Problem Set #3

1. Suppose function f passes through the following points:

x	0	2	4	6	8	10	12
f(x)	2	-1	7	2	5	8	5

- (a) Approximate $\int_0^{12} f(x)dx$ using the **smallest** Riemann Sum with 3 rectangles of equal width.
- (b) Approximate $\int_0^8 (f(x))^2 dx$ using the **Trapezoid Rule** with 2 rectangles of equal width.
- (c) If by using a LHS, we could approximate $\int_1^5 f(x)dx$ by $\sum_{k=0}^6 f(1+\frac{4k}{7})\cdot\frac{4}{7}$. If we instead want to approximate $\int_6^{10} f(x)dx$ with the same number of rectangles, how should we adjust the Riemann Sum?
- 2. Evaluate the following integrals. (First write down the definite integral and then use FTC or area to compute the integral.)

(a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(4 - 3 \left(\frac{2i}{n} \right)^2 + 6 \left(\frac{2i}{n} \right)^5 \right) \cdot \frac{2}{n}$$

(b)
$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \sqrt{4 - \left(\frac{4i}{n} - 2\right)^2} \cdot \frac{4}{n}$$

(c)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{-1}{n \cdot \left(1 + \left(\frac{k}{n}\right)^{2}\right)}$$

3. Evaluate the following:

(a)
$$\frac{d}{dx} \int_0^x e^{-t^2} dt$$

(b)
$$\frac{d}{dx} \int_{1}^{x^2} \ln(t+t^2) dt$$

(c)
$$\frac{d}{dx} \int_0^x \frac{\sin t + 1}{\cos^3 t} dt - \int_0^x \frac{d}{dt} \left(\frac{\sin t + 1}{\cos^3 t} \right) dt$$

4. Use u-substitution to find the following integrals.

(a)
$$\int_4^9 \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

(b)
$$\int_0^1 \frac{\sin^{-1}(x)}{\sqrt{1-x^2}} dx$$

- (c) If f is continuous and even, and $\int_{-9}^{9} f(x)dx = 8$, find $\int_{0}^{3} x f(x^{2})dx$.
- 5. Find the following definite integrals and antiderivatives:

(a)
$$\int_1^3 \frac{13x+7}{(3x-1)(2x+5)} dx;$$

(b)
$$\int \frac{2x+1}{\sqrt{1-x^2}} dx;$$

(c)
$$\int \frac{1}{(1+x^2)^2} dx$$
.

6. Define the dirichlet function (see wiki or google it, which is a quite important example in math) on [0,1]: f(x) = 0 when x is irrational number, while f(x) = 1 when x is rational number.

1

(a) compute the RHS(3),LHS(3) and the MPS(3)

- (b) compute the RHS(n),LHS(n) and the MPS(n)
- (c) Recall in last problem set/lab we define the minimum sum, now compute $\operatorname{Min}(3)$ and then compute $\operatorname{Min}(n)$.
- (d) (Extra Creadit) Does there exist the definite integral $\int_0^1 f(x) dx$
 Explain why.

hint: in each interval[a,b], there will always be irrational number inside it.