1. If
 (a) \(f(x) \) is an even function, then \(f(-x) = f(x) \)
 (b) \(f(x) \) is an odd function, then \(f(-x) = -f(x) \)

2. What is the **definition** of the derivative of \(f \) at \(x \)?

 Solution:
 \[
 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
 \]

3. Use the **definition** of the derivative to to derive \(f'(x) \) for \(f(x) = \frac{1}{\sqrt{1+x}} \).

 Solution:
 \[
 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+x+h}} - \frac{1}{\sqrt{1+x}}}{h}
 \]
 \[
 = \lim_{h \to 0} \frac{1}{\sqrt{1+x+h}} \cdot \frac{1}{\sqrt{1+x}} \cdot \frac{1}{h} \cdot \frac{1}{\sqrt{1+x+h}} + \frac{1}{\sqrt{1+x}}
 \]
 \[
 = \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+x+h}} - \frac{1}{\sqrt{1+x}}}{h}
 \]
 \[
 = \lim_{h \to 0} \frac{1}{h} \cdot \frac{1}{\sqrt{1+x}-\sqrt{1+x+h}} \cdot \frac{1}{\sqrt{1+x}+\sqrt{1+x+h}}
 \]
 \[
 = \lim_{h \to 0} \frac{-h}{\frac{1}{\sqrt{1+x+h}} + \frac{1}{\sqrt{1+x}}}
 \]
 \[
 = -\frac{1}{2} \cdot \frac{1}{(1+x)^{3/2}}
 \]

4. Find the derivative of each of the following functions (you need not use the defintion here):
 (a) \(f(x) = x \sin(e^x) \)

 Solution:
 \[
 f'(x) = (1) \sin(e^x) + x \left(\cos(e^x)e^x \right)
 \]

 (b) \(f(x) = \frac{2x}{1+x^3} \)

 Solution:
 \[
 f'(x) = \frac{2x \ln(2)(1+x^3) - 2x^2(3x^2)}{(1+x^3)^2}
 \]

 (c) \(f(x) = \arctan(x \cos(x)) \)

 Solution:
 \[
 f'(x) = \frac{1}{1+(x \cos(x))^2} \cdot \left(\left(1 \cos(x)+x(-\sin(x)) \right) \right)
 \]

 (d) \(f(x) = e^{\arcsin(x^2)} \)

 Solution:
 \[
 f'(x) = e^{\arcsin(x^2)} \cdot \frac{1}{\sqrt{1-(x^2)^2}} \cdot 2x
 \]

5. On the graph below, identify which graph is \(f \), \(f' \) and \(f'' \). Explain how you know.
Solution: Labeling from top to bottom on the left-hand side of the graph:

- $f'(x)$
- $f(x)$
- $f''(x)$

6. Find the line tangent to the function $f(x) = xe^{kx}$ at $x = 0$. Assuming that $k > 0$, does the linear approximation underestimate or overestimate xe^{kx} near 0? Explain your answer carefully.

Solution: $f'(0) = 1$ which means the tangent line has slope 1. The tangent line must pass through $(0, f(0)) = (0, 0)$. Thus, the tangent line is $T(x) = x$.

$f''(0) = 2k > 0$, meaning that the graph of $f(x)$ is concave up. Thus, $T(x)$ **underestimates** $f(x)$ near 0.

7. The table below gives the values of the functions $f(x)$ and $g(x)$ at specified values of x.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>$g(x)$</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Using the table, estimate the value of the derivative of $f(g(x))$ at $x = 2$.

Solution: $f'(g(2))g'(2) = f'(4)g'(2) \approx \left(\frac{f(5) - f(3)}{2} \right) \left(\frac{g(3) - g(1)}{2} \right) = (-2)(2) = -4$

(b) Using the table, estimate the value of the derivative of $g(f(x))$ at $x = 2$.

Solution: $g'(f(2))f'(2) = g'(3)f'(2) \approx \left(\frac{g(4) - g(2)}{2} \right) \left(\frac{f(3) - f(1)}{2} \right) = (-1)(3) = -3$

8. Suppose $P(t)$ is the monthly payment, in dollars, on a mortgage which will take t years to pay off. What are the units of $P'(t)$? Is $P'(t)$ positive or negative? Explain.

