Practice with Problem Solving

1. Suppose f is a function such that $f(x+y)=f(x)+f(y)+x^{2} y+x y^{2}$ and $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$.
(a) Find $f(0)$.
(b) Find $f^{\prime}(0)$.
(c) Find $f^{\prime}(x)$.
2. Evaluate $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \left(\sqrt[n]{\left(1+\frac{k}{n}\right)^{2}}\right)$
3. Let $f(x)$ have one zero, at $x=3$, and suppose $f^{\prime}(x)<0$ for all x and that

$$
\int_{0}^{3} f(t) d t=-\int_{3}^{5} f(t) d t
$$

Define $F(x)=\int_{0}^{x} f(t) d t$ and $G(x)=\int_{1}^{x} F(t) d t$.
(a) Find the zeros of $F(x)$.
(b) Find all critical points of $F(x)$ and classify each as a local min, a local max, or neither.
(c) How many zeros does $G(x)$ have?
(d) Find all critical points of $G(x)$ and classify each as a local min, a local max, or neither.
4. Determine whether, for a differentiable function $f, \frac{d}{d x}\left(\int_{0}^{x} f(t) d t\right)$ and $\int_{0}^{x}\left(\frac{d}{d t} f(t)\right) d t$ are always equal, sometimes equal, or never equal. Explain.
5. If $f(x)$ is an even function, and $g(y)$ is defined by $g(y)=\int_{0}^{y} f(x) d x$, decide whether g is even, odd, or neither. Justify your answer mathematically (not by example!).
6. Evaluate $\lim _{h \rightarrow 0} \frac{\int_{x^{2}}^{(x+h)^{2}} \sqrt{1+t^{2}} d t}{h}$.

