Problem Set \#3 Solutions

1. Suppose function f passes through the following points:

x	0	2	4	6	8	10	12
$\mathrm{f}(\mathrm{x})$	2	-1	7	2	5	8	5

(a) Approximate $\int_{0}^{12} f(x) d x$ using the smallest Riemann Sum with 3 rectangles of equal width.

Solution

$$
\begin{aligned}
\int_{0}^{12} f(x) d x & \approx(-1) \cdot \frac{12}{3}+(2) \cdot \frac{12}{3}+(5) \cdot \frac{12}{3} \\
& =-4+8+20 \\
& =24
\end{aligned}
$$

(b) Approximate $\int_{0}^{8}(f(x))^{2} d x$ using the Trapezoid Rule with 2 rectangles of equal width. Solution

$$
\begin{aligned}
\int_{0}^{8}(f(x))^{2} d x & \approx \frac{2^{2}+7^{2}}{2} \cdot \frac{8}{2}+\frac{7^{2}+5^{2}}{2} \cdot \frac{8}{2} \\
& =106+148 \\
& =254
\end{aligned}
$$

(c) If by using a LHS, we could approximate $\int_{1}^{5} f(x) d x$ by $\sum_{k=0}^{6} f\left(1+\frac{4 k}{7}\right) \cdot \frac{4}{7}$. If we instead want to approximate $\int_{6}^{10} f(x) d x$ with the same number of rectangles, how should we adjust the Riemann Sum?

Solution $\sum_{k=0}^{6} f\left(6+\frac{4 k}{7}\right) \cdot \frac{4}{7}$
2. Evaluate the following integrals. (First write down the definite integral and then use FTC or area to compute the integral.)
(a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(4-3\left(\frac{2 i}{n}\right)^{2}+6\left(\frac{2 i}{n}\right)^{5}\right) \cdot \frac{2}{n}$

Solution

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(4-3\left(\frac{2 i}{n}\right)^{2}+6\left(\frac{2 i}{n}\right)^{5}\right) \cdot \frac{2}{n} & =\int_{0}^{2}\left(4-3 x^{2}+6 x^{5}\right) d x \\
& =4 x-x^{3}+\left.x^{6}\right|_{0} ^{2} \\
& =8-8+64 \\
& =64
\end{aligned}
$$

(b) $\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \sqrt{4-\left(\frac{4 i}{n}-2\right)^{2}} \cdot \frac{4}{n}$

Solution

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \sqrt{4-\left(\frac{4 i}{n}-2\right)^{2}} \cdot \frac{4}{n} & =\int_{-2}^{2} \sqrt{4-x^{2}} d x \quad \text { (see remark below for more explanation of this step) } \\
& =\text { area of semi-circle center at }(0,0) \text { with radius } 2 \\
& =\frac{1}{2} \cdot \pi 2^{2} \\
& =2 \pi
\end{aligned}
$$

Remark Can also think of the integral first as $\int_{0}^{4} \sqrt{4-(x-2)^{2}} d x$. Let $u=x-2, d u=d x$, and u goes from -2 to 2 . Then it becomes $\int_{-2}^{2} \sqrt{4-u^{2}} d u$.
(c) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{-1}{n \cdot\left(1+\left(\frac{k}{n}\right)^{2}\right)}$

Solution

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{-1}{n \cdot\left(1+\left(\frac{k}{n}\right)^{2}\right)} & =\int_{0}^{1} \frac{-1}{1+x^{2}} d x \\
& =\left.\cot ^{-1}(x)\right|_{0} ^{1} \\
& =\cot ^{-1}(1)
\end{aligned}
$$

3. (a) Solution By FTC II, we have that

$$
\begin{aligned}
\frac{d}{d x} \int_{0}^{x} e^{-t^{2}} d t & =\left.e^{-t^{2}}\right|_{t=x} \\
& =e^{-x^{2}}
\end{aligned}
$$

(b) Solution Let $h(x)=\int_{1}^{x} \ln \left(t+t^{2}\right) d t$. By FTC II, we note that $h^{\prime}(x)=\ln \left(x+x^{2}\right)$. The question, however, is asking us to find $\frac{d}{d x} h\left(x^{2}\right)$. Using Chain Rule,

$$
\begin{aligned}
\frac{d}{d x} h\left(x^{2}\right) & =2 x h^{\prime}\left(x^{2}\right) \\
& =2 x \ln \left(x^{2}+x^{4}\right)
\end{aligned}
$$

(c) Solution To simplify notation, write $f(t)=\frac{\sin t+1}{\cos ^{3} t}$, and we want to find

$$
\frac{d}{d x} \int_{0}^{t} f(t) d t-\int_{0}^{x} f^{\prime}(t) d t
$$

By FTC II, the first term is simply $f(x)$. By FTC I, on the other hand, the second term is $f(x)-f(0)$. Therefore, their difference is $f(0)=1$.
4. Use u-substitution to find the following integrals.
(a) $\int_{4}^{9} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$

Solution Let $u=\sqrt{x}, d u=\frac{1}{2} \frac{1}{\sqrt{x}} d x$. x goes from 4 to 9 , then u goes from 2 to 3 .

$$
\begin{aligned}
\int_{4}^{9} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x & =\int_{2}^{3} 2 e^{u} d u \\
& =\left.2 e^{u}\right|_{2} ^{3} \\
& =2 e^{3}-2 e^{2}
\end{aligned}
$$

