Review

- 1. Suppose the power series $\sum_{k=0}^{\infty} c_k (x+1)^k$ converges at x=2 and diverges at x=-8.
 - (a) Determine for which values of x this power series *must* converge, or state that we do not have enough information to do so.
 - (b) Determine for which values of x this power series *must* diverge, or state that we do not have enough information to do so.
 - (c) Find the following limits, or state that there is not enough information to do so.

i.
$$\lim_{k \to \infty} c_k$$

ii.
$$\lim_{k \to \infty} (-3)^k c_k$$

iii.
$$\lim_{k \to \infty} 6^k c_k$$

- 2. Suppose T_n is the *n*th degree Taylor polynomial of f(x) and F_n is the *n*th partial sum of the Fourier series for f(x).
 - (a) When can we say $\lim_{n \to \infty} (f(x) T_n(x)) = 0$?
 - (b) When can we say $\lim_{n \to \infty} (f(x) F_n(x)) = 0$?

3. Use the fact that $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ to express the following power series as functions (assuming x is in the interval of convergence).

(a)
$$\sum_{k=1}^{\infty} kx^{k-1}$$

(b)
$$\sum_{k=2}^{\infty} k(k-1)x^{k-2}$$

(c)
$$\sum_{k=1}^{\infty} kx^{k}$$

(d)
$$\sum_{k=1}^{\infty} x^{k}$$

4. Find the sum of the following series:

(a)
$$\ln(4) + \frac{(\ln(4))^2}{2!} + \frac{(\ln(4))^3}{3!} + \frac{(\ln(4))^4}{4!} + \cdots$$

(b) $2 - \frac{2^3}{3} + \frac{2^5}{5} - \frac{2^7}{7} + \cdots$
(c) $1 - 0.5 + \frac{(0.5)^2}{2} - \frac{(0.5)^3}{3} + \frac{(0.5)^4}{4} - \cdots$

5. Find the following limits:

(a)
$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{(-1)^{k} \pi^{2k+1}}{4^{2k+1} (2k+1)!}$$

(b)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \sin\left(\pi + \frac{k\pi}{n}\right) \frac{\pi}{n}$$

(c)
$$\lim_{n \to \infty} \sum_{k=0}^{n} \left(\sin\left(\frac{1}{k}\right) - \sin\left(\frac{1}{k+2}\right)\right)$$

6. Let $f(x) = xe^{-x}$.

- (a) Find the second degree Taylor polynomial for f(x), centered at x = 4.
- (b) Find $f^{(20)}(0)$
- 7. Consider the differential equations

•
$$\frac{dy}{dx} = (y+2)(x^2+y^2)$$

• $\frac{dy}{dx} = \frac{1}{2}(y^2-1)$

- (a) Find the equilibrium solutions of each differential equation.
- (b) Solve the differential equation that is separable.