Problem Set \#7 Solutions

1. (a) Find the third degree Taylor polynomial for each function $f(x)$ below, and use it to estimate $f(0.5)$.
i. $\ln (1+x)$

Solution: Letting $f(x)=\ln (1+x)$ we have

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =\left.\frac{1}{1+x}\right|_{x=0}=1 \\
f^{(2)}(0) & =-\left.\frac{1}{(1+x)^{2}}\right|_{x=0}=-1, \\
f^{(3)}(0) & =\left.\frac{2}{(1+x)^{3}}\right|_{x=0}=2 .
\end{aligned}
$$

Therefore the third Taylor polynomial is

$$
T_{3}(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}
$$

ii. $\ln (1-x)$

Solution: Letting $f(x)=\ln (1-x)$ we have

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =-1, \\
f^{(2)}(0) & =-1, \\
f^{(3)}(0) & =-2,
\end{aligned}
$$

and so

$$
T_{3}(x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}
$$

iii. $\ln \left(1-x^{2}\right)$

Solution: Letting $f(x)=\ln \left(1-x^{2}\right)$,

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =\left.\frac{-2 x}{1-x^{2}}\right|_{x=0}=0 \\
f^{(2)}(0) & =\frac{-2}{1-x^{2}}+\left.\frac{4 x^{2}}{\left(1-x^{2}\right)^{2}}\right|_{x=0}=\left.\frac{-2+6 x^{2}}{\left(1-x^{2}\right)^{2}}\right|_{x=0}=-2 \\
f^{(3)}(0) & =\frac{12 x}{\left(1-x^{2}\right)^{2}}+\left.\frac{4 x\left(-2+6 x^{2}\right)}{\left(1-x^{2}\right)^{3}}\right|_{x=0}=0
\end{aligned}
$$

and so the Taylor polynomial is

$$
T_{3}(x)=-x^{2}
$$

(b) Notice that $\ln \left(1-x^{2}\right)=\ln (1+x)+\ln (1-x)$. Show similarly that the Taylor polynomials that you computed in parts (i) and (ii) above also sum to the polynomial you computed in part (iii).
Solution: Adding the two polynomials for i. and ii. together gives

$$
\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\right)+\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)=-x^{2}
$$

as desired.
(c) Explain why the Taylor polynomial for $(f(x)+g(x))$ is equal to the sum of the Taylor polynomials for $f(x)$ and $g(x)$.

Let a_{k} be the Taylor coefficients for $f(x)$, let b_{k} be the Taylor coefficients for $g(x)$, and let c_{k} be the Taylor coefficients for $f(x)+g(x)$. Then

$$
\begin{aligned}
c_{k} & =\frac{1}{k!}\left(\left.\frac{d^{k}}{d x^{k}}(f(x)+g(x))\right|_{x=0}\right) \\
& =\frac{f^{(k)}(0)}{k!}+\frac{g^{(k)}(0)}{k!} \\
& =a_{k}+b_{k}
\end{aligned}
$$

Since the coefficients sum together, so do the polynomials.
2. Find the radius of convergence and interval of convergence of the following series.
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

Solution: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}(n)!}{(n+1)!x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{n+1}\right|=0$. Thus the series is convergent for all x. $R=\infty$ and I.o.C is $(-\infty, \infty)$.
(b) $\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{2} x^{n}}{2^{n}}$

Solution: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} x^{n+1} 2^{n}}{2^{n+1} n^{2} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{n^{2}} \cdot \frac{x}{2}\right|=\frac{|x|}{2}<1$. Thus $|x|<2 . R=2$. When $x=-2$, the series becomes $\sum_{n=0}^{\infty}(-1)^{2 n} n^{2}$ which diverges by Test for Divergence. When $x=2$, the series becomes $\sum_{n=0}^{\infty}(-1)^{n} n^{2}$ which also diverges by Test for Divergence. Thus the I.o.C is $(-2,2)$.
(c) $\sum_{n=0}^{\infty} \frac{(3 x-2)^{n}}{n 3^{n}}$

Solution: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(3 x-2)^{n+1} n 3^{n}}{(n+1) 3^{n+1}(3 x-2)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n}{n+1} \cdot \frac{3 x-2}{3}\right|=\frac{|3 x-2|}{3}<1 . \Longrightarrow$ $|3 x-2|<3 \Longrightarrow\left|x-\frac{2}{3}\right|<1$. Thus $R=1$ and $-\frac{1}{3}<x<\frac{5}{3}$. When $x=-\frac{1}{3}$, the series becomes $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}$ which converges by AST. When $x=\frac{5}{3}$, the series becomes $\sum_{n=0}^{\infty} \frac{1}{n}$ which diverges by p-test. Thus the I.o.C is $\left[-\frac{1}{3}, \frac{5}{3}\right)$.
(d) If k is a positive integer, find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(n!)^{k}}{(k n)!} x^{n}$.

