate shows you the speed of convergence of Newton method:
if xn is accurate to d decimal places, i.e. |xn − r| ≤ 10−d, then xn+1 is accurate to 2d decimal places.
Thus this algorithm is fairly effcient.

2


