Problem Set \#5 Solutions

1. (a) We win $\$ 2$ when exactly one coin comes up heads. There are eight possible outcomes overall, three of which (HTT, THT, TTH) have one head. Therefore the probability that $X=2$ is $\frac{3}{8}$.
(b) Similarly to part a), we see that $P(X=1)=\frac{1}{8}, P(X=2)=\frac{3}{8}, P(X=4)=\frac{3}{8}, P(X=8)=\frac{1}{8}$. Therefore,

$$
E(X)=1 p(1)+2 p(2)+4 p(4)+8 p(8)=\frac{1}{8}+\frac{2 \cdot 3}{8}+\frac{4 \cdot 3}{8}+\frac{8}{8}=\frac{27}{8}
$$

(c) If a coin has probability p of coming up heads, then the probability of coming up tails is $(1-p)$. Then the probability of flipping three tails is $(1-p)^{3}$, the probability of flipping one head and two tails is $3 p(1-p)^{2}$. (Note that the factor of 3 is to account for the fact that each of the three coins coming up heads is counted separately). The probability of flipping two heads is $3 p^{2}(1-p)$. The probability of flipping three heads is p^{3}.
Therefore the expected value is

$$
\begin{aligned}
E(X) & =1 P(X=1)+2 P(X=2)+4 P(X=4)+8 P(X=8) \\
& =(1-p)^{3}+2 \cdot 3 p(1-p)^{2}+4 \cdot 3 p^{2}(1-p)+8 p^{3} \\
& =((1-p)+2 p)^{3} \\
& =(1+p)^{3}
\end{aligned}
$$

(Note: you can also expand the terms and then factor to find the above).
Since the expected value is $\frac{64}{27}$, we set $(1+p)^{3}=\frac{64}{27}$, and thus $(1+p)=\frac{4}{3}$. Therefore $p=\frac{1}{3}$.
2. (a) Determine whether the sequence converges or diverges. If it converges, find the limit.
i. $a_{n}=\frac{(-1)^{n-1} n}{n^{2}+1}$

Solution $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=0$. Thus $\lim _{n \rightarrow \infty} a_{n}=0$
ii. $a_{n}=\left(1+\frac{2}{n}\right)^{n}$

Solution $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n}=e^{2}$ by setting $y=\left(1+\frac{2}{x}\right)^{x}$ and compute the limit of $\ln y$.
(b) Determine whether the series converges or diverges. If it converges, find the limit.
i. $\sum_{n=2}^{\infty} \frac{1}{n(n+2)}$

Solution $\lim _{n \rightarrow \infty} a_{n}=0$. Inclusive. $S_{n}=\sum_{i=2}^{n} \frac{1}{i(i+2)}=\sum_{i=2}^{n} \frac{1}{2}\left(\frac{1}{i}-\frac{1}{i+2}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\right.$ $\left.\frac{1}{6}+\cdots+\frac{1}{n}-\frac{1}{n+2}\right)=\frac{1}{2}\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{n+1}-\frac{1}{n+2}\right)$. Thus $\sum_{n=2}^{\infty} \frac{1}{n(n+2)}=\lim _{n \rightarrow \infty} S_{n}=\frac{1}{4}+\frac{1}{6}=\frac{5}{12}$
ii. $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$

Solution $\lim _{n \rightarrow \infty} a_{n}=0$. Inclusive. $S_{n}=\sum_{i=1}^{n} \ln \frac{i}{i+1}=\ln \frac{1}{2}+\ln \frac{2}{3}+\ln \frac{3}{4}+\cdots+\ln \frac{n}{n+1}=\ln \frac{1}{n+1}$.
Thus $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \ln \frac{1}{n+1}=-\infty$. Therefore the series diverges.
(c) If the nth partial sum of a series $\sum_{n=1}^{\infty} a_{n}$ is

$$
S_{n}=\frac{n-1}{n+1}
$$

find a_{n} and $\sum_{n=1}^{\infty} a_{n}$.

