April 21, 2022

Space Diplomacy Hackathon

Space Diplomacy HackathonThe National Science Policy Network’s (NSPN) Science Diplomacy Committee and Duke University Center for International & Global Studies (DUCIGS)/Rethinking Diplomacy Program(RDP)’s Space Diplomacy Lab both advocate for exploring diplomatic strategies for an accessible and peaceful environment in low-Earth orbit, translunar space, and beyond. To develop and support these goals, we are offering a week-long hackathon for early career professionals and students.

This hackathon is an opportunity to engage deeply in issues pertaining to space diplomacy.  As such, this event is geared specifically to early career professionals and students of all professional disciplines and acts as an engaging learning opportunity for the diplomacy- and space-curious.

This event is also meant to be solutions-based. We want to do more than just explore the nuances of space diplomacy; we want to deliver solutions to future and ongoing challenges beyond Earth’s orbit. As such, in this hackathon we invite diverse ideas that span across disciplines, specifically avoid military conflict, and encourage the safe and sustainable use of out space.

Prompts*

Hackathon designers have crafted three prompts (see next section) based on present and future challenges in space diplomacy. Each prompt also includes a set of guiding questions. Hackathon teams will be assigned a prompt, but will have the chance to decide which of the guiding questions they’d like to pursue further.

While all three prompts will be featured in the hackathon, each team will focus on only one prompt. As such, during the application we ask that applicants please rank the prompts by preference. This information will be used to (i) create interdisciplinary teams and (1) join participants based on similar interest in hackathon prompts.

Timeline

The hackathon itself is a week-long, virtual, participatory event held over Zoom. It will begin with a half-day kick-off event on June 4th. During this event, admitted attendees will have the chance to learn more about space diplomacy, be introduced to their teams, and have the opportunity to iteratively refine and develop their ideas. In the subsequent week, attendees will work within their teams on their own schedule and with the feedback of subject matter experts to create a written and oral pitch deliverable. On the closing half-day event on June 11th, pitches will be judged by a panel of experts.

Products

All written deliverables will be consolidated and converted into a written end-of-hackathon product published by the Space Diplomacy Lab. Teams that are selected for winning ideas will have the opportunity to workshop their ideas further into a policy action item or “moonshot” goal that is achievable in the coming decades.

Tech and login details

Hackathon kick-off and closing events on June 4th and 11th.

We welcome all individuals, even those who are not hackathon participants to attend the kick-off and closing events on June 4th and 11th.

All activities planned for the kick-off and closing events will be held over Zoom. We will record the keynote event on June 4th so those who cannot attend can participate retroactively.

Zoom information for June 4th and 11th
1. Direct link: https://scipolnetwork-org.zoom.us/j/82543422604
2. Meeting ID: 825 4342 2604
3. iCalendar (.ics) files to your calendar system: https://scipolnetwork-org.zoom.us/meeting/tZYoc-qsrDksGtCSwZ2tq7USDDoEFpZYmKm6/ics?icsToken=98tyKuGqqz8pHtaXthmDRpwQGY-gb-jzpnpdjbd-rwjfUTRCNTbFEsZNF5RvKuHd

Basic run of program

Hackathon kick-off event (Saturday, June 4th 9:00 am to 12:00 pm PST)

9:00 – 9:10 am Introduction to the Space Diplomacy Hackathon

9:11 – 10:10 am Keynote event + audience Q&A

10:11 – 10:15 am Break

10:16 – 10:30 am Hackathon logistics overview

10:31 – 10:45 am Hackathon teams icebreaker activity in breakouts

10:46 am -12:00 pm Hackathon teams initial brainstorming and collaboration in breakouts

 

Hackathon closing event (Saturday, June 11th 9:00 am to 12:00 pm PST)

9:00 – 9:10 am Audience welcome and schedule overview

9:11 – 9:40 am Final participant work session and Q&A with hackathon organizers

9:41 – 10:30 am Break for participants; memo review for judges

10:31 – 11:00 am Oral pitches to judges

11:01 – 11:45 am Judges deliberate and score teams; social time for all hackathon participants and general audience members

11:46 am – 12:00 pm Hackathon results announced and event conclusion

 

More information

Questions can be addressed to space.diplomacy.hackathon@gmail.com

Please feel free to forward this message to any group or person who might be interested.

 

*Hackathon Prompts

 

PROMPT 1: Low-Earth orbit security and space debris

       Over the course of three weeks in March 2025, personnel from the U.S. Space Force have observed a Russian Ministry of Defense-operated COSMOS-1 satellite engaging in unusual rendezvous proximity operations near the U.S. military imaging satellite SF-1 in low earth orbit.

       Suddenly, U.S. Space Force personnel document the emergence of a second, smaller satellite, COSMOS-2, from within the larger COSMOS-1 spacecraft. This confirms suspicions that the main spacecraft is what the Russian Ministry of Defense calls “matryoshka” or nesting doll satellite. COSMOS-2 rapidly passes within a few meters of SF-1 and rapidly exits SF-1’s vicinity, avoiding collision.  Nevertheless, shortly following the encounter, U.S. Space Force personnel witnessed a dramatic failure in the optical imaging capabilities of SF-1, followed shortly thereafter by a complete loss of radio communications and satellite on-orbit control.

