Math 122L - Brief Review of Prerequisites

1. If
(a) $f(x)$ is an even function, then $f(-x)=f(x)$
(b) $f(x)$ is an odd function, then $f(-x)=-f(x)$
2. What is the definition of the derivative of f at x ?

Solution: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
3. Use the definition of the derivative to to derive $f^{\prime}(x)$ for $f(x)=\frac{1}{\sqrt{1+x}}$.

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{1+x+h}}-\frac{1}{\sqrt{1+x}}}{h} \\
&=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{1+x+h}}-\frac{1}{\sqrt{1+x}}}{h} \cdot \frac{1}{\sqrt{1+x+h}}+\frac{1}{\sqrt{1+x}} \\
& \frac{1}{\sqrt{1+x+h}}+\frac{1}{\sqrt{1+x}} \\
&=\lim _{h \rightarrow 0} \frac{\frac{1}{1+x+h}-\frac{1}{1+x}}{h\left(\frac{1}{\sqrt{1+x+h}}+\frac{1}{\sqrt{1+x}}\right)}=\lim _{h \rightarrow 0} \frac{\frac{-h}{(1+x+h)(1+x)}}{h\left(\frac{1}{\sqrt{1+x+h}}+\frac{1}{\sqrt{1+x}}\right)} \\
&=\frac{\frac{-1}{(1+x)^{2}}}{\frac{2}{\sqrt{1+x}}}=\frac{-1}{2(1+x)^{3 / 2}}
\end{aligned}
$$

4. Find the derivative of each of the following functions (you need not use the defintion here):
(a) $f(x)=x \sin \left(e^{x}\right)$

Solution: $f^{\prime}(x)=(1) \sin \left(e^{x}\right)+x\left(\cos \left(e^{x}\right) e^{x}\right)$
(b) $f(x)=\frac{2^{x}}{1+x^{3}}$

Solution: $f^{\prime}(x)=\frac{2^{x} \ln (2)\left(1+x^{3}\right)-2^{x}\left(3 x^{2}\right)}{\left(1+x^{3}\right)^{2}}$
(c) $f(x)=\arctan (x \cos (x))$

Solution: $f^{\prime}(x)=\frac{1}{1+(x \cos (x))^{2}} \cdot((1) \cos (x)+x(-\sin (x)))$
(d) $f(x)=e^{\arcsin \left(x^{2}\right)}$

Solution: $f^{\prime}(x)=e^{\arcsin \left(x^{2}\right)} \cdot \frac{1}{\sqrt{1-\left(x^{2}\right)^{2}}} \cdot 2 x$
5. On the graph below, identify which graph is f, f^{\prime} and $f^{\prime \prime}$. Explain how you know.

Solution: Labeling from top to bottom on the left-hand side of the graph:

$$
\begin{aligned}
& f^{\prime}(x) \\
& f(x) \\
& f^{\prime \prime}(x)
\end{aligned}
$$

6. Find the line tangent to the function $f(x)=x e^{k x}$ at $x=0$. Assuming that $k>0$, does the linear approximation underestimate or overestimate $x e^{k x}$ near 0 ? Explain your answer carefully. Solution: $f^{\prime}(0)=1$ which means the tangent line has slope 1 . The tangent line must pass through $(0, f(0))=(0,0)$. Thus, the tangent line is $T(x)=x$.
$f^{\prime \prime}(0)=2 k>0$, meaning that the graph of $f(x)$ is concave up. Thus, $T(x)$ underestimates $f(x)$ near 0 .
7. The table below gives the values of the functions $f(x)$ and $g(x)$ at specified values of x.

x	1	2	3	4	5
$\mathrm{f}(\mathrm{x})$	0	3	6	8	2
$\mathrm{~g}(\mathrm{x})$	1	4	5	2	0

(a) Using the table, estimate the value of the derivative of $f(g(x))$ at $x=2$.

Solution: $f^{\prime}(g(2)) g^{\prime}(2)=f^{\prime}(4) g^{\prime}(2) \approx\left(\frac{f(5)-f(3)}{2}\right)\left(\frac{g(3)-g(1)}{2}\right)=(-2)(2)=\boxed{-4}$
(b) Using the table, estimate the value of the derivative of $g(f(x))$ at $x=2$.

