
Introduction to Fourier Series

We’ve seen one example so far of series of functions. The Taylor Series of a
function is a series of polynomials and can be used to approximate a function at a
point.

Another kind of series of functions are Fourier Series. Rather than using poly-
nomials to approximate a function at a point we can use trigonometric functions
to approximate periodic functions over the entire period. We will assume for this
introduction that we are interested in approximating periodic functions of period
2π.

1. The Taylor Series Revisited

The idea for both Taylor and Fourier Series is that we have some basic functions
and we want to express an arbitrary function in terms of our basic functions. In
general this will require us to use an infinite series of basic functions. For Taylor
Series the basic functions were powers of x. To express a function in terms of powers
of x we need a way to determine the “xn part” of a function. If we call the xn part
of f(x) an then we express f(x) as the series

∑
anxn.

For this to be reasonable, our list of basic functions must satisfy some properties:

(1) Independence: The xm part of xn is 0 if m 6= n.
(2) Uniformity: The xn part of xn is 1.
(3) Completeness: The various powers of x form a complete list in that our

series of functions can be written entirely in terms of powers of x.

Given a function f(x) we have a way to “filter out” the xn part. For a polynomial,
the n-th derivative of the polynomial at 0 is exactly the n-th coefficient times n!.
For example:

p(x) = a0 + a1x + a2x
2 + a3x

3 + higher order terms

p′(x) = a1 + 2a2x + 3a3x
2 + HOT

p′′(x) = 2a2 + 3 · 2 · a3x + HOT

p′′′(x) = 3 · 2 · a3 + HOT

So p′′′(0) = 3! · a3 since the higher order terms all still contain powers of x, so they
vanish when we evaluate at x = 0.

We use this method to determine the xn part of any function for which the n-th
derivative is defined: the xn part of f(x) is:

an =
f (n)(0)

n!

Once we know the xn part for each n we can reassemble our function as
∑

anxn.
We can verify the first two properties in the above list. Suppose m < n. The

xn part of xm is dn(xm)
dxn = 0, since the m-th derivative of xm is the constant m!,

and higher derivatives are all 0. Conversely, the m-th derivative of xn is a multiple
1
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of xn−m. When we evaluate this at x = 0 we get 0. The xm part of xm is
dm(xm)

dxm

m! = m!
m! = 1.

Verifying the third property is harder. This was the content of Taylor’s Theorem,
that if we want to know that the series we compute represents the original function
we must check to see that the remainder term limits to 0.

2. Fourier Series

The idea for the Fourier Series is similar to what we did for Taylor Series. Instead
of using powers of x as our basic functions we use sin(kx) and cos(kx) for k =
0, 1, 2, 3, . . . .

We would like to have some method of “filtering out” the sin(kx) and cos(kx)
parts of a function like we had for the Taylor Series. In the Fourier Series case
we do this filtering by multiplying by the basic function and integrating the result.
In the Taylor Series case we also had to correct by a factor of n!, and we get a
correction factor in the Fourier Series case as well.

Definition 2.1. The Fourier Series for a function f(x) with period 2π is given by:
∞∑

k=0

ak cos(kx) + bk sin(kx)

Where

a0 =
1
2π

∫ π

−π

f(x) cos(0x)dx =
1
2π

∫ π

−π

f(x)dx

b0 =
1
2π

∫ π

−π

f(x) sin(0x)dx = 0

ak =
1
π

∫ π

−π

f(x) cos(kx)dx for k > 0

bk =
1
π

∫ π

−π

f(x) sin(kx)dx for k > 0

Analogous to the Taylor Series, we define the Fourier Polynomials to be the
finite sum:

Fn =
n∑

k=0

ak sin(kx) + bk cos(kx)

Note: The reason the k = 0 terms are treated separately is that sin(0x) = 0 and
cos(0x) = 1.

We check that these basic functions and our method of determining coefficients
satisfy the same properties as in the Taylor Series:

Fist we check that cos(0x) = 1 is independent from all the other sin(kx) and
cos(kx). ∫ π

−π

cos(0x) cos(kx)dx =
∫ π

−π

cos(kx)dx = 0∫ π

−π

cos(0x) sin(kx)dx =
∫ π

−π

sin(kx)dx = 0
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These results occur because sin(kx) and cos(kx) are periodic with period 2π
k , so if

we integrate them over the interval [−π, π] we are integrating k complete cycles,
and the negative areas cancel out the positive areas.

