Review

1. Suppose the power series $\sum_{k=0}^{\infty} c_{k}(x+1)^{k}$ converges at $x=2$ and diverges at $x=-8$.
(a) Determine for which values of x this power series must converge, or state that we do not have enough information to do so.
(b) Determine for which values of x this power series must diverge, or state that we do not have enough information to do so.
(c) Find the following limits, or state that there is not enough information to do so.
i. $\lim _{k \rightarrow \infty} c_{k}$
ii. $\lim _{k \rightarrow \infty}(-3)^{k} c_{k}$
iii. $\lim _{k \rightarrow \infty} 6^{k} c_{k}$
2. Suppose T_{n} is the nth degree Taylor polynomial of $f(x)$ and F_{n} is the nth partial sum of the Fourier series for $f(x)$.
(a) When can we say $\lim _{n \rightarrow \infty}\left(f(x)-T_{n}(x)\right)=0$?
(b) When can we say $\lim _{n \rightarrow \infty}\left(f(x)-F_{n}(x)\right)=0$?
3. Use the fact that $\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$ to express the following power series as functions (assuming x is in the interval of convergence).
(a) $\sum_{k=1}^{\infty} k x^{k-1}$
(b) $\sum_{k=2}^{\infty} k(k-1) x^{k-2}$
(c) $\sum_{k=1}^{\infty} k x^{k}$
(d) $\sum_{k=1}^{\infty} x^{k}$
4. Find the sum of the following series:
(a) $\ln (4)+\frac{(\ln (4))^{2}}{2!}+\frac{(\ln (4))^{3}}{3!}+\frac{(\ln (4))^{4}}{4!}+\cdots$
(b) $2-\frac{2^{3}}{3}+\frac{2^{5}}{5}-\frac{2^{7}}{7}+\cdots$
(c) $1-0.5+\frac{(0.5)^{2}}{2}-\frac{(0.5)^{3}}{3}+\frac{(0.5)^{4}}{4}-\cdots$
5. Find the following limits:
(a) $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{(-1)^{k} \pi^{2 k+1}}{4^{2 k+1}(2 k+1)!}$
(b) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \sin \left(\pi+\frac{k \pi}{n}\right) \frac{\pi}{n}$
(c) $\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left(\sin \left(\frac{1}{k}\right)-\sin \left(\frac{1}{k+2}\right)\right)$
6. Let $f(x)=x e^{-x}$.
(a) Find the second degree Taylor polynomial for $f(x)$, centered at $x=4$.
(b) Find $f^{(20)}(0)$
7. Consider the differential equations

- $\frac{d y}{d x}=(y+2)\left(x^{2}+y^{2}\right)$
- $\frac{d y}{d x}=\frac{1}{2}\left(y^{2}-1\right)$
(a) Find the equilibrium solutions of each differential equation.
(b) Solve the differential equation that is separable.