Solution: $g^{\prime}(f(2)) f^{\prime}(2)=g^{\prime}(3) f^{\prime}(2) \approx\left(\frac{g(4)-g(2)}{2}\right)\left(\frac{f(3)-f(1)}{2}\right)=(-1)(3)=\boxed{-3}$
8. Suppose $P(t)$ is the monthly payment, in dollars, on a mortgage which will take t years to pay off. What are the units of $P^{\prime}(t)$? Is $P^{\prime}(t)$ positive or negative? Explain.

Solution:

- units: $\$$ per year
- sign: $P^{\prime}(t)$ is negative because as you increase the number of years needed to pay off the mortgage, the monthly payment decreases.

9. Let

$$
f(x)= \begin{cases}c^{x}+x & \text { if } x<1 \\ x^{c}+2 & \text { if } x=\geq 1\end{cases}
$$

Answer the following without using a graphing calculator.
(a) Define what it means for a function, $g(x)$, to be continuous at the point $x=a$.

Solution: $\lim _{x \rightarrow a^{-}} f(x)=f(a)=\lim _{x \rightarrow a^{+}} f(x)$
(b) What value(s) of c make $f(x)$ continuous? Explain.

Solution: $\lim _{x \rightarrow 1^{-}} f(x)=c+1$ and $\lim _{x \rightarrow 1^{+}} f(x)=3$. In order for $f(x)$ to be continuous at $x=1$, we need $\lim _{x \rightarrow 1^{-1}} f(x)=\lim _{x \rightarrow 1^{+1}} f(x) \Longrightarrow c=2$ Note that for this value of $c, f(x)$ is also continuous for $x \neq 1$.
(c) Define what it means for a function, $g(x)$, to be differentiable at the point $x=a$.

Solution: $\lim _{h \rightarrow 0^{-}} \frac{g(a+h)-g(a)}{h}=g(a)=\lim _{x \rightarrow 0^{+}} \frac{g(a+h)-g(a)}{h}$, where $g^{\prime}(a)$ is finite.
(d) For this value(s) of c, is $f(x)$ differentiable? Explain.

Solution: $\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h}=\frac{d}{d x}\left(2^{x}+x\right)=2^{x} \ln (2)+1$ and
$\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}=\frac{d}{d x}\left(x^{2}+2\right)=2 x$
Because these are not equal, $f(x)$ is not differentiable.
10. The position of a particle (in centimeters) at time t (in seconds) is $s(t)=\frac{1}{3} t^{3}-5 t^{2}+24 t$.
(a) When is the particle at rest?

Solution: $v(t)=s^{\prime}(t)=t^{2}-10 t+24=(t-4)(t-6) \Longrightarrow v(t)=0$ at $t=4$ and $t=6$ seconds.
(b) When is the particle moving to the right?

Solution: $v(t)>0 \Longleftrightarrow(t-4)(t-6)>0 \Longleftrightarrow 0 \leq t<4$ and $6<t$.
(c) When is the particle speeding up?

Solution: $a(t)=v^{\prime}(t)=2 t-10 \Longrightarrow a(t)>0$ when $t>5$. So $s(t)$ is concave down on $0 \leq t \leq 5$ and concave up on $t>5$. The particle is speeding up (to the left) on $4<t<5$ and to the right on $t>6$.
(d) Find the total distance traveled by the particle over the interval $0 \leq t \leq 10$.

Solution: Here we need to account for the distance the particle travels to the left on $4<t<6$. The total distance traveled is

$$
s(4)+|s(6)-s(4)|+(s(10)-s(6))=\frac{112}{3}+\frac{4}{3}+\frac{112}{3}=76
$$

11. Find the following limits, or state that they do not exist, noting that a, b, c, and d are constants greater than 1. Make sure to justify your answers (not with a calculator).
(a) $\lim _{x \rightarrow \infty} \frac{4 a^{-x}+2 b}{3 c+d^{-2 x}}=\frac{2 b}{3 c}$
(b) $\lim _{x \rightarrow c^{-}} \frac{|x-c|}{2 x-2 c}=\frac{-1}{2}$
(c) $\lim _{x \rightarrow-a} \frac{x^{2}-a^{2}}{(x)(x+a)}=\lim _{x \rightarrow-a} \frac{(x-a)(x+a)}{(x)(x+a)}=\lim _{x \rightarrow-a} \frac{x-a}{(x)}=2$