Solution:

- units: **$\text{\$ per year}$**
- sign: $P'(t)$ is **negative** because as you increase the number of years needed to pay off the mortgage, the monthly payment decreases.
9. Let
\[f(x) = \begin{cases}
 c^x + x & \text{if } x < 1 \\
 x^c + 2 & \text{if } x \geq 1
\end{cases} \]

Answer the following without using a graphing calculator.

(a) Define what it means for a function, \(g(x) \), to be continuous at the point \(x = a \).
\[\text{Solution: } \lim_{x \to a^-} f(x) = f(a) = \lim_{x \to a^+} f(x) \]

(b) What value(s) of \(c \) make \(f(x) \) continuous? Explain.
\[\text{Solution: } \lim_{x \to 1^-} f(x) = c + 1 \text{ and } \lim_{x \to 1^+} f(x) = 3. \] In order for \(f(x) \) to be continuous at \(x = 1 \), we need \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \implies c = 2 \). Note that for this value of \(c \), \(f(x) \) is also continuous for \(x \neq 1 \).

(c) Define what it means for a function, \(g(x) \), to be differentiable at the point \(x = a \).
\[\text{Solution: } \lim_{h \to 0^-} \frac{g(a + h) - g(a)}{h} = g'(a) = \lim_{x \to a^+} \frac{g(a + h) - g(a)}{h}, \text{ where } g'(a) \text{ is finite.} \]

(d) For this value(s) of \(c \), is \(f(x) \) differentiable? Explain.
\[\text{Solution: } \lim_{h \to 0^-} \frac{f(x + h) - f(x)}{h} = \frac{d}{dx} (2^x + x) = 2^x \ln(2) + 1 \text{ and } \lim_{h \to 0^+} \frac{f(x + h) - f(x)}{h} = \frac{d}{dx} (x^2 + 2) = 2x. \]
Because these are not equal, \(f(x) \) is not differentiable.

10. The position of a particle (in centimeters) at time \(t \) (in seconds) is \(s(t) = \frac{1}{3}t^3 - 5t^2 + 24t \).

(a) When is the particle at rest?
\[\text{Solution: } v(t) = s'(t) = t^2 - 10t + 24 = (t - 4)(t - 6) \implies v(t) = 0 \text{ at } t = 4 \text{ and } t = 6 \text{ seconds.} \]

(b) When is the particle moving to the right?
\[\text{Solution: } v(t) > 0 \iff (t - 4)(t - 6) > 0 \iff 0 \leq t < 4 \text{ and } 6 < t. \]

(c) When is the particle speeding up?
\[\text{Solution: } a(t) = v'(t) = 2t - 10 \iff a(t) > 0 \text{ when } t > 5. \text{ So } s(t) \text{ is concave down on } 0 \leq t \leq 5 \text{ and concave up on } t > 5. \text{ The particle is speeding up (to the left) on } 4 < t < 5 \text{ and to the right on } t > 6. \]

(d) Find the total distance traveled by the particle over the interval \(0 \leq t \leq 10 \).
\[\text{Solution: } \text{Here we need to account for the distance the particle travels to the left on } 4 < t < 6. \text{ The total distance traveled is } \]
\[s(4) + |s(6) - s(4)| + (s(10) - s(6)) = \frac{112}{3} + \frac{4}{3} + \frac{112}{3} = 76. \]

11. Find the following limits, or state that they do not exist, noting that \(a, b, c, \) and \(d \) are constants greater than 1. Make sure to justify your answers (not with a calculator).

(a) \[\lim_{x \to \infty} \frac{4a^{-x} + 2b}{3c + d^{-2x}} = \frac{2b}{3c} \]

(b) \[\lim_{x \to c} \frac{|x - c|}{2x - 2c} = \frac{-1}{2} \]
(c) \(\lim_{{x \to -a}} \frac{x^2 - a^2}{(x)(x + a)} = \lim_{{x \to -a}} \frac{(x - a)(x + a)}{(x)(x + a)} = \lim_{{x \to -a}} \frac{x - a}{x} = 2 \)