       Early assessments by U.S. Space Force personnel led to the conclusion that the COSMOS-2 deployed a field of particulate obscurants to disable SF-1 – a technological capability that was previously unknown to U.S. officials. In the following days, U.S. Space Force observes the uncontrolled degradation of SF-1’s orbit until it enters the orbital area occupied by the first set of China’s recently-deployed SatNet internet satellite mega constellation, which acts as Beijing’s alternative to SpaceX’s  Starlink program. Ultimately, SF-1 collides with a SatNet satellite, creating a field of space debris that eventually disables dozens of SatNet satellites. The resulting destruction creates a long-term, ground-based internet blackout to populations in remote regions of sub-Saharan Africa that now rely solely on SatNet capabilities provided under the auspices of China’s Belt and Road Initiative in the region.

Guiding questions:

  1. As the world becomes increasingly more dependent on space- and satellite-generated services, how can we ensure that nations without access to outer space are not left behind? What changes need to occur to ensure that they are not deprived of essential infrastructures in the event of space conflict?
  2. What legal, tech, or diplomatic strategies are needed to improve space traffic management, prevent catastrophic collisions, and remove space debris in low-Earth orbit?
  3. What improvements in cybersecurity policy and regulation are needed to protect international security, economic prosperity, and scientific knowledge?

 

PROMPT 2: Space technology’s impact in conflict resolution and humanitarian aid

Shocking and tragic images out of Ukraine appear to show Russian military actions reminiscent of the ruthless ground assault tactics documented in  the 1940s. Russia’s attack on Ukraine has disrupted Black Sea agricultural exports, pushing prices higher, and exacerbating high energy and fertilizer costs. As a result, many countries across the world are now facing food insecurity and shortages of critical supplies. The war has also caused a humanitarian crisis as refugees flee Ukraine to escape conflict.

Several private space industries have stepped forward to provide Ukraine and its allies with assistance at a level unprecedented in former global conflicts. For example, companies specializing in satellite-based, near-real time high-resolution optical and multispectral imagery have enabled open source intelligence analysts to assess Russia’s buildup of military equipment and troops before the onset of the war in February 2022 as well as the destruction that the Russian military has wrought since the beginning of hostilities. Likewise, SpaceX has publicly enabled its Starlink satellite-based internet system and provided ground-based receiver technology to the Ukrainian people after the onset of hostilities to help ensure an open information environment for the Ukrainian people as the Russian military targeted civilian infrastructure.

In November 2020 just months before the war began, the Russian military launched a direct-ascent anti-satellite weapons test against one of its defunct, Soviet-era satellites. The resulting explosion created a space debris event that endangered personnel aboard the International Space Station, including those from Russia’s civil space agency, Roscosmos. Despite the dangers of using this class of weapons, Several European defense agencies have received intel that Russia may use them again. But this time, their target is a private sector space asset of another country that is being used by the Ukrainian people and government.

Guiding questions:

  1. What diplomatic and regulatory norms-setting considerations are needed to ensure that there are well-understood legal and policy responses to acts of aggression in space?
  2. How can space technologies deployed by private sector space technology firms be used for positive conflict resolution?
  3. How can space industries and space technology assist diplomats and provide humanitarian aid (e.g., determining civilian evacuation routes out of war zones, addressing food security issues and agricultural disasters)

 

PROMPT 3: Lunar mining and anticipatory diplomacy

Since the early 2030s, the Artemis Accords coalition has been furthering the initial mission first accomplished in the mid-to-late 2020s: return humans to the lunar surface. The year is now 2042 and the coalition is currently building permanent basing at various sites across the lunar landscape. The program partners heavily with private space sector corporations based in Artemis Accords nations. Through novel public-private partnerships, these industries not only deploy critical infrastructure supporting the basing, but also have begun developing the lunar regolith for extractive industries to return limited resources to Earth. This includes the isotope helium-3, which is abundant on the lunar surface and a key fuel for fusion energy reactors on Earth, which have recently been demonstrated to be commercially viable.

Meanwhile, the competing bloc to the Artemis Accords countries, led via a partnership between the People’s Republic of China and the Russian Federation, has begun to make claims to swaths of the lunar surface where helium-3 is thought to be prevalent. This behavior has placed tension on existing norms for sovereignty off planet. During a routine resupply operation, a Chinese spacecraft module is jettisoned without personnel aboard and crash-lands within an area being mined for helium-3 by Artemis Accords private sector firms. Given the concept of sovereignty of the spacecraft itself, the Chinese government claims as sovereign the lunar surface around the crash site and announces its intention to assume helium-3 mining operations there, ignoring the activities of the Artemis Accords-flagged private sector firm.

Guiding questions:

  1. What sort of diplomatic responses do the Artemis Accords nations have to resolve this conflict?
  2. What sort of legal, regulatory, and environmental policy options are needed in order to protect the lunar ecosystem while also respecting the moon’s unique sovereignty concerns?
  3. What sort of standards and norms do private lunar mining corporations need to follow in order to not repeat past mining-related mistakes in Earth’s past (e.g., environmental exposures, worker safety, clean energy considerations)?