Problem Set #4 Solutions

1. (a) i. Using integration by parts with v = In |z|, dv = z, and so du = %da? and v = %2, we have
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ii. Using integration by parts with « = arctan x, dv = dx, and so du = ﬁ and v = x, we have
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/arctanx dr = rarctanx — / ——dx.
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Now using substitution with u = 1 + x2, we have the above is equal to
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=1 2 and dv = cosz dx, we get that

(b) Using Integration by parts with u = cos
/cosn rdr =sinzcos" x4 (n—1) / sin? z cos" 2 x dx
=sinzcos" ta 4 (n—1) /(1 — cos? ) cos" % x du.
Adding [ cos™ 2 x dx to both sides, we get

n/cos" rdr =sinzcos" 'z + (n—1) /Cos"*2 xdx.

Dividing by n on both sides gives the desired result.

2. Use the Comparison Theorem to determine whether the integral is convergent or divergent.
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Solution _r < x < — for x > 0. By p-test we know that / —dx is convergent. Thus
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/1 mdw is convergent. Since f(z) = e is continuous on the interval [0, 1], /0 mdw is
finite. Thus the integral converges.
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Solution vt > x > z > — for z > 1. By p-test we know that / —dzx is divergent.
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Thus this integral is divergent by Comparison Theorem.
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Solution We cannot compare this integral with pe becasue —g < arctanz < g Instead we can
e
c v ° arctan * 7 1
consider for any ¢ > —. Suppose ¢ = 7, then / ———dx < / dx = 7r/ dzx
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We know that / dx is convergent since < — whose integral from 0 to infinity is convergent.
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Thus 7 / 5 —dz is also convergent. Therefore the integral is convergent by Comparison Theorem.
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Solution SinceOSsinz(az <1, " sin® d </ —d / —dz = lim / —dzx = lim Q\f =
: Vel e 7
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lim+(2\/7? - 2\/%) = 2¢/m. Thus / de is convergent, and the integral is convergent by Comparison
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Theorem.

3. Evaluate the following improper integrals.
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Solution Notice that (e_c”z)’ = -2z 6_7027 so by definition of improper integrals and FTC, we have
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Solution the integrand is not continuous at 0, so we can’t use FTC directly. By definition, we have
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The last equality holds due to lim Int =
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Solution Notice that (1/2?)" = —2/x3, by definition and integration by parts, we have
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(c)

Int
Remember that e?* dominates x as = approaches infinity, so . ligl —— = 0. So the limit above should
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be 1/4.
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Solution This integral is improper for two reasons: The interval [0,c0) is infinite and the integrand has
an infinite discontinuity at 0. Evaluate it by expressing it as a sum of improper integrals of Type 2 and
Type 1 as follows:
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Letu-ﬁuQ—x 2udu = dx.
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ta0+/ NG ET] = t£%1+ y mdu = t£%1+ 2 arctan(u)‘ﬂ = t£%1+ 2(arctan(1) —arctan(v/t)) = 3
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Similarly, hm / \f i+ )d = Slirgo T2 du = SILHSCQarctan(u)ll = Sl;ngo 2(arctan(s)—arctan(1l)) =
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Solution
/sin3 () cos®(z)dx = / — sin?(z) cos?(z)d(cos(x))

:/(cosz( ) — 1)(cos?(z))d(cos(z))
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/ arcsin(x)dzx

Solution
/arcsin(x)da: = arcsin(z)x — /xd(arcsin(x))
= arcsin(z)x — / e
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Solution
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+xdr  polynomials division

+ ) dxr by solving linear equation
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Solution Let x=2u,dx=2du,then
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5. (a) If lim f(z) =0, then /OO f(t)dt converges.
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Solution False. consider f(z) = 1/x when & > 1 and f(z) = 1 when 0 < z < 1. Because / ;dx
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diverges, so the improper integral also diverges.

(b) If/ f(t)dt converges, then lim f(z) =
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Solution False. Consider f(z) defined as f(x) =1 if and only if = € [n,n + 1/2"], where n = 2,3, ..., and
f(z) = 0 anywhere else. Then
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However, f(x) does not have a limit at infinity since it will attain 1 for infinitely many times.

(¢) If lim f(z)=aand / f(t)dt converges, then a = 0.
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Solution True. By definition, the integral converges if and only if the following limit exists: . 1i§1 fot f(z)dz
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If a # O(without loss of generality we assume it is positive), then there exists X s.t. if x > X, then we
have f(z) > a/2. Thus tl f(z)dx — tz f( )da > (t; — t2)a/2 holds for any t1,ts where t; > ¢t > X.

This contradicts to the convergence of fo x)dz.



