Week 3. 5 First talk at the calc example

Find the limit of Calculus (E) 09.09

Last week:

\[
\int_a^b f(x) \, dx = F(b) - F(a)
\]

when \(F(x) \) is differentiable and \(F(x) \) is continuous

This week: \(\frac{d}{dx} \left(\int_a^x f(t) \, dt \right) \) = ? when \(f(x) \) is continuous

(Albeit prove, we prove it in detail)

1) Extreme Value Theorem: If \(f \) is continuous on a closed interval \([a,b]\), then \(f \) attains an absolute maximum value \(f_c \) and absolute minimum value \(f_m \)

Let \(g(x) = \int_a^x f(t) \, dt \)

\[
\frac{(g(x+h) - g(x))}{h} = \frac{\int_a^{x+h} f(t) \, dt}{h}
\]
As \(h \to 0 \), \([x + h, x]\) \to x,

and \(m = \lim_{h \to 0} f(x) \) if \(m = \lim_{h \to 0} f(x + h) \) only?

Therefore \(\frac{df[x + h]}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = f'(x) \)

Find the derivative of \(\cos x \) (\(x \))

\(\frac{d}{dx} \left(\int_a^x f(t) \, dt \right) = f(x) \) if \(f \) is continuous at \(x \),
ex: 0 \[g_w(x) = \int x^4 \, dt \]

\[g'_w(x) = \sqrt{1 + x^2} \]

Q: \((\frac{d}{dx}) \left(\int x^4 \, dt + x^2 \right) = ? \)

\(\text{circle tile!} \)

\(\text{sec}(x^2) \sqrt{x^4} \)

2. derivative of \(g_{12} = \int x^5 \, dx \)

\(\int e^t \, dt = \int (1 + t) \, dt \)

\(h(x) = \int 3x^4 \, dx \)

6. \(\int e^{\frac{t}{2}} \cdot a(t) \, dt \)

\(h'(x) = (\cos(x))^\frac{1}{2} \cdot \cos \cdot \ln x \)

\(\int h(x) \, dx = \int \ln x \cdot h(x) \, dx \)

Fid the st at \(f(x) = \frac{1}{x} \)