Problem Set #6 Solutions

1. Use Integral Test to determine whether the following series are convergent or divergent.
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Solution: Let f(x) = i

A+ % f(z) is decreasing for z > 1. Since f(z)
is also positive and continuous, we can apply Integral Test.

We have that
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Since this integral diverges, the series diverges.
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Solution: Let f(z) = z%e ~** Note that flx) = (22 — 3$4)6713, so f(x) is decreasing for = > <> .

Since f(z) is also positive and decreasing, we can apply the Integral Test.

We have that
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Since the integral converges, the series converges.
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Solution: Let f(z) = ——. Note that —zInz = Inx + 1, and so the denominator of f(x) is increasing

zln x
for z > 1, and thus f(z) is decreasing for > 1. Note that f(x) is also positive and continuous for z > 1.

Therefore, we can apply Integral Test.
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We have that
Since the integral diverges, the series diverges also.

2. (a) Use Comparison Test to determine whether the series is convergent or divergent.
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Solution: < — = —. Thus we need to use limit comparison test - We know that E — is
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convergent by p-test. Let a, = ———,b, = —. Then lim — = lim = 1+1 = lim = 1.
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Thus by limit comparison test the series is divergent.
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< — Z ( ) is a geometric series and converges

Solution: <1, th — =
olution: cosn < 1, thus Ton < 1gn° 10n

1
since ‘1—0’ < 1. Thus our series converges by limit comparison test.



(b) Consider the series Z
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Solution: Let a, = sin (—)Jyn = -, lim n _ lim M
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— . This is an indeterminate form of —.
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Converting it to a function and using L’Hopital’s rule we have lim ————= =
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lim cos(1/x) = 1. Thus lim ————= = 1. Since Z — is divergent, our series diverges by limit
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comparison test.
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i. Use the Comparison Test to show that this series converges.
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Solution: — < — which converges by p-test. Thus the series converges by comparison
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test.
ii. Note that this series satisfies the conditions of the Integral Test. Thus, we can use the associated
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error bounds to say that if we approximate Z 1 by its 10th partial sum, the resulting error is
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bounded above by / oo dx. The value of this integral is difficult to find but we know that it is
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bounded above by / —5 dz. Use this to find an upper bound of the error.
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Solution: Ry, S/ 3 dx §/ — dzr = lim :c ’ = —
10 r3+1 10 23 t—oo 2 110 200
Show that if a,, > 0 and Z an is convergent, then Z In(1 + a,,) is convergent.
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Solution: Use limit comparison test. Let z, = In(1 + a,),yn = an, lim In _ im M. Since
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Z a, converges, lim a, = 0. Thus the limit is an indeterminate form of o Converting it to a function
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where a, — 0 as n — oo is equivalent as z — 0 and using L’Hopital’s rule we have lin%) w =
T—r X
li 1 =1.85i In(1 Is s by limi i 3
i —— =1. ince Zan converges, Z n(1 + a,) also converges by limit comparison test.
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It is conditionally convergent. It is not absolutely convergent since Z — = Z T which is
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divergent. However, it is convergent by AST: the series is alternating , lim — = 0 and < —.
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It is absolutely convergent. Notice that Z 72 is convergent, and |1472| < 72 so by comparison
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test, series Z — is absolutely convergent.
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It is divergent. Notice that
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and 7/3 > 1, so by comparison test, this series is divergent.

It is conditionally convergent. It is not absolutely convergent since In k/k > 1/k for k > 3, so by comparison

n
test, it is not absolutely convergent. However, it is convergent by AST: the series is alternating, lim = = 0

and f(x) =Inx/z is decreasing after © > e. So it is convergent.



4. (a) Use ratio test we know that
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Thus it’s convergent.
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So we know it’s divergent.
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Thus it’s convergent.
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when k£ > 2. So we know that it’s convergent.
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5. Consider the series —5- We will approximate the value of this series using partial sums s, = %
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(a) Use Integral Test to show the series converges.
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Solution: Let f(z) = T
Integral Test. We have

ol Note that f(z) is positive, continuous, and decreasing, so we can apply

/1 1+sz dx = [arctan z]{° = %
Since the integral converges, so does the series.
(b) Compute s15. (You may want to use a computer or a calculator for this and the following steps)
Solution: si5 = 1.0122693692050062
(c¢) Find an upper bound on the error for your approximation in part b).
Solution: We have that
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Error(15) < / dz
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= g — arctan(15)

= 0.06656816377582375

(d) Find a lower bound on the error for your approximation in part b).
Solution: We have that
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= g — arctan(16)

= 0.06241880999595728
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(e) Use parts ¢) and d) to write the value of the series Z accurate to two decimal places.
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Solution: We have from the above that

s15 + Error(15) < 1.0122693692050062 + 0.06656816377582375 = 1.07883753298083,

and
s15 + Error(15) > 1.0122693692050062 + 0.06241880999595728 = 1.0746881792009635.

Since the actual value of the series is equal to s15 + Error(15), we see from the two inequalities above that
up to two decimal places, the series is equal to 1.07.