(b) $\int_{0}^{1} \frac{\sin ^{-1}(x)}{\sqrt{1-x^{2}}} d x$

Solution Let $x=\sin (u), u=\sin ^{-1}(x), d x=\cos (u) d u . x$ goes from 0 to 1 , then u goes from 0 to $\frac{\pi}{2}$.

$$
\begin{aligned}
\int_{0}^{1} \frac{\sin ^{-1}(x)}{\sqrt{1-x^{2}}} d x & =\int_{0}^{\frac{\pi}{2}} \frac{u}{\sqrt{1-\sin ^{2}(u)}} \cdot \cos (u) d u \\
& =\int_{0}^{\frac{\pi}{2}} u \cdot d u \\
& =\left.\frac{1}{2} u^{2}\right|_{0} ^{\frac{\pi}{2}} \\
& =\frac{\pi^{2}}{8}
\end{aligned}
$$

(c) If f is continuous and even, and $\int_{-9}^{9} f(x) d x=8$, find $\int_{0}^{3} x f\left(x^{2}\right) d x$.

Solution Let $u=x^{2}, d u=2 x d x . x$ goes from 0 to 3 , then u goes from 0 to 9 .

$$
\begin{aligned}
\int_{0}^{3} x f\left(x^{2}\right) d x & =\int_{0}^{9} \frac{1}{2} f(u) d u \\
& =\frac{1}{2} \int_{0}^{9} f(x) d x \\
& =\frac{1}{2} \cdot\left(\frac{1}{2} \int_{-9}^{9} f(x) d x\right) \\
& =\frac{1}{2} \cdot \frac{1}{2} \cdot 8 \\
& =2
\end{aligned}
$$

5. (a) We need to decompose the integrand into partial fraction. Suppose A, B satisfy

$$
\frac{13 x+7}{(3 x-1)(2 x+5)}=\frac{A}{3 x-1}+\frac{B}{2 x+5}
$$

then we have

$$
\begin{aligned}
\frac{13 x+7}{(3 x-1)(2 x+5)} & =\frac{A}{3 x-1}+\frac{B}{2 x+5} \\
& =\frac{A(2 x+5)+B(3 x-1)}{(3 x-1)(2 x+5)} \\
& =\frac{(2 A+3 B) x+5 A-B}{(3 x-1)(2 x+5)}
\end{aligned}
$$

Thus $2 A+3 B=13,5 A-B=7$. So we have $A=2, B=3$. Thus

$$
\begin{aligned}
\int \frac{13 x+7}{(3 x-1)(2 x+5)} \mathrm{d} x & =\int \frac{2}{3 x-1}+\frac{3}{2 x+5} \mathrm{~d} x \\
& =\frac{2}{3} \ln |3 x-1|+\frac{3}{2} \ln |2 x+5|+C
\end{aligned}
$$

(b) trig substitution works for this integral, but an easier way is using simple u-substitution and linearity: Let $u=x^{2}$, then

$$
\begin{aligned}
\int \frac{2 x+1}{\sqrt{1-x^{2}}} \mathrm{~d} x & =\int \frac{2 x}{\sqrt{1-x^{2}}} \mathrm{~d} x+\int \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x \\
& =\int \frac{1}{\sqrt{1-u}} \mathrm{~d} u+\arcsin x \\
& =-2 \sqrt{1-u}+\arcsin x+C \\
& =-2 \sqrt{1-x^{2}}+\arcsin x+C
\end{aligned}
$$

(c) Let $x=\tan \theta$, then $d x=\sec ^{2} \theta \mathrm{~d} \theta$. We have

$$
\begin{aligned}
\int \frac{1}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x & =\int \frac{1}{\left(\sec ^{2} \theta\right)^{2}} \cdot \sec ^{2} \theta \mathrm{~d} x \\
& =\int \cos ^{2} \theta \mathrm{~d} \theta \\
& =\int \frac{1+\cos 2 \theta}{2} \mathrm{~d} \theta \\
& =\frac{\theta}{2}+\frac{\sin 2 \theta}{4}+C
\end{aligned}
$$

Remember that $x=\tan \theta$, so $\theta=\operatorname{acrtan} x$ and

$$
\sin 2 \theta=2 \sin \theta \cos \theta=2 \tan \theta \cos ^{2} \theta=\frac{2 x}{1+x^{2}}
$$

So

$$
\int \frac{1}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x=\frac{\arctan x}{2}+\frac{x}{2\left(1+x^{2}\right)}+C
$$

6. Define the dirichlet function(see wiki or google it, which is a quite important example in math) on $[0,1]: f(x)=0$ when x is irrational number, while $f(x)=1$ when x is rational number.
The key is to notice that the minimum of f in each interval is 0 , why the midpoint,right/left hand point all have $\mathrm{f}=1$, as they are $\operatorname{rational}(i / 2 n)$
(a) $\operatorname{RHS}(3)=\operatorname{LHS}(3)=\operatorname{MPS}(3)=1$
(b) $\operatorname{RHS}(\mathrm{n})=\operatorname{LHS}(\mathrm{n})=\operatorname{MPS}(\mathrm{n})=1$
(c) $\operatorname{Min}(3)=0$
(d) No, as $\lim _{n \rightarrow \infty} \operatorname{Min}(\mathrm{n})=0$, while $\lim _{n \rightarrow \infty} \operatorname{RHS}(\mathrm{n})=1$ (Just a reminder that it's not enough to check only the four sums we've learned!)