Also
∫ π

−π
cos(0x) cos(0x)dx =

∫ π

−π
1dx = 2π, which gives us the correction factor

of 1
2π in the definition of a0.
For nonzero j, k we use the method of §7.2 for the Type 3 trigonometric integrals

to show: ∫ π

−π

sin(jx) sin(kx)dx =

{
π if j = k

0 if j 6= k∫ π

−π

cos(jx) cos(kx)dx =

{
π if j = k

0 if j 6= k

and ∫ π

−π

sin(jx) cos(kx)dx = 0

These computations show us the properties that we wanted: the cos(kx) part
of cos(kx) is 1 (after taking into account the correction factor 1

π ), and the cos(kx)
part of cos(jx) or of sin(jx) is 0, and similarly for sin(kx). We will take for granted
the third property, that this list of basic function is enough to give us good approx-
imations for functions with period 2π.

Notice that for Taylor Series we needed to know that the function f(x) which
we wanted to approximate was differentiable in order to compute the coefficients.
For Fourier Series we only need the function to be integrable. We will see some
examples where the functions don’t even need to be continuous!

3. Examples

Example 3.1. Compute the Fourier Polynomials F0, . . . , F5 for the 2π-periodic
square wave given by:

f(x) =

{
1 for 0 ≤ x ≤ π

0 for −π < x < 0

x
K15 K10 K5 0 5 10 15

0.2

0.4

0.6

0.8

1.0

a0 =
1
2π

∫ π

−π

f(x)dx =
1
2π

∫ π

0

1dx =
1
2
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So F0 = 1
2 . x

K15 K10 K5 0 5 10 15

0.2

0.4

0.6

0.8

1.0

a1 =
1
π

∫ π

−π

f(x) cos(x)dx =
1
π

∫ π

0

cos(x)dx =
1
π

sin(x)
∣∣π
0

=
1
π

(sin(π) − sin(0)) = 0

b1 =
1
π

∫ π

−π

f(x) sin(x)dx =
1
π

∫ π

0

sin(x)dx =
1
π

(− cos(x))
∣∣π
0

=
1
π

(− cos(π) + cos(0)) =
2
π

F1 =
1
2

+
2
π

sin(x)

x
K15 K10 K5 0 5 10 15

0.2

0.4

0.6

0.8

1.0

a2 =
1
π

∫ π

−π

f(x) cos(2x)dx =
1
π

∫ π

0

cos(2x)dx =
1
π

1
2

sin(2x)
∣∣π
0

=
1
π

(
1
2

sin(2π) − sin(0)
)

= 0

b2 =
1
π

∫ π

−π

f(x) sin(2x)dx =
1
π

∫ π

0

sin(2x)dx =
1
π

(
−1

2
cos(2x)

) ∣∣π
0

=
1
2π

(− cos(2π) + cos(0)) = 0

F2 =
1
2

+
2
π

sin(x) = F1

a3 =
1
π

∫ π

−π

f(x) cos(3x)dx =
1
π

∫ π

0

cos(3x)dx =
1
π

1
3

sin(3x)
∣∣π
0

=
1
π

(
1
3

sin(3π) − sin(0)
)

= 0
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b3 =
1
π

∫ π

−π

f(x) sin(3x)dx =
1
π

∫ π

0

sin(3x)dx =
1
π

(
−1

3
cos(3x)

) ∣∣π
0

=
1
3π

(− cos(3π) + cos(0)) =
2
3π

F3 =
1
2

+
2
π

sin(x) +
2
3π

sin(3x)

x
K15 K10 K5 0 5 10 15

0.2

0.4

0.6

0.8

1.0

a4 =
1
π

∫ π

−π

f(x) cos(4x)dx =
1
π

∫ π

0

cos(4x)dx =
1
π

1
4

sin(4x)
∣∣π
0

=
1
π

(
1
4

sin(4π) − sin(0)
)

= 0

b4 =
1
π

∫ π

−π

f(x) sin(4x)dx =
1
π

∫ π

0

sin(4x)dx =
1
π

(
−1

4
cos(4x)

) ∣∣π
0

=
1
4π

(− cos(4π) + cos(0)) = 0

F4 =
1
2

+
2
π

sin(x) = F3

a5 =
1
π

∫ π

−π

f(x) cos(5x)dx =
1
π

∫ π

0

cos(5x)dx =
1
π

1
5

sin(5x)
∣∣π
0

=
1
π

(
1
5

sin(5π) − sin(0)
)