Solution $a_{n}=S_{n}-S_{n-1}=\frac{n-1}{n+1}-\frac{n-2}{n}=\frac{2}{n(n+1)}$.
$\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} S_{n}=1$.
(d) If the nth partial sum of a series $\sum_{n=1}^{\infty} a_{n}$ is

$$
S_{n}=S_{n-1}+\cos \left(S_{n-1}\right) \quad S_{1}=1
$$

Suppose this series converges to a finite number, L where $0<L<4$. Find $\lim _{n \rightarrow \infty} a_{n}$ and $\sum_{n=1}^{\infty} a_{n}$.
Solution $\lim _{n \rightarrow \infty} a_{n}=0$ since the series is convergent.
Since the series converges to L, we have $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} S_{n-1}=L$. Taking the limit on both sides of the equation above, we get $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} S_{n-1}+\lim _{n \rightarrow \infty} \cos \left(S_{n-1}\right)$ which gives us $L=L+\cos (L)$. Thus $L=\frac{\pi}{2}=\sum_{n=1}^{\infty} a_{n}$.
3. (a) Notice that this is a geometric series with $a=-\frac{1}{3}$ and $r=-\frac{1}{3}$, so the series is convergent, and the sum is $\frac{a}{1-r}=-\frac{1}{3} \cdot \frac{1}{1-\frac{-1}{3}}=-\frac{1}{4}$.
(b) Consider function $f(x)=\left(1+\frac{2}{x}\right)^{x}$, we have

$$
\ln f(x)=x \ln \left(1+\frac{2}{x}\right)
$$

and by L'Hospital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \ln f(x) & =\lim _{x \rightarrow+\infty} \frac{\ln \left(1+\frac{2}{x}\right)}{\frac{1}{x}} \\
& =\lim _{x \rightarrow+\infty} \frac{\frac{x}{x+2} \cdot \frac{-2}{x^{2}}}{-\frac{1}{x^{2}}} \\
& =2
\end{aligned}
$$

Thus the limit of $a_{k}=(1+2 / k)^{k}$ should be e^{2}, and by test for divergence, the series is divergent.
(c) Notice that $\lim _{k \rightarrow+\infty} \frac{k}{\sqrt{k^{2}+4}}=\lim _{k \rightarrow+\infty} \frac{1}{\sqrt{1+4 / k^{2}}}=1$, so by test for divergence, the series is divergent.
(d) Because $2>1$, so for any $k>0,2^{1 / k}>1$, and it can not have a limit 0 . So by test for divergence, the series is divergent.
In fact, the sequence does have a limit of 1 . Suppose that $2^{1 / k}=1+a_{k}$, we only need to prove that a_{k} has a limit 0 . We have

$$
\begin{aligned}
2=\left(1+a_{k}\right)^{k} & =1+k a_{k}+\frac{k(k-1)}{2} a_{k}^{2}+\ldots \\
& >1+k a_{k} .
\end{aligned}
$$

Thus $a_{k}<1 / k$, so it has a limit 0 by squeeze theorem.
4. (a) We stop only we get 1 or 3 . So we rolls two times means until the last time, we don't get 1 or 3 . Since each roll is independent we know that

$$
P(X=2)=\frac{2}{6} * \frac{4}{6}=\frac{2}{9}
$$

(b) We don't get 1 and 3 until the k th roll, so we know that

$$
P(X=k)=\frac{2}{6} *\left(\frac{4}{6}\right)^{k-1}
$$

(c) There are two way to compute the probability:
(1) use the geometric series $P(X \geq 3)=\sum_{k=3}^{\infty} P(X=k)=\sum_{k=3}^{\infty} \frac{2}{6} *\left(\frac{4}{6}\right)^{k-1}=\frac{4}{9}$
(2)Notice that $P(X \geq 3)=1-P(X=1)-P(X=2)=1-\frac{1}{3}-\frac{2}{9}=\frac{4}{9}$
5. (a) We may use telescope series like $\sum_{k=1}^{\infty} c_{k}=\sum_{k=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$
(b) We may use two convergent geometic series $\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} \frac{1}{2^{k}}$ and $\sum_{k=1}^{\infty} b_{k}=\sum_{k=1}^{\infty} \frac{1}{2^{k}}, \sum_{k=1}^{\infty} \frac{a_{k}}{b_{k}}=\sum_{k=1}^{\infty} 1$ is divergent.

