Problem Set #3 Solutions

1. Suppose function f passes through the following points:
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(a) Approximate fo z)dz using the smallest Riemann Sum with 3 rectangles of equal width.
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(b) Approximate fo ))2dx using the Trapezoid Rule with 2 rectangles of equal width.
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(¢) If by using a LHS, we could approximate fl x)dzx by Z f( 1+ ? If we instead want to approximate

610 f(x)dx with the same number of rectangles, how should we adjust the Riemann Sum?
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2. Evaluate the following integrals. (First write down the definite integral and then use FTC or area to compute
the integral.)
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/ V4 —x%dx  (see remark below for more explanation of this step)
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= area of semi-circle center at (0,0) with radius 2
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Remark Can also think of the integral first as f04 V4 — (z —2)%dz. Let u =2 — 2,du = dx, and u goes
from —2 to 2. Then it becomes f_22 V4 — u2du.
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3. (a) Solution By FTC II, we have that
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(b) Solution Let h(x) = ;" In(t+¢*)dt. By FTC II, we note that h’(z) = In(z + ?). The question, however,
is asking us to find LA (2?). Using Chain Rule,
ih(xQ) = 2xh/(2?)
dx
=2z In(z? + 2%).
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By FTC II, the first term is simply f(z). By FTC I, on the other hand, the second term is f(z) — f(0).
Therefore, their difference is f(0) = 1.

(¢) Solution To simplify notation, write f(t) = and we want to find

4. Use u-substitution to find the following integrals.
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Solution Let u = +/z,du = %ﬁdaz x goes from 4 to 9, then u goes from 2 to 3.
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Solution Let & = sin(u),u = sin~*(z), dz = cos(u)du. z goes from 0 to 1, then u goes from 0 to 7
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(c) If f is continuous and even, and ffg f(z)dx = 8, find f03 xf(x?

Solution Let u = 2, du = 2xdx. = goes from 0 to 3, then u goes from 0 to 9.
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5. (a) We need to decompose the integrand into partial fraction. Suppose A, B satisfy
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then we have
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Thus 2A+ 3B =13,5A — B =17. So we have A =2, B = 3. Thus
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(b) trig substitution works for this integral, but an easier way is using simple u-substitution and linearity:
Let u = 22, then
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(c) Let x = tan@, then dr = sec? §df. We have
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6. Define the dirichlet function(see wiki or google it, which is a quite important example in math) on [0,1]: f(z) = 0
when z is irrational number,while f(x) = 1 when z is rational number.

The key is to notice that the minimum of f in each interval is 0, why the midpoint,right/left hand point all
have f=1, as they are rational(i/2n)

(a) RHS(3)=LHS(3)=MPS(3)=1

(b) RHS(n)=LHS(n)= MPS(n)=1

(¢) Min(3)=0

(d) No, as hmnﬁooMm( )=0, while lim,,_, .o RHS(n)=1(Just a reminder that it’s not enough to check only the
four sums we’ve learned!)