= 0

b5 =
1
π

∫ π

−π

f(x) sin(5x)dx =
1
π

∫ π

0

sin(5x)dx =
1
π

(
−1

5
cos(5x)

) ∣∣π
0

=
1
5π

(− cos(5π) + cos(0)) =
2
5π

F5 =
1
2

+
2
π

sin(x) +
2
3π

sin(3x) +
2
5π

sin(5x)
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x
K15 K10 K5 0 5 10 15

0.2

0.4

0.6

0.8

1.0

Here’s F13 as well:

x
K15 K10 K5 0 5 10 15

0.2

0.4

0.6

0.8

1.0

Before doing the next example we notice some simplifications. We are integrating
over a symmetric interval. An odd function is symmetric with respect to the origin,
so if we integrate over a symmetric interval we will always get 0. Conversely, an
even function is symmetric with respect to the y-axis, so the area to the left of the
y-axis is equal to the area to the right of the y-axis.

The functions sin(kx) are odd. The functions cos(kx) are even. If f(x) is an
even function then the f(x) sin(kx) are odd, so the bk = 0. If f(x) is odd then the
f(x) cos(kx) are odd, so the ak = 0. Another way to remember these simplifications
is that an even function should be made up of even functions, so its Fourier Series
consists entirely of cos terms. An odd function should be made up of odd functions,
so its Fourier Series consists entirely of sin terms. This was true for Taylor Series
as well. Recall that the Taylor Series for sin(x) contained only odd powers of x,
while the Taylor Series for cos(x) contained only even powers.

Also, while we often will require a special argument for k = 0, usually we can
compute ak and bk for all k > 0 simultaneously, as in the following examples. This
will save us considerable work.
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Example 3.2. Find some Fourier Polynomials for the 2π-periodic sawtooth wave
defined by:

f(x) = x for −π < x < π

x
K5 p K4 p K3 p K2 p Kp 0 p 2 p 3 p 4 p 5 p

K3

K2

K1

1

2

3

On the interval [−π, π] this function is odd, so the ak = 0 and we need only
compute the bk. If f(x) is odd then f(x) sin(kx) is even, so we may compute
integrals on [0, π] and double the result.

Since a0 = 0, F0 = 0.

x
K15 K10 K5 0 5 10 15

K3

K2

K1

1

2

3
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bk =
1
π

∫ π

−π

f(x) sin(kx)dx

=
2
π

∫ π

0

x sin(kx)dx

=
2
kπ

∫ π

0

kx sin(kx)dx

substitute w = kx, so dx =
1
k

dw

=
2

k2π

∫ kπ

0

w sin(w)dw

=
2

k2π

∫ kπ

0

w sin(w)dw

=
2

k2π
(sin(w) − w cos(w))

∣∣kπ

0

=
2

k2π

(
−kπ(−1)k

)
=

2
k
· (−1)k+1

So b1 = 2 and F1 = b1 sin(x) = 2 sin(x).

x
K15 K10 K5 0 5 10 15

K3

K2

K1

1

2

3

b2 = −1, so F2 = 2 sin(x) − sin(2x).
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x
K15 K10 K5 0 5 10 15

K3

K2

K1

1

2

3

b3 = 2
3 , so F3 = 2 sin(x) − sin(2x) + 2

3sin(3x).

x
K15 K10 K5 0 5 10 15

K3

K2

K1

1

2

3

Here is F8:
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x
K15 K10 K5 0 5 10 15

K3

K2

K1

1

2

3

Example 3.3. Here’s a triangular wave with period 2π:

f(x) = |x| for −π ≤ x ≤ π

This wave is symmetric about the y-axis, so it is an even function, and bk = 0 for
all k. The Fourier Series will contain only cos terms. We simplify by integrating
on the interval [0, π] and doubling the result. On this interval |x| = x.

