Problem Set #2

1. Consider a small plane preparing to take off. Suppose that the plane needs to be travelling at least 28 m/s to be able to lift off. It takes 50 s to reach this speed. At various intervals, the speed is measured, given in the table below:

t	0	10	20	30	40	50
v(t)	0	4	10	16	21	28

Suppose the runway is 700 m long.

- (a) Use a right hand sum to approximate the distance the plane covers on the ground before it takes off.
- (b) From your estimate in part (a), can you conclude that the runway is or is not long enough? Or do you have insufficient information?
- (c) Use trapezoid rule to approximate the distance the plane covers on the ground before it takes off.
- (d) From your estimate in part (b), can you conclude that the runway is or is not long enough? Or do you have insufficient information?

2.
$$\int_{-1}^{3} (3-2x)dx$$

- (a) Evaluate this integral as a limit of Riemann sums. (Your answer should be a number.)
- (b) Evaluate the integral by interpreting it in terms of areas. Plot the function and indicate the corresponding area(s).
- 3. Consider the following sums:

$$S_n = \sum_{i=1}^n \frac{n}{i^2 + n^2}, n = 1, 2, \dots$$

- (a) Recall that the Right Hand Sum has the form $RHS(n) = \sum_{i=1}^{n} \Delta x \cdot f(a + i\Delta x)$, rewrite S_n as a RHS.
- (b) Use definition of integrals and FTC to find $\lim_{n \to +\infty} S_n$.
- (c) Denote the limit in problem (b) as S_{∞} . Compute S_1, S_2, S_3 and compare them with S_{∞} : $S_1 _ S_{\infty}$, $S_2 _ S_{\infty}, S_3 _ S_{\infty}$.
- (d) According to the comparison in (c), what is the relationship between $S_n, n = 1, 2, ...$ and S_{∞} ? Prove your claim by **one** of the following two ways:
 - i. figures of Riemann sums and properties of Riemann sums;
 - ii. MVT.
- 4. For this question, we will consider the maximum possible Riemann sum with n rectangles, which we will denote MAX(n), for the function x^2 on the interval [-1, 1]. It is important to recall that Riemann sums do not necessarily need to be either left-hand or right-hand sums.
 - (a) Compute MAX(4)
 - (b) Compute MAX(5)
 - (c) Compute MAX(2n) for any n (note: 2n is just an arbitrary even number)
- 5. Evaluate the following limits

(a)
$$\lim_{x \to 0} \frac{5^x - 2^x}{x^5 - x}$$

(b)
$$\lim_{x \to \infty} x^{\overline{x}}$$

(c) $\lim_{x \to 0} \frac{\sin(x^2)}{\sin^2 x}$