Solution: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{((n+1)!)^{k} x^{n+1}(k n)!}{(k n+k)!(n!)^{k} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{k} x}{(k n+1)(k n+2) \cdots(k n+k)}\right|=\left|\frac{x}{k^{k}}\right|<$ 1. Thus $|x|<k^{k} \Longrightarrow R=k^{k}$.
3. (a) Suppose that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-4$ and diverges when $x=6$. What can be said about the convergence or divergence of the following series?
i. $\sum_{n=0}^{\infty} c_{n}$
ii. $\sum_{n=0}^{\infty} c_{n} 8^{n}$
iii. $\sum_{n=0}^{\infty} c_{n}(-3)^{n}$
iv. $\sum_{n=0}^{\infty}(-1)^{n} c_{n} 9^{n}$

Solution: i. converges ii. diverges iii. converges iv. diverges
(b) Suppose that the radius of convergence of the power series $\sum c_{n} x^{n}$ is R. What is the radius of convergence of the power series $\sum c_{n} x^{2 n} ?$
Solution: $\lim _{n \rightarrow \infty}\left|\frac{c_{n+1} x^{n+1}}{c_{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right| \cdot|x|<1 \Longrightarrow|x|<\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|=R$. Thus using Ratio Test on the new series we get $\lim _{n \rightarrow \infty}\left|\frac{c_{n+1} x^{2 n+2}}{c_{n} x^{2 n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right| \cdot\left|x^{2}\right|<1$. This implies $|x|^{2}<\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=R \Longrightarrow$ $|x|<\sqrt{R}$. The radius of convergence is \sqrt{R}.
(c) Find a power series that has interval of convergence:
i. $(2,6)$
ii. $[2,6)$
iii. $(2,6]$
iv. $[2,6]$

Solution: i. $\sum_{k=0}^{\infty} \frac{(x-4)^{k}}{2^{k}}$ ii. $\sum_{k=0}^{\infty} \frac{(x-4)^{k}}{k 2^{k}} \quad$ iii. $\sum_{k=0}^{\infty} \frac{(-1)^{k}(x-4)^{k}}{k 2^{k}} \quad$ iv. $\sum_{k=0}^{\infty} \frac{(x-4)^{k}}{k^{2} 2^{k}}$
4. (a) Because $\lim _{x \rightarrow 0} e^{-1 / x^{2}}=0$, so $f(x)$ is continuous at $x=0$. To prove differentiability, by definition, we have

$$
\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x}=\lim _{t \rightarrow \infty} \frac{t}{e^{t^{2}}}=0
$$

So the derivative exists and $f^{\prime}(0)=0$.
(b) By induction, one can prove that for any order derivative of $f(x)$, it has the form $P(t) e^{-t^{2}}$ where $t=\frac{1}{x}$ and P is a polynomial. By dominance of $e^{t^{2}}$ over any polynomial of t as $t \rightarrow \infty$, we know that the limit of $t P(t) e^{-t^{2}}$ is 0 as $t \rightarrow \infty$ which indicates that $f^{(k)}(0)=0$ for any k.
(c) By definition, we know that the Taylor series of $f(x)$ at $x=0$ should be

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0) x^{k}}{k!}=0
$$

5. (a) $T_{5}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$
(b) $T_{4}^{\prime}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$
(c) We can compute

$$
\int_{0}^{t} T_{4}^{\prime}(x) d x=\int_{0}^{t} 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} d x=t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}=T_{5}(t)
$$

We can see that the integral of the Taylor Polynomials of $\cos (x)$ is the Taylor Polynomials of $\sin (x)$, the antiderivatives(with degree minus 1).
One remark is that same truth holds for the function f and its derivaties f^{\prime}.

