
Problem Set #7 Solutions

1. (a) Find the third degree Taylor polynomial for each function f(x) below, and use it to estimate f(0.5).

i. ln(1 + x)
Solution: Letting f(x) = ln(1 + x) we have

f(0) = 0,

f ′(0) =
1

1 + x

∣∣∣∣
x=0

= 1,

f (2)(0) = − 1

(1 + x)2

∣∣∣∣
x=0

= −1,

f (3)(0) =
2

(1 + x)3

∣∣∣∣
x=0

= 2.

Therefore the third Taylor polynomial is

T3(x) = x− x2

2
+

x3

3
.

ii. ln(1− x)
Solution: Letting f(x) = ln(1− x) we have

f(0) = 0,

f ′(0) = −1,

f (2)(0) = −1,

f (3)(0) = −2,

and so

T3(x) = −x− x2

2
− x3

3

iii. ln(1− x2)
Solution: Letting f(x) = ln(1− x2),

f(0) = 0,

f ′(0) =
−2x

1− x2

∣∣∣∣
x=0

= 0

f (2)(0) =
−2

1− x2
+

4x2

(1− x2)2

∣∣∣∣
x=0

=
−2 + 6x2

(1− x2)2

∣∣∣∣
x=0

= −2

f (3)(0) =
12x

(1− x2)2
+

4x(−2 + 6x2)

(1− x2)3

∣∣∣∣
x=0

= 0,

and so the Taylor polynomial is
T3(x) = −x2.

(b) Notice that ln(1 − x2) = ln(1 + x) + ln(1 − x). Show similarly that the Taylor polynomials that you
computed in parts (i) and (ii) above also sum to the polynomial you computed in part (iii).

Solution: Adding the two polynomials for i. and ii. together gives(
x− x2

2
+

x3

3

)
+

(
−x− x2

2
− x3

3

)
= −x2,

as desired.

(c) Explain why the Taylor polynomial for (f(x) + g(x)) is equal to the sum of the Taylor polynomials for
f(x) and g(x).
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Let ak be the Taylor coefficients for f(x), let bk be the Taylor coefficients for g(x), and let ck be the Taylor
coefficients for f(x) + g(x). Then

ck =
1

k!

(
dk

dxk
(f(x) + g(x))

∣∣∣∣
x=0

)
=

f (k)(0)

k!
+

g(k)(0)

k!
= ak + bk.

Since the coefficients sum together, so do the polynomials.

2. Find the radius of convergence and interval of convergence of the following series.

(a)

∞∑
n=0

xn

n!

Solution: lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ xn+1(n)!

(n + 1)!xn

∣∣∣ = lim
n→∞

∣∣∣ x

n + 1

∣∣∣ = 0. Thus the series is convergent for all x.

R =∞ and I.o.C is (−∞,∞).

(b)

∞∑
n=0

(−1)n
n2xn

2n

Solution: lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ (n + 1)2xn+12n

2n+1n2xn

∣∣∣ = lim
n→∞

∣∣∣ (n + 1)2

n2
· x

2

∣∣∣ =
|x|
2

< 1. Thus |x| < 2. R = 2.

When x = −2, the series becomes

∞∑
n=0

(−1)2nn2 which diverges by Test for Divergence. When x = 2, the

series becomes

∞∑
n=0

(−1)nn2 which also diverges by Test for Divergence. Thus the I.o.C is (−2, 2).

(c)

∞∑
n=0

(3x− 2)n

n3n

Solution: lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ (3x− 2)n+1n3n

(n + 1)3n+1(3x− 2)n

∣∣∣ = lim
n→∞

∣∣∣ n

n + 1
· 3x− 2

3

∣∣∣ =
|3x− 2|

3
< 1. =⇒

|3x− 2| < 3 =⇒ |x− 2

3
| < 1. Thus R = 1 and −1

3
< x <

5

3
. When x = −1

3
, the series becomes

∞∑
n=0

(−1)n

n

which converges by AST. When x =
5

3
, the series becomes

∞∑
n=0

1

n
which diverges by p-test. Thus the I.o.C

is
[
− 1

3
,

5

3

)
.

(d) If k is a positive integer, find the radius of convergence of the series

∞∑
n=0

(n!)k

(kn)!
xn.

Solution: lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ ((n + 1)!)kxn+1(kn)!

(kn + k)!(n!)kxn

∣∣∣ = lim
n→∞

∣∣∣ (n + 1)kx

(kn + 1)(kn + 2) · · · (kn + k)

∣∣∣ =
∣∣∣ x
kk

∣∣∣ <
1. Thus |x| < kk =⇒ R = kk.

3. (a) Suppose that

∞∑
n=0

cnx
n converges when x = −4 and diverges when x = 6. What can be said about the

convergence or divergence of the following series?

i.
∞∑

n=0

cn

ii.

∞∑
n=0

cn8n

iii.

∞∑
n=0

cn(−3)n
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iv.

∞∑
n=0

(−1)ncn9n

Solution: i. converges ii. diverges iii. converges iv. diverges

(b) Suppose that the radius of convergence of the power series
∑

cnx
n is R. What is the radius of convergence

of the power series
∑

cnx
2n?

Solution: lim
n→∞

∣∣∣cn+1x
n+1

cnxn

∣∣∣ = lim
n→∞

∣∣∣cn+1

cn

∣∣∣ · |x| < 1 =⇒ |x| < lim
n→∞

∣∣∣ cn
cn+1

∣∣∣ = R. Thus using Ratio Test on

the new series we get lim
n→∞

∣∣∣cn+1x
2n+2

cnx2n

∣∣∣ = lim
n→∞

∣∣∣cn+1

cn

∣∣∣ · |x2| < 1. This implies |x|2 < lim
n→∞

∣∣∣cn+1

cn

∣∣∣ = R =⇒

|x| <
√
R. The radius of convergence is

√
R.

(c) Find a power series that has interval of convergence:

i. (2, 6)

ii. [2, 6)

iii. (2, 6]

iv. [2, 6]

Solution: i.

∞∑
k=0

(x− 4)k

2k
ii.

∞∑
k=0

(x− 4)k

k2k
iii.

∞∑
k=0

(−1)k(x− 4)k

k2k
iv.

∞∑
k=0

(x− 4)k

k22k

4. (a) Because lim
x→0

e−1/x
2

= 0, so f(x) is continuous at x = 0. To prove differentiability, by definition, we have

lim
x→0

e−1/x
2

x
= lim

t→∞

t

et2
= 0.

So the derivative exists and f ′(0) = 0.

(b) By induction, one can prove that for any order derivative of f(x), it has the form P (t)e−t
2

where t =
1

x
and P is a polynomial. By dominance of et

2

over any polynomial of t as t → ∞, we know that the limit

of tP (t)e−t
2

is 0 as t→∞ which indicates that f (k)(0) = 0 for any k.

(c) By definition, we know that the Taylor series of f(x) at x = 0 should be

∞∑
k=0

f (k)(0)xk

k!
= 0.

5. (a) T5(x) = x− x3

3!
+

x5

5!

(b) T ′4(x) = 1− x2

2!
+

x4

4!

(c) We can compute ∫ t

0

T ′4(x)dx =

∫ t

0

1− x2

2!
+

x4

4!
dx = t− t3

3!
+

t5

5!
= T5(t).

We can see that the integral of the Taylor Polynomials of cos(x) is the Taylor Polynomials of sin(x), the
antiderivatives(with degree minus 1).

One remark is that same truth holds for the function f and its derivaties f ′.

3


