Math 122L Weekly Graded Homework Homework 6 (100 pts)

To get full credit for a question, clear explanation is necessary. Only submission in paper is accepted.

1. (15 pts) Suppose that we flip a die until we get either a 5 or 6 . Let X represent the time of flipping when we stop.
(a) What is the range of X ?
(b) Find the probability of $\mathbb{P}(X=1), \mathbb{P}(X=2), \mathbb{P}(X=3)$.
(c) Find $\mathbb{E} X$.
2. (20 pts) Determine whether the following sequence converges. Find the limit if it converges and explain the reason if it diverges.
(a) $a_{n}=\frac{1}{n^{3}}, n=1,2, \ldots ;$
(b) $a_{n}=\frac{\ln n}{n^{2}}, n=1,2, \ldots$;
(c) $a_{n}=\frac{\cos n}{\sqrt{n}}, n=1,2, \ldots$;
(d) $a_{n}=\sqrt[n]{2}, n=1,2, \ldots$.
3. (15 pts) Determine whether the series converges or diverges.
(a) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$;
(b) $\sum_{n=1}^{\infty} \frac{1}{|\cos n| \sqrt{n}}$;
(c) $\sum_{n=1}^{\infty} e^{-n} n^{2019}$;
4. (10 pts) Recall that L'Hospital's Rule helps compute indeterminant form of $0 / 0$ or ∞ / ∞. The counterpart of L'Hospital's Rule for sequences is called Stolz theorem:

Theorem 1. (Stolz, 0/0 type) Suppose that $\left\{a_{n}\right\},\left\{b_{n}\right\}$ converges to 0 and decreasing, and limit

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=l
$$

exists. Then we have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=l .
$$

Theorem 2. (Stolz, */ ∞ type) Suppose that $\left\{b_{n}\right\}$ is increasing and approaches $+\infty$ as $n \rightarrow \infty$, and limit

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=l
$$

exists. Then we have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=l .
$$

Now use Stolz theorem to compute the following limits:
(a) $\lim _{n \rightarrow \infty} \frac{1!+2!+\ldots+n!}{n!}$;
(b) $\lim _{n \rightarrow \infty} \frac{n}{2^{n}}$.
5. (25 pts) Suppose that sequence a_{n} satisfies $a_{1}=\frac{1}{2}, a_{n+1}=a_{n}-a_{n}^{2}$.
(a) Compute a_{2}, a_{3}, a_{4}.
(b) Prove that $0<a_{n}<1$ for any $n=1,2, \ldots$. (Hint: assume $0<a_{n}<1$, is it ture that $0<a_{n+1}<1$?)
(c) Prove that $\lim _{n \rightarrow \infty} a_{n}$ exists. (Hint: use monotonic sequence theorem)
(d) Find $\lim _{n \rightarrow \infty} a_{n}$.
(e) Find $\lim _{n \rightarrow \infty} n a_{n}$. (Hint: use Stolz theorem)
6. (15 pts) Determine whether the following improper integrals converges.
(a) $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} \mathrm{~d} x$;
(b) $\int_{0}^{\pi / 4} \frac{1}{\sqrt{\sin x}} \mathrm{~d} x$; (Hint: what is $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{\sin x}}$?)
(c) $\int_{1}^{\infty} e^{-x^{2}} x^{2} \mathrm{~d} x$.

