Practice with Problem Solving Solutions

1. Suppose f is a function such that $f(x+y)=f(x)+f(y)+x^{2} y+x y^{2}$ and $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$.
(a) Find $f(0)$.

Solution: Let $x=0$ and $y=0$: Then

$$
\begin{aligned}
& f(x+y)=f(x)+f(y)+x^{2} y+x y^{2} \Longrightarrow f(0+0)=f(0)+f(0) \Longrightarrow f(0)= \\
& 2 f(0) \Longrightarrow f(0)=0 .
\end{aligned}
$$

(b) Find $f^{\prime}(0)$.

Solution: $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h)}{h}=0$
(c) Find $f^{\prime}(x)$.

Solution: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x)+f(h)+x^{2} h+x h^{2}-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(h)}{h}+\lim _{h \rightarrow 0} x^{2}+x h=1+x^{2}$
2. Evaluate $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \left(\sqrt[n]{\left(1+\frac{k}{n}\right)^{2}}\right)$

Solution: $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \left(\sqrt[n]{\left(1+\frac{k}{n}\right)^{2}}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \left(\left(1+\frac{k}{n}\right)^{2}\right) \frac{1}{n}$
$=\int_{1}^{2} \ln \left(x^{2}\right) d x=2 \int_{1}^{2} \ln (x)$
$u=\ln (x) \quad d v=d x$
$d u=\frac{1}{x} d x \quad v=x$
$=2 \int_{1}^{2} \ln (x)=\left.2 x \ln (x)\right|_{1} ^{2}-2 \int_{1}^{2}(1) d x=\left.2(x \ln (x)-x)\right|_{1} ^{2}=(4 \ln (4)-4)-(2 \ln (1)-2)$
$=4 \ln (4)-2$
3. Let $f(x)$ have one zero, at $x=3$, and suppose $f^{\prime}(x)<0$ for all x and that

$$
\int_{0}^{3} f(t) d t=-\int_{3}^{5} f(t) d t
$$

Define $F(x)=\int_{0}^{x} f(t) d t$ and $G(x)=\int_{1}^{x} F(t) d t$.
(a) Find the zeros of $F(x)$.

Solution: Note that $\int_{0}^{3} f(t) d t+\int_{3}^{5} f(t) d t=0$
$F(x)=0$ at $\mathrm{x}=0$ and $\mathrm{x}=5$
(b) Find all critical points of $F(x)$ and classify each as a local min, a local max, or neither.

Solution: $F^{\prime}(x)=f(x) \Longrightarrow F^{\prime}(x)=0$ when $\mathrm{x}=3$. Because $f(x)<0, f(x)>0$ when $x<3$ and $f(x)<0$ when $x>3$. Thus, $F(x)$ has a local max at $\mathrm{x}=3$.
(c) How many zeros does $G(x)$ have?

Solution: 3 zeros. $G(x)$ is zero at $x=1$. The graph of $F(x)$ is concave down with zeros at 0 and 5 . So $G(x)$ must also have a root at some value of $x<0$ and some value of $x>5$.
(d) Find all critical points of $G(x)$ and classify each as a local min, a local max, or neither.

Solution: $G^{\prime}(x)=F(x)$, so $G^{\prime}(x)=0$ at $x=0$ and $x=5 . G^{\prime \prime}(0)=f(0)>0$ and $G^{\prime \prime}(5)=f(5)<0$, so $G(x)$ has a local min at $\mathrm{x}=0$ and a local max at $\mathrm{x}=5$.
4. Determine whether, for a differentiable function $f, \frac{d}{d x}\left(\int_{0}^{x} f(t) d t\right)$ and $\int_{0}^{x}\left(\frac{d}{d t} f(t)\right) d t$ are always equal, sometimes equal, or never equal. Explain.

Solution: Sometimes equal: when $f(0)=0$.
5. If $f(x)$ is an even function, and $g(y)$ is defined by $g(y)=\int_{0}^{y} f(x) d x$, decide whether g is even, odd, or neither. Justify your answer mathematically (not by example!).
Solution: $g(-y)=\int_{0}^{-y} f(x) d x=-\int_{-y}^{0} f(x) d x=-\int_{0}^{y} f(x) d x$, because $f(x)$ is even. Thus, $g(-y)=-g(y)$, so $g(y)$ is odd.
6. Evaluate $\lim _{h \rightarrow 0} \frac{\int_{x^{2}}^{(x+h)^{2}} \sqrt{1+t^{2}} d t}{h}$.

Solution: Could use definition of the derivative or L'hopital's Rule:

$$
=\lim _{h \rightarrow 0} \sqrt{1+\left((x+h)^{2}\right)^{2}} \cdot(2(x+h))=2 x \sqrt{1+x^{4}}
$$

