Riemann Sums

Consider the graph of $f(x)=\sqrt{25-x^{2}}$ shown below:

1. What is the value of b ?

Answer: $b=5 \cos \left(45^{\circ}\right)=\frac{5}{\sqrt{2}}$
2. Use geometry to find the exact area of the region under $f(x)$ between $x=0$ and $x=b$.

Answer: Area=Area of $($ triangle + sector $)=\frac{1}{2}\left(\frac{5}{\sqrt{2}}\right)^{2}+\frac{1}{8} \pi(5)^{2}=\frac{25}{4}+\frac{25}{8} \pi \approx 16.0675$
Our goal is to approximate this area using vertical rectangles with equal width. Suppose we want to use 5 rectangles.
3. What is the width of each rectangle?

Answer: $\Delta x=\frac{1}{\sqrt{2}}$
4. Now let's let $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5} represent the x-values that pertain to the 6 edges of our rectangles:

What are the values of $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5} ?
Answer: $x_{0}=0, x_{1}=\frac{1}{\sqrt{2}}, x_{2}=\frac{2}{\sqrt{2}}, x_{3}=\frac{3}{\sqrt{2}}, x_{4}=\frac{4}{\sqrt{2}}$, and $x_{5}=\frac{5}{\sqrt{2}}$
Now we need to choose the height of our rectangles. For each rectangle, let's choose it's height to be where it's left edge intersects with $f(x)$. This is called the Left Hand Sum with five rectangles, or as we'll denote it, LHS(5).
5. Draw LHS(5) for this example.

Answer:

6. To approximate the area under $f(x)$ from $x=0$ to $x=b$, we can add up the area of these 5 rectangles. Do this now.
Answer: Area $\approx \frac{1}{\sqrt{2}}\left(f(0)+f\left(\frac{1}{\sqrt{2}}\right)+f\left(\frac{2}{\sqrt{2}}\right)+f\left(\frac{3}{\sqrt{2}}\right)+f\left(\frac{4}{\sqrt{2}}\right)\right)$

$$
\begin{aligned}
& \approx \frac{1}{\sqrt{2}}\left(\sqrt{25}+\sqrt{\frac{49}{4}}+\sqrt{\frac{46}{4}}+\sqrt{\frac{41}{4}}+\sqrt{\frac{34}{4}}\right) \\
& \approx 16.5437
\end{aligned}
$$

Suppose, instead, for each rectangle we choose it's height to be where it's right edge intersects with $f(x)$. This is called the Right hand Sum with five rectangles, or as we'll denote it, RHS(5).
7. Draw RHS(5) for this example.

Answer:

8. To approximate the area under $f(x)$ from $x=0$ to $x=b$, we can add up the area of these 5 rectangles. Do this now.
Answer: Area $\approx \frac{1}{\sqrt{2}}\left(f\left(\frac{1}{\sqrt{2}}\right)+f\left(\frac{2}{\sqrt{2}}\right)+f\left(\frac{3}{\sqrt{2}}\right)+f\left(\frac{4}{\sqrt{2}}\right)+f\left(\frac{5}{\sqrt{2}}\right)\right)$

$$
\begin{aligned}
& \approx \frac{1}{\sqrt{2}}\left(\sqrt{\frac{49}{4}}+\sqrt{\frac{46}{4}}+\sqrt{\frac{41}{4}}+\sqrt{\frac{34}{4}}+\sqrt{\frac{25}{4}}\right) \\
& \approx 15.508
\end{aligned}
$$

Sigma Notation

- Sigma notation is used to concisely write a sum: $\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}$
$-i$ is the index, and a_{i} is the i th term
$-i=1$ indicates that we start with that value
- n indicates the last value of i

Examples:

1. $\sum_{i=1}^{5} i=1+2+3+4+5=15$
2. $\sum_{k=1}^{4} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}=100$
3. $\sum_{m=1}^{4} 3^{m}=3^{1}+3^{2}+3^{3}+3^{4}=120$
4. $\sum_{n=6}^{8} n=6+7+8=21$
5. $\sum_{r=1}^{4}(-1)^{r}=(-1)^{1}+(-1)^{2}+(-1)^{3}+(-1)^{4}=0$

- This notation is especially useful when we are writing a long sum, such as $\sum_{i=1}^{100} i=1+2+\cdots+100$,
or for sums of variable length, such as

$$
\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}
$$

Properties of \sum-Notation

1. $\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}$

- Ex: $\sum_{i=1}^{n} 2 i=2(1)+2(2)+\cdots+2(n)$

$$
=2(1+2+\cdots+n)=2 \sum_{i=1}^{n} i
$$

2. $\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}$

- Ex: $\sum_{i=1}^{n}\left(i+i^{2}\right)=\left(1+1^{2}\right)+\left(2+2^{2}\right)+\cdots+\left(n+n^{2}\right)$

$$
\begin{aligned}
& =(1+2+\cdots+n)+\left(1^{2}+2^{2}+\cdots+n^{2}\right) \\
& =\sum_{i=1}^{n} i+\sum_{i=1}^{n} i^{2}
\end{aligned}
$$

- There is more than one way to represent a sum in Σ-notation
- Write $1+2+\cdots+10$ in Σ-notation

$$
\sum_{\substack{i=1 \\ \text { are just a few possibilities }}}^{10} i \sum_{i=2}^{9}(i+1) \sum_{i=0}^{11}(i-1)
$$

Notation:

- $\sum_{i=1}^{10} i=\sum_{k=1}^{10} k=1+2+\cdots+10$
- What is $\sum_{i=1}^{10} k ? k+k+\cdots+k=10 k$
- Be careful and consistent with notation

General Notation for Riemann Sums:

Suppose you want to approximate the area under the curve $f(x)$ from $x=a$ and $x=b$ using n rectangles. Then the width of the rectangles is $\Delta x=\frac{b-a}{n}$. Let x_{k} represent the x-value at the right edge of the k th rectangle. Then $x_{k}=a+k \Delta x$.

- LHS $(n)=\left(f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots+f\left(x_{n-1}\right)\right) \Delta x=\sum_{k=0}^{n-1} f\left(x_{k}\right) \Delta x$
- RHS $(n)=\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right) \Delta x=\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x$