x
K5 p K4 p K3 p K2 p Kp 0 p 2 p 3 p 4 p 5 p

0.5

1.0

1.5

2.0

2.5

3.0

a0 =
2
2π

∫ π

0

f(x) cos(0x)dx =
2
2π

∫ π

0

xdx =
2x2

4π

∣∣π
0

=
π

2

F0 =
π

2
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x
K15 K10 K5 0 5 10 15

0.5

1.0

1.5

2.0

2.5

3.0

For k > 0

ak =
2
π

∫ π

0

f(x) cos(kx)dx

=
2
π

∫ π

0

x cos(kx)dx

=
2
kπ

∫ π

0

kx cos(kx)dx

substitute w = kx, so dx =
1
k

dw

=
2

k2π

∫ kπ

0

w cos(w)dw

=
2

k2π
(cos(w) + w sin(w))

∣∣kπ

0

=
2

k2π

(
(−1)k − 1

)
=

{
− 4

k2π if k is odd
0 if k is even

So a1 = − 4
π and

F1 =
π

2
− 4

π
cos(x)
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x
K15 K10 K5 0 5 10 15

0.5

1.0

1.5

2.0

2.5

3.0

a2 = 0 so F2 = F1.
a3 = − 4

9π so

F3 =
π

2
− 4

π
cos(x) − 4

9π
cos(3x)

x
K15 K10 K5 0 5 10 15

0.5

1.0

1.5

2.0

2.5

3.0

Example 3.4. Compute the Fourier Polynomials for the 2π-periodic triangular
wave given by:

f(x) =


− 2

π x − 2 for −π ≤ x ≤ −π
2

2
π x for −π

2 ≤ x ≤ π
2

− 2
π x + 2 for π

2 ≤ x ≤ π
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K5 p K4 p K3 p K2 p Kp 0 p 2 p 3 p 4 p 5 p

K0.8

K0.6

K0.4

K0.2

0.2

0.4

0.6

0.8

Notice that f(x) is an odd function, so the ak are all zero, we need only compute
the bk. f(x) sin(kx) is even, so we compute the integral on the interval [0, π] and
double the result.

So F0 = a0 = 0.

x
K15 K10 K5 0 5 10 15

K0.8

K0.6

K0.4

K0.2

0.2

0.4

0.6

0.8

All other ak = 0.
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bk =
2
π

∫ π

0

f(x) sin(kx)dx

=
2
π

(∫ π
2

0

2
π

x sin(kx)dx +
∫ π

π
2

(
− 2

π
x + 2

)
sin(kx)dx

)

=
2
π

(
2
π

∫ π
2

0

x sin(kx)dx − 2
π

∫ π

π
2

x sin(kx)dx + 2
∫ π

π
2

sin(kx)dx

)

substitute w = kx, so dx =
1
k

dw

=
2
π

(
2

k2π

∫ kπ
2

0

w sin(w)dw − 2
k2π

∫ kπ

kπ
2

w sin(w)dw +
2
k

∫ kπ

kπ
2

sin(w)dw

)

=
2
π

(
2

k2π
(sin(w) − w cos(w))

∣∣ kπ
2

0
− 2

k2π
(sin(w) − w cos(w))

∣∣kπ
kπ
2
− 2

k
cos(w)

∣∣kπ
kπ
2

)
the result of this computation will depend on whether k is odd or even
Assuming k is odd

=
2
π

(
2

k2π

(
(−1)

k−1
2

)
− 2

k2π

(
kπ − (−1)

k−1
2

)
+

2
k

)
=

4
k2π2

(
(−1)

k−1
2 − kπ + (−1)

k−1
2 + kπ

)
= (−1)

k−1
2

8
k2π2

On the other hand, if k is even

=
2
π

(
2

k2π

(
−kπ

2
(−1)

k
2

)
− 2

k2π

(
−kπ +

kπ

2
(−1)

k
2

)
− 2

k

(
1 − (−1)

k
2

))
=

4
k2π2

((
−kπ

2
(−1)

k
2

)
−
(
−kπ +

kπ

2
(−1)

k
2

)
− kπ

(
1 − (−1)

k
2

))
= 0

So we have found:

bk =

{
(−1)

k−1
2 8

k2π2 if k is odd
0 if k is even

F1 = b1 sin(x) =
8
π2

sin(x)
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x
K15 K10 K5 0 5 10 15

K0.8

K0.6

K0.4

K0.2

0.2

0.4

0.6

0.8

F3 =
8
π2

sin(x) − 8
9π2

sin(3x)

x
K15 K10 K5 0 5 10 15

K0.8

K0.6

K0.4

K0.2

0.2

0.4

0.6

0.8

4. Harmonics and Energy

The k-th harmonic of a function f(x) is the function ak cos(kx)+bk sin(kx) from
the Fourier Series of f(x).

Example 4.1. Consider the function:

f(x) = sin(x) + cos(x) − 5 sin(4x) + 3 cos(16x)

Note that this is already a Fourier Series, so there is no calculation to do, just like
a polynomial was its own Taylor Series.
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x
K15 K10 K5 0 5 10 15

K8

K6

K4

K2

2

4

6

8

There are three harmonics at work here, and by plotting graphs of the harmonics
together with graphs of the function we can see how each harmonic contributes to
the overall picture.

The first harmonic is sin(x) + cos(x). Notice that this accounts for the lowest
frequency shape of the graph.

x
K5 p K4 p K3 p K2 p Kp 0 p 2 p 3 p 4 p 5 p

K8

K6

K4

K2

2

4

6

8

In fact, we make this relationship even more obvious by graphing two vertical
translates of the first harmonic. Notice how the total function matches the contours
of the first harmonic.
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x
K5 p K4 p K3 p K2 p Kp 0 p 2 p 3 p 4 p 5 p

K8

K6

K4

K2

2

4

6

8

The fourth harmonic is −5 sin(4x). This accounts for the intermediate frequency.

x
K15 K10 K5 0 5 10 15

K8

K6

K4

K2

2

4

6

8

Again, we can make this relationship even more explicit by graphing two vertical
translates of the fourth harmonic.
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x
K5 p K4 p K3 p K2 p Kp 0 p 2 p 3 p 4 p 5 p

K8

K6

K4

K2

2

4

6

8

The only other non-zero harmonic is the 16th, 3 cos(16x). This accounts for the
high frequency behavior of the graph.

x
K5 p K4 p K3 p K2 p Kp 0 p 2 p 3 p 4 p 5 p

K8

K6

K4

K2

2

4

6

8

The energy E(f) of a 2π-periodic function f(x) is defined to be:

E(f) =
1
π

∫ π

−π

(f(x))2dx

We can compute that the energy of the k-th harmonic is a2
k + b2

k.
The Energy Theorem tells us that the energy of a 2π-periodic function is equal

to the sum of the energies of the harmonics:

E(f) = a2
0 + (a2

1 + b2
1) + (a2

2 + b2
2) + . . .

If we graph the energies of the k-th harmonics vs. k we get the Energy Spectrum
for f(x).

The energy spectrum has application to sound. If the energy of a function is
concentrated all in or around one value of k then the sound corresponding to that
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waveform would sound like a pure tone, like a generic, lifeless computer tone. If the
energy is spread out over different harmonics the corresponding sound would seem
richer and fuller. Different types of musical instruments have different characteristic
energy spectra, and this accounts for the different sounds that the instruments
make, even if they are all playing the same note. We will (hopefully) hear some
examples in class.

Example 4.2. For the sawtooth wave example we calculated that ak = 0 and
bk = 2

k · (−1)k+1, so the k-th harmonic is 2
k · (−1)k+1sin(kx) and the energy of the

k-th harmonic is b2
k = 4

k2 . Then energy spectrum for this wave is:

0 2 4 6 8 10
0

1

2

3

4

Example 4.3. For the square wave from the first example we calculated:

a0 =
1
2

ak = 0 for k > 0
bk = 0 for k even

bk =
2
kπ

for k odd

So the 0-th harmonic is 1
2 and all other even harmonics are 0. The odd harmonics

are 2
kπ sin(kx).

The energy spectrum is:
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0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

5. Homework Problems

Exercise 1. Show that the energy of the k-th harmonic ak cos(kx) + bk sin(kx) is
a2

k + b2
k.

Exercise 2. For the function f(x) = 4 sin(2x) + 2 cos(8x) sketch the function and
its non-zero harmonics on the interval [−5π, 5π].

For the following 2π-periodic functions, sketch the wave on the interval [−5π, 5π],
compute the Fourier coefficients, sketch the third Fourier Polynomial (F3), and
sketch the energy spectrum up to k = 3.

Exercise 3.

f(x) =

{
1 for −π

2 < x < π
2

−1 for −π < x < −π
2 and π

2 < x < π

Exercise 4.
f(x) = x2 for −π < x < π

Exercise 5.

f(x) =


2
π x + 1 for −π < x < −π

2

0 for −π
2 < x < π

2
2
π x − 1 for π

2 < x < π